Spring School on QCD prospects for future ep and eA colliders, Orsay, June 4-8 2012

TMDs: Theory and Phenomenology I

Piet Mulders

VUK $=$

Abstract

Transverse momentum dependent (TMD) distribution and fragmentation functions are described as Fourier transforms of matrix elements containing non-local combinations of quark and gluon fields. While the collinear functions are lightcone correlators in which the non-locality is restricted along the light-cone, the transverse momentum dependent functions are light-front correlators including a transverse (space-like) separation away from the light-cone. In the matrix elements the time-ordering is superfluous and they are parts of the full (squared) amplitudes that account for the connections to the hadrons (soft parts).

The collinear (x-dependent) parton (quark or gluon) distribution functions (PDF's) that appear in the parameterization of collinear leadingtwist correlators are interpreted as momentum densities including polarized parton densities in polarized hadrons. They involve only spin-spin densities and they do not allow for a description of single-spin asymmetries in high-energy scattering processes at leading $1 / \mathrm{Q}$ order in the hard scale Q .

TMD (x and p_{T}-dependent) PDF's that appear in the parameterization of TMD correlators include spin-spin as well as momentum-spin correlations and they are able to describe singlespin and azimuthal asymmetries, such as Sivers and Collins effects in semi-inclusive deep inelastic scattering (SIDIS), but there are many open issues on p_{T}-factorization. Upon taking moments in p_{T} (or taking Bessel weights) the correlators involve higher-twist operators, but evaluated at zeromomentum (gluonic pole matrix elements). They can be incorporated in a 'generalized' factorization scheme with specific gluonic pole factors such as the sign in SIDIS versus Drell-Yan, which can be traced back to having TMD's with non-trivial process-dependent past- or future-pointing gauge links appearing in the light-front separated, nonlocal operator combinations.

P.J. Mulders

Introduction

■ What are we after?

- Structure of proton (quarks and gluons)

■ Use of proton as a tool (spin, flavor, ...)
■ What are our means?

- QCD as part of the Standard Model
- Features of QCD: asymptotic freedom

■ Confinement scale ~ GeV

Valence structure of hadrons: global properties of nucleons

■ mass

- charge
- spin
- magnetic moment
- isospin, strangeness
- baryon number
- $M_{p} \approx M_{n} \approx 940 \mathrm{MeV}$
- $\mathrm{Q}_{\mathrm{p}}=1, \mathrm{Q}_{\mathrm{n}}=0$
- $s=1 / 2$
- $g_{p} \approx 5.59, g_{n} \approx-3.83$
- $I=1 / 2:(p, n) \quad S=0$
- $B=1$

$$
\mathrm{Q} / \mathrm{e}=+2 / 3 \quad \mathrm{Q} / \mathrm{e}=-1 / 3
$$

Quarks as constituents

$$
\begin{aligned}
& \mathrm{p}=\mathrm{uud} \\
& \mathrm{n}=\mathrm{udd}
\end{aligned}
$$

A real look at the proton

$$
\gamma+N \rightarrow \ldots
$$

Nucleon excitation spectrum
$\mathrm{E} \sim 1 / \mathrm{R} \sim 200 \mathrm{MeV}$
$\mathrm{R} \sim 1 \mathrm{fm}$

A (weak) look at the nucleon

$$
\begin{aligned}
& \mathrm{n} \rightarrow \mathrm{p}+\mathrm{e}^{-}+\mathrm{n} \\
& \tau=900 \mathrm{~s} \\
& \rightarrow \text { Axial charge } \\
& \quad \mathrm{G}_{\mathrm{A}}(0)=1.26
\end{aligned}
$$

A virtual look at the proton

$$
\gamma^{*} \rightarrow \mathrm{~N} \overline{\mathrm{~N}}
$$

$$
\gamma^{*}+N \rightarrow N
$$

Local - forward and off-forward m.e.

Local operators (coordinate space densities):

$$
<P^{\prime}|O(x)| P>=e^{i \Delta . x}\left[G_{1}(t)-i \Delta_{\mu} G_{2}^{\mu}(t)\right]
$$

Static properties:

$$
\begin{array}{ll}
G_{1}(0)=<P|O(x)| P> \\
G_{2}^{\mu}(0)=<P\left|x^{\mu} O(x)\right| P>
\end{array}\left\{\begin{array}{l}
\text { Examples: } \\
\text { (axial) charge } \\
\text { mass } \\
\text { spin } \\
\begin{array}{l}
\text { magnetic moment } \\
\text { angular momentum }
\end{array}
\end{array}\right.
$$

Nucleon densities from virtual look

$$
G_{i}(t) \rightarrow \rho_{i}(x)
$$

- u more central than d?
- role of antiquarks?
- $\mathrm{n}=\mathrm{n}_{0}+\mathrm{p} \pi^{-}+\ldots$?

Quark and gluon operators

Given the QCD framework, the operators are known quarkic or gluonic currents such as
(axial) vector currents

$$
\begin{aligned}
& V_{\mu}^{q}(x)=\bar{q}(x) \gamma_{\mu} q(x) \\
& A_{\mu}^{q^{\prime} q}(x)=\bar{q}(x) \gamma_{\mu} \gamma_{5} q^{\prime}(x)
\end{aligned}
$$

probed in specific combinations by photons, Z- or W-bosons

$$
\begin{aligned}
J_{\mu}^{(\gamma)} & =\frac{2}{3} V_{\mu}^{u}-\frac{1}{3} V_{\mu}^{d}-\frac{1}{3} V_{\mu}^{s}+\ldots \\
J_{\mu}^{(Z)} & =\frac{1}{2}\left(V_{\mu}^{u}-A_{\mu}^{u}\right)-\frac{4}{3} \sin ^{2} \theta_{W} V_{\mu}^{u}+\ldots \\
J_{\mu}^{(W)} & =V_{\mu}^{u d^{\prime}}-A_{\mu}^{u d^{\prime}}+\ldots
\end{aligned}
$$

energy-momentum currents

$$
\begin{aligned}
& T_{\mu \nu}^{q}(x) \sim \bar{q}(x) \gamma_{\{\mu} D_{v\}} q(x) \quad \text { probed by gravitons } \\
& T_{\mu \nu}^{G}(x) \sim G_{\mu \alpha}(x) G_{\nu}^{\alpha}(x)
\end{aligned}
$$

Towards the quarks themselves

■ The current provides the densities but only in specific combinations, e.g. quarks minus antiquarks and only flavor weighted
■ No information about their correlations, (effectively) pions, or ...
■ Can we go beyond these global
 observables (which correspond to local operators)?
■ Yes, in high energy (semi-)inclusive measurements we will have access to non-local operators!

- $\mathrm{L}_{\mathrm{QCD}}$ (quarks, gluons) known!

Non-local probing

Nonlocal forward operators (correlators):

$$
<P\left|O\left(x-\frac{y}{2}, x+\frac{y}{2}\right)\right| P>=<P\left|O\left(-\frac{y}{2},+\frac{y}{2}\right)\right| P>
$$

Specifically useful: ‘squares’
Selectivity
at high
energies:
$q=p$

$$
O\left(x-\frac{y}{2}, x+\frac{y}{2}\right)=\Phi^{\dagger}\left(x-\frac{y}{2}\right) \ldots \Phi\left(x+\frac{y}{2}\right)
$$

Momentum space densities of Φ-ons:

$$
\int d y e^{i p . y}<P\left|\Phi^{\dagger}\left(-\frac{y}{2}\right) \Phi\left(+\frac{y}{2}\right)\right| P>=|<P-p| \Phi(0)|P>|^{2}=f(p)
$$

A hard look at the proton

- Hard virtual momenta ($\pm q^{2}=Q^{2} \sim$ many $G^{2} V^{2}$) can couple to (two) soft momenta

$\gamma^{*}+N \rightarrow$ jet

before
after
$\gamma^{*} \rightarrow$ jet + jet

ZEUS+H1

Experiments!

Hadron correlators

- Hadronic correlators establish the diagrammatic link between hadrons and partonic hard scattering amplitude
■ Quark, quark + gluon, gluon, ...

$$
\langle 0| \psi_{i}(\xi)|p, s\rangle=u_{i}(p, s) e^{-i p . \xi}
$$

$$
\langle X| \psi_{i}(\xi)|P\rangle e^{+i p . \xi}
$$

$$
\langle X| \psi_{i}(\xi) A^{\mu}(\eta)|P\rangle e^{+i\left(p-p_{1}\right) \cdot \xi+i p_{1} \cdot \eta}
$$

Hadron correlators

■ Basically at high energies soft parts are combined into forward matrix elements of parton fields to account for distributions and fragmentation

$$
\Phi_{i j}(p ; P)=\Phi_{i j}(p \mid p)=\int \frac{d^{4} \xi}{(2 \pi)^{4}} e^{i p . \xi}\langle P| \bar{\psi}_{j}(0) \stackrel{\overrightarrow{\mathrm{P}}}{\psi_{i}}(\xi)|P\rangle
$$

■ Also needed are multi-parton correlators

$$
\Phi_{A ; i j}^{\alpha}\left(p-p_{1}, p_{1} \mid p\right)=\int \frac{d^{4} \xi}{(2 \pi)^{4}} e^{i\left(p-p_{1}\right) \cdot \xi+i p_{1} \cdot \eta}\langle P| \bar{\psi}_{j}(0) A^{\alpha}(\eta) \psi_{i}(\xi)|P\rangle
$$

■ Correlators usually just will be parametrized (nonperturbative physics)

PDFs and PFFs

Basic idea of PDFs is to get a full factorized description of high energy scattering processes

$$
\widehat{\sigma}=\left|H\left(p_{1}, p_{2}, \ldots\right)\right|^{2}
$$

calculable

$\sigma\left(P_{1}, P_{2}, \ldots\right)=\iiint \ldots d p_{1} \ldots \Phi_{a}\left(p_{1}, P_{1} ; \mu\right) \otimes \Phi_{b}\left(p_{2}, P_{2} ; \mu\right)$
Give a meaning to

$$
\otimes \widehat{\sigma}_{a b, c \ldots}\left(p_{1}, p_{2}, \ldots ; \mu\right) \otimes \Delta_{c}\left(k_{1}, K_{1} ; \mu\right) \ldots
$$ integration variables!

Hard scale

■ In high-energy processes other momenta available, such that P.P' $\sim s$ with a hard scale $s=Q^{2} \gg M^{2}$

■ Employ light-like vectors P and n, such that $P . n=1\left(e . g . n=P^{\prime} / P . P^{\prime}\right)$ to make a Sudakov expansion of parton momentum

$$
\begin{aligned}
p & =x P^{\mu}+p_{T}^{\mu}+\sigma n^{\mu} & x=p^{+}=p . n \sim 1 \\
& \sim \mathrm{Q} \sim \mathrm{M} \sim \mathrm{M}^{2} / \mathrm{Q} & \sigma=p . P-x M^{2} \sim M^{2}
\end{aligned}
$$

■ Enables importance sampling (twist analysis) for integrated correlators,

$$
\Phi(p)=\Phi\left(x, p_{T}, p . P\right) \Rightarrow \Phi\left(x, p_{T}\right) \Rightarrow \Phi(x) \Rightarrow \Phi
$$

Spring School on QCD prospects for future ep and eA colliders, Orsay, June 4-8 2012

TMDs: Theory and Phenomenology II

Piet Mulders

VUK $=$

Principle for DIS

$$
\begin{aligned}
& \sum_{s} u(p, s) \bar{u}(p, s) \\
& \quad \Rightarrow \Phi(p, P) \sim(p p+m) f(p)
\end{aligned}
$$

■ Instead of partons use correlators
■ Expand parton momenta (for SIDIS take e.g. $n=P_{h} / P_{h} \cdot P$)

$$
\begin{array}{rlrl}
p= & x P^{\mu}+p_{T}^{\mu}+\sigma n^{\mu} & & x=p^{+}=p \cdot n \sim 1 \\
\sim & \sim \mathrm{Q} & \sim \mathrm{M} \sim \mathrm{M}^{2} / \mathrm{Q} & \\
\sim=p \cdot P-x M^{2} \sim M^{2}
\end{array}
$$

Light-cone dominance in DIS

Large scale Q leads in a natural way to the use of lightlike vectors: $n_{+}^{2}=n_{-}^{2}=0$ and $n_{+} \cdot n_{-}=1$

$$
\left.\begin{array}{l}
q^{2}=-Q^{2} \\
P^{2}=M^{2} \\
2 P \cdot q=\frac{Q^{2}}{x_{B}}
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{l}
P=\frac{x_{B} M^{2}}{Q \sqrt{2}} n_{-}+\frac{Q}{x_{B} \sqrt{2}} n_{+} \\
q=\frac{Q}{\sqrt{2}} n_{-}-\frac{Q}{\sqrt{2}} n_{+}
\end{array}\right.
$$

part	components'		
	-	+	
HARD	$\sim Q$	$\sim Q$	
$H \rightarrow q$	$\sim 1 / Q$	$\sim Q$	$\rightarrow \int d p^{-} d^{2} p_{T} \ldots$

Result for DIS

$$
\begin{aligned}
2 M W^{\mu \nu}(P, q) & =-\frac{1}{2} g_{T}^{\mu v} \int d x d p . P d^{2} p_{T} \operatorname{Tr}\left[\Phi(p, P) \gamma^{+}\right] \delta\left(x-x_{B}\right) \\
& =-\frac{1}{2} g_{T}^{\mu v} \operatorname{Tr}\left[\Phi\left(x_{B}\right) \gamma^{+}\right]
\end{aligned}
$$

Twist analysis (1)

- Dimensional analysis to determine importance in an expansion in inverse hard scale
■ Maximize contractions with n

$$
\begin{aligned}
& \operatorname{dim}[\bar{\psi}(0) \not \hbar \psi(\xi)]=2 \\
& \operatorname{dim}\left[F^{n \alpha}(0) F^{n \beta}(\xi)\right]=2 \\
& \operatorname{dim}\left[\bar{\psi}(0) \not \subset A_{T}^{\alpha}(\eta) \psi(\xi)\right]=3
\end{aligned}
$$

■ ... or maximize \# of P's in parametrization of Φ

$$
\Phi^{q}(x)=f_{1}^{q}(x) \frac{\not P}{2} \Leftrightarrow f_{1}^{q}(x)=\int \frac{d \lambda}{(2 \pi)} e^{i x \lambda}\langle P| \bar{\psi}(0) \not \hbar \psi(\lambda n)|P\rangle
$$

Parametrization of lightcone correlator

leading part

- M / P^{+}parts appear as M / Q terms in cross section
- T-reversal applies to $\Phi(x) \rightarrow$ no T-odd functions

TWO 'SPIN' STATES FOR (GOOD) QUARK FIELDS

Basis of partons

- ‘Good part’ of Dirac space is 2-dimensional
- Interpretation of DF's
unpolarized quark distribution
helicity or chirality distribution
transverse spin distr. or transversity chiral eigenstates:

$$
\begin{equation*}
\psi_{R / L} \equiv \frac{1}{2}\left(1 \pm \gamma_{5}\right) \psi: \quad|\overparen{\mathrm{R}}\rangle \quad \text { and } \tag{L}
\end{equation*}
$$

or
transverse spin eigenstates:

$$
\begin{equation*}
\psi_{\uparrow / \downarrow} \equiv \frac{1}{2}\left(1 \pm \gamma^{\alpha} \gamma_{5}\right) \psi: \quad|\quad\rangle \quad \text { and } \tag{i}
\end{equation*}
$$

Note: $\left[\mathcal{P}_{R / L}, \mathcal{P}_{+}\right]=\left[\mathcal{P}_{\uparrow / L}, \mathcal{P}_{+}\right]=0$

Bacchetta, Boglione, Henneman \& Mulders
Matrix representation for $\mathrm{M}=\left[\Phi(\mathrm{x}) \gamma^{+}\right]^{\top}$

MATRIX REPRESENTATION FOR SPIN $\mathbf{1 / 2}$

Quark production matrix, directly related to the helicity formalism

Anselmino et al.
p_{T}-integrated distribution functions:
For a spin $1 / 2$ hadron (e.g. nucleon) the quark production matrix in quark \otimes nucleon spin space is given by
$M^{\text {(prod) }}=\left(\begin{array}{cccc}f_{1}+g_{1} & 0 & 0 & 2 h_{1} \\ 0 & f_{1}-g_{1} & 0 & 0 \\ 0 & 0 & f_{1}-g_{1} & 0 \\ 2 h_{1} & 0 & 0 & f_{1}+g_{1}\end{array}\right)$ (D)- (1 (

- Off-diagonal elements (RL or LR) are chiral-odd functions
- Chiral-odd soft parts must appear with partner in e.g. SIDIS, DY

(calculation of) cross section in DIS

OPTICAL THEOREM FOR DIS

Full calculation

LEADING (in $1 / \mathrm{Q}$) +
$x=x_{B}=-q^{2} /$ P. q

Spring School on QCD prospects for future ep and eA colliders, Orsay, June 4-8 2012

TMDs: Theory and Phenomenology III

Piet Mulders

VUK=m

(calculation of) cross section in SIDIS

OPTICAL THEOREM FOR SIDIS

Full calculation

$$
+
$$

Light-front dominance in SIDIS

Large scale Q leads in a natural way to the use of lightlike vectors: $n_{+}^{2}=n_{-}^{2}=0$ and $n_{+} \cdot n_{-}=1$

$$
\left.\begin{array}{l}
q^{2}=-Q^{2} \\
P^{2}=M^{2} \\
P_{h}^{2}=M_{h}^{2} \\
2 P \cdot q=\frac{Q^{2}}{x_{B}} \\
2 P_{h} \cdot q=-z_{h} Q^{2}
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{l}
P_{h}=\frac{z_{h} Q}{\sqrt{2}} n_{-}+\frac{M_{h}^{2}}{z_{h} Q \sqrt{2}} n_{+} \\
q=\frac{Q}{\sqrt{2}} n_{-}-\frac{Q}{\sqrt{2}} n_{+}+q_{T} \\
P=\frac{x_{B} M^{2}}{Q \sqrt{2}} n_{-}+\frac{Q}{x_{B} \sqrt{2}} n_{+}
\end{array}\right.
$$

Three external momenta

P
 P_{h}
 q

transverse directions relevant

$$
\begin{gathered}
q_{T}=q+x_{B} P-P_{h} / z_{h} \\
\text { or } \\
q_{T}=-P_{h^{\wedge}} / z_{h}
\end{gathered}
$$

Relevance of transverse momenta in hadron-hadron scattering

- At high energies fractional parton momenta fixed by
$p_{1} \approx x_{1} P_{1}+p_{1 T}$
$p_{2} \approx x_{2} P_{2}+p_{2 T}$ kinematics (external momenta) up to $\mathrm{M}^{2} / \mathrm{Q}^{2}$!!
DY $x_{1}=p_{1} \cdot n=\frac{p_{1} \cdot P_{2}}{P_{1} \cdot P_{2}}=\frac{q \cdot P_{2}}{P_{1} \cdot P_{2}}$
- Also possible for transverse momenta of partons

pp-scattering
DY $\quad q_{T}=q-x_{1} P_{1}-x_{2} P_{2}=p_{1 T}+p_{2 T}$
2-particle inclusive hadron-hadron scattering

$$
\begin{aligned}
q_{T} & =z_{1}^{-1} K_{1}+z_{2}^{-1} K_{2}-x_{1} P_{1}-x_{2} P_{2} \\
& =p_{1 T}+p_{2 T}-k_{1 T}-k_{2 T}
\end{aligned}
$$

Care is needed: we need more than one hadron and knowledge of hard process(es)!

Result for SIDIS

$2 M W^{\mu \nu}\left(P, P_{h}, q\right)=\int d^{2} p_{T} \int d^{2} k_{T}$

$$
\times \operatorname{Tr}\left[\Phi\left(x_{B}, p_{T}\right) \gamma^{\mu} \Delta\left(z_{h}, k_{T}\right) \gamma^{\mu}\right] \delta^{2}\left(p_{T}+q_{T}-k_{T}\right)
$$

$=-\frac{1}{2} g_{T}^{\mu \nu} \int d^{2} p_{T} \int d^{2} k_{T}$
$\times \operatorname{Tr}\left[\Phi\left(x_{B}, p_{T}\right) \gamma^{+}\right] \operatorname{Tr}\left[\Delta\left(z_{h}, k_{T}\right) \gamma^{-}\right] \delta^{2}\left(p_{T}+q_{T}-k_{T}\right)$

Twist analysis (2)

- Dimensional analysis to determine importance in an expansion in inverse hard scale
■ Maximize contractions with n

$$
\begin{aligned}
& \operatorname{dim}[\bar{\psi}(0) \not \hbar \psi(\xi)]=2 \\
& \operatorname{dim}\left[F^{n \alpha}(0) F^{n \beta}(\xi)\right]=2 \\
& \operatorname{dim}\left[\bar{\psi}(0) \not \subset A_{T}^{\alpha}(\eta) \psi(\xi)\right]=3
\end{aligned}
$$

- ... or maximize \# of P's in parametrization of Φ

$$
\Phi^{q}(x)=f_{1}^{q}(x) \frac{\not P}{2} \Leftrightarrow f_{1}^{q}(x)=\int \frac{d \lambda}{(2 \pi)} e^{i x \lambda}\langle P| \bar{\psi}(0) \not \hbar \psi(\lambda n)|P\rangle
$$

■ Next for $\Phi\left(\mathrm{x}, \mathrm{p}_{\mathrm{T}}\right)$: availability of p_{T}

Symmetry constraints

$$
\begin{array}{ll}
\Phi^{T^{*}}(p ; P, S)=\gamma_{0} \Phi(p ; P, S) \gamma_{0} & \text { Hermiticity } \\
\Phi(p ; P, S)=\gamma_{0} \Phi(\bar{p} ; \bar{P},-\bar{S}) \gamma_{0} & ■ \text { Parity } \\
\Phi^{[U]}(p ; P, S)=\left(-i \gamma_{5} C\right) \Phi^{[-U]}(\bar{p} ; \bar{P}, \bar{S})\left(-i \gamma_{5} C\right) & \text { Time reversal } \\
\Phi^{c}(p ; P, S)=C \Phi^{T}(-p ; P, S) C & \text { ■harge conjugation } \\
\text { (giving antiquark corr) }
\end{array}
$$

Parametrization of TMD correlator for unpolarized hadron:

$$
\frac{\Phi^{[\pm] q}\left(x, p_{T}\right)=}{\left(f_{1}^{q}\left(x, p_{T}^{2}\right) \pm i h_{1}^{\perp q}\left(x, p_{T}^{2}\right) \frac{\not p_{T}}{M}\right) \frac{\not P}{2}} \underset{\uparrow}{\uparrow}
$$

Parametrization of $\Phi\left(\mathrm{x}, \mathrm{p}_{T}\right)$

■ Also T-odd functions are allowed
■ Functions h_{1}^{\perp} (BM) and $\mathrm{f}_{1 T^{\perp}}$ (Sivers) nonzero!
■ Similar functions (of course) exist as fragmentation functions (no T-constraints) H_{1}^{\perp} (Collins) and $\mathrm{D}_{1 T^{\perp}}$

DISTRIBUTION FUNCTIONS

Parameterization of p_{T}-dependent soft part at leading order and including T-odd parts for polarized hadrons:

$$
\begin{aligned}
& \Phi_{0}\left(x, p_{T}\right)= \\
& \quad\left\{f_{1}\left(x, p_{T}^{2}\right)+i h_{1}^{\perp}\left(x, p_{T}^{2}\right) \frac{\not p_{T}}{M}\right\} \not h_{+} \\
& \Phi_{L}\left(x, p_{T}\right)= \\
& \quad\left\{S_{L} g_{1 L}\left(x, p_{T}^{2}\right) \gamma_{5}+S_{L} h_{1 L}^{\perp}\left(x, p_{T}^{2}\right) \gamma_{5} \frac{\not p_{T}}{M}\right\} \not h_{+} \\
& \Phi_{T}\left(x, p_{T}\right)= \\
& \quad\left\{g_{1 T}\left(x, p_{T}^{2}\right) \frac{\boldsymbol{p}_{T} \cdot S_{T}}{M} \gamma_{5}+f_{1 T}^{\perp}\left(x, p_{T}^{2}\right) \frac{\epsilon_{T} \rho \sigma p_{T}^{\rho} S_{T}^{\sigma}}{M}\right. \\
& \left.\quad+h_{1 T}\left(x, p_{T}^{2}\right) \gamma_{5} \not \Phi_{T}+h_{1 T}^{\perp}\left(x, p_{T}^{2}\right) \frac{\boldsymbol{p}_{T} \cdot S_{T}}{M} \frac{\gamma_{5} \not p_{T}}{M}\right\} \not h_{+} \\
& \Phi_{L L}\left(x, p_{T}\right)=\ldots
\end{aligned}
$$

Fermionic structure of TMDs

Matrix representation for $\mathrm{M}=\left[\Phi^{[\pm]}\left(\mathrm{x}, \mathrm{p}_{\mathrm{T}}\right) \gamma^{+}\right]^{\top}$

- p_{T}-dependent functions

MATRIX REPRESENTATION FOR SPIN 1/2

p_{T}-dependent quark distributions:

$$
\begin{gathered}
\mathrm{B}) \\
\left(\begin{array}{cccc}
f_{1}+g_{1 L} & \frac{\left|p_{T}\right|}{M} e^{i \phi} g_{1 T} & \frac{\left|p_{T}\right|}{M} e^{-i \phi} h_{1 L}^{\perp} & 2 h_{1} \\
\frac{\left|p_{T}\right|}{M} e^{-i \phi} g_{1 T} & f_{1}-g_{1 L} & \frac{\left|p_{T}\right|^{2}}{M^{2}} e^{-2 i \phi} h_{1 T}^{\perp} & -\frac{\left|p_{T}\right|}{M} e^{-i \phi} h_{1 L}^{\perp} \\
\frac{\left|p_{T}\right|}{M} e^{i \phi} h_{1 L}^{\perp} & \frac{\left|p_{T}\right|^{2}}{M^{2}} e^{2 i \phi} h_{1 T}^{\perp} & f_{1}-g_{1 L} & -\frac{\left|p_{T}\right|}{M} e^{i \phi} g_{1 T} \\
2 h_{1} & -\frac{\left|p_{T}\right|}{M} e^{i \phi} h_{1 L}^{\perp} & -\frac{\left|p_{T}\right|}{M} e^{-i \phi} g_{1 T} & f_{1}+g_{1 L}
\end{array} .\right.
\end{gathered}
$$

T-odd: $\mathrm{g}_{1 \mathrm{~T}} \rightarrow \mathrm{~g}_{1 \mathrm{~T}}-\mathrm{i} \mathrm{f}_{1 T^{\perp}}$ and $\mathrm{h}_{1 L^{\perp}} \rightarrow \mathrm{h}_{1 L^{\perp}}+\mathrm{i} \mathrm{h}_{1}^{\perp} \quad$ (imaginary parts)
Bacchetta, Boglione, Henneman \& Mulders PRL 85 (2000) 712

(Un)integrated forward correlators

$\Phi\left(x, p_{T}, p . P\right)=\int \frac{d^{4} \xi}{(2 \pi)^{4}} e^{i p . \xi}\langle P| \bar{\psi}(0) \psi(\xi)|P\rangle \quad ■$ unintegrated

$$
\Phi\left(x, p_{T} ; n\right)=\int \frac{d(\xi . P) d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p . \xi}\langle P| \bar{\psi}(0) \psi(\xi)|P\rangle=T M D \text { (light-front) }
$$

- Time-ordering automatic, allowing interpretation as forward anti-parton - target scattering amplitude
- Involves operators of twists starting at a lowest value (which is usually called the 'twist' of a TMD)

$$
\Phi(x)=\int \frac{d(\xi \cdot P)}{(2 \pi)} e^{i p \cdot \xi}\langle P| \bar{\psi}(0) \psi(\xi)|P\rangle_{\xi \cdot n=\xi_{T}=0} \text { or } \xi^{2}=0 \text { collinear (light-cone) }
$$

- Involves operators of a definite twist. Evolution via splitting functions (moments are anomalous dimensions)

$$
\Phi=\langle P| \bar{\psi}(0) \psi(\xi)|P\rangle_{\xi=0}
$$

- local
- Local operators with calculable anomalous dimension

Large p_{T}

- p_{T}-dependence of TMDs

Fictitious measurement

■ $\Phi\left(x, p_{T}\right) \underset{\mathrm{p}_{\mathrm{T}}^{2}>\mu^{2}}{\rightarrow} \frac{1}{\pi p_{T}^{2}} \frac{\alpha_{S}\left(p_{T}^{2}\right)}{2 \pi} \int_{x}^{1} \frac{d y}{y} P\left(\frac{x}{y}\right) \Phi\left(y ; p_{T}^{2}\right)$

■ Consistent matching to collinear situation: CSS formalism JC Collins, DE Soper and GF Sterman, NP B 250 (1985) 199

Large values of momenta

■ Calculable!

$$
\begin{aligned}
& p^{2} \approx \frac{p_{T}^{2}-x_{p} M_{1}^{2}}{1-x_{p}}<0 \\
& p . P \approx \frac{x_{p}\left(p_{T}^{2}-M_{1}^{2}\right)}{2 x\left(1-x_{p}\right)}<0 \\
& M_{R}^{2} \approx \frac{\left(x-x_{p}\right) p_{T}^{2}+x_{p}(1-x) M_{1}^{2}}{x\left(1-x_{p}\right)}>0
\end{aligned}
$$

$$
\Phi(p, P) \stackrel{\sim}{\leftrightarrows} \frac{\alpha_{s}}{p_{T}^{2}} \cdots \quad \text { etc. }
$$

Twist analysis (3)

■ Dimensional analysis to determine importance in an expansion in inverse hard scale
■ Maximize contractions with n

$$
\begin{aligned}
& \operatorname{dim}[\bar{\psi}(0) \not \hbar \psi(\xi)]=2 \\
& \operatorname{dim}\left[F^{n \alpha}(0) F^{n \beta}(\xi)\right]=2 \\
& \operatorname{dim}\left[\bar{\psi}(0) \not \subset A_{T}^{\alpha}(\eta) \psi(\xi)\right]=3
\end{aligned}
$$

■ ... or maximize \# of P's in parametrization of Φ

$$
\Phi^{q}(x)=f_{1}^{q}(x) \frac{\not P}{2} \Leftrightarrow f_{1}^{q}(x)=\int \frac{d \lambda}{(2 \pi)} e^{i x \lambda}\langle P| \bar{\psi}(0) \not \hbar \psi(\lambda n)|P\rangle
$$

- In addition any number of collinear $\mathrm{n} . \mathrm{A}(\xi)=\mathrm{A}^{\mathrm{n}}(\mathrm{x})$ fields (dimension zero!), but of course in color gauge invariant combinations
$\operatorname{dim} 0: \quad i \partial^{n} \rightarrow i D^{n}=i \partial^{n}+g A^{n}$
$\operatorname{dim} 1: \quad i \partial_{T}^{\alpha} \rightarrow i D_{T}^{\alpha}=i \partial_{T}^{\alpha}+g A_{4}^{\alpha}$

Color gauge invariance

■ Gauge invariance in a nonlocal situation requires a gauge link $U(0, \xi)$

$$
\begin{aligned}
& \bar{\psi}(0) \psi(\xi)=\sum_{n} \frac{1}{n!} \xi^{\mu_{1}} \ldots \xi^{\mu_{N}} \bar{\psi}(0) \partial_{\mu_{1}} \ldots \partial_{\mu_{N}} \psi(0) \\
& U(0, \xi)=\boldsymbol{P} \exp \left(-i g \int_{0}^{\xi} d s^{\mu} A_{\mu}\right)
\end{aligned}
$$

$$
\bar{\psi}(0) U(0, \xi) \psi(\xi)=\sum_{n} \frac{1}{n!} \xi^{u_{1}} \ldots \xi^{u_{N}} \bar{\psi}(0) D_{\mu_{1}} \ldots D_{\mu_{N}} \psi(0)
$$

- Introduces path dependence for $\Phi\left(\mathrm{x}, \mathrm{p}_{\mathrm{T}}\right)$

$$
\Phi^{[U]}\left(x, p_{T}\right) \Rightarrow \Phi(x)
$$

A.V. Belitsky, X.Ji, F. Yuan, NPB 656 (2003) 165
D. Boer, PJM, F. Pijlman, NPB 667 (2003) 201

Gauge link results from leading gluons

Expand gluon fields and reshuffle a bit:

Which gauge links?

$$
\begin{aligned}
& \Phi_{i j}^{q[[]}\left(x, p_{T} ; n\right)=\int \frac{d(\xi \cdot P) d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p, \xi}\langle P| \bar{\psi}_{j}(0) U_{[0, \xi]}^{[C]} \psi_{i}(\xi)|P\rangle_{\xi, n=0} \quad \text { TMD } \\
& \Phi_{i j}^{q}(x ; n)=\int \frac{d(\xi \cdot P)}{(2 \pi)} e^{i p, \xi}\langle P| \bar{\psi}_{j}(0) U_{[0, \xi]}^{[n]} \psi_{i}(\xi)|P\rangle_{\xi, n=\xi_{T}=0} \quad \text { collinear }
\end{aligned}
$$

- Gauge links for TMD correlators process-dependent with simplest cases

AV Belitsky, X Ji and F Yuan, NP B 656 (2003) 165
D Boer, PJ Mulders and F Pijlman, NP B 667 (2003) 201

Which gauge links?

$$
\Phi_{g}^{\alpha \beta[C, C]}\left(x, p_{T} ; n\right)=\int \frac{d(\xi \cdot P) d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p . \xi}\langle P| U_{[\xi, 0]}^{[C]} F^{n \alpha}(0) U_{[0, \xi]}^{[C]} F^{n \beta}(\xi)|P\rangle_{\xi \cdot n=0}
$$

- The TMD gluon correlators contain two links, which can have different paths. Note that standard field displacement involves $\mathrm{C}=\mathrm{C}$ '

$$
F^{\alpha \beta}(\xi) \rightarrow U_{[\eta, \xi]}^{[C]} F^{\alpha \beta}(\xi) U_{[\xi, \eta]}^{[C]}
$$

- Basic (simplest) gauge links for gluon TMD correlators:

C Bomhof, PJM, F Pijlman; EPJ C 47 (2006) 147
F Dominguez, B-W Xiao, F Yuan, PRL 106 (2011) 022301
T.C. Rogers, PJM, PR D81 (2010) 094006

Complications (example: qq \rightarrow qq)

$U_{+}{ }^{[n]}\left[p_{1}, p_{2}, k_{1}\right]$ modifies color flow, spoiling universality (and factorization)

$$
U_{+\infty}^{[k](11)}\left(p, p^{\prime}\right) \ldots \Gamma \ldots \psi(p) \ldots \psi\left(p^{\prime}\right)=\frac{1}{2}\left\{U_{+\infty}^{[k](1)}(p), U_{+\infty}^{[k](1)}\left(p^{\prime}\right)\right\} \ldots \Gamma \ldots \psi(p) \ldots \psi\left(p^{\prime}\right)
$$

Color

 entanglement

Which gauge links?

- With more (initial state) hadrons color gets entangled, e.g. in pp

■ Outgoing color contributes future pointing gauge link to $\Phi\left(p_{2}\right)$ and future pointing part of a loop in the gauge link for $\Phi\left(p_{1}\right)$
T.C. Rogers, PJM, PR D81 (2010) 094006

- Can be color-detangled if only p_{T} of one correlator is relevant (using polarization, ...) but include Wilson loops in final U

Featuring: phases in gauge theories

$\psi^{\prime}=P e^{i e \int d s . A} \psi$

$$
\psi_{i}(x)|P\rangle=P e^{-i g \int_{x}^{v^{\prime}} d_{s_{\mu}} A^{\mu^{\prime}}} \psi_{i}\left(x^{\prime}\right)|P\rangle
$$

Spring School on QCD prospects for future ep and eA colliders, Orsay, June 4-8 2012

TMDs: Theory and Phenomenology IV

Piet Mulders

VUK $=$

Experimental consequences

■ Even if (elaborated on below) transverse moments involve twist-3, they may show up at leading order in azimuthal asymmetries, cf DY $\sigma\left(q_{T}\right)=\iint d^{2} p_{T} d^{2} k_{T} \delta^{2}\left(p_{T}+k_{T}-q_{T}\right) \Phi_{1}\left(p_{T}\right) \Phi_{2}\left(k_{T}\right) \ldots$

- Integrated:

$$
\begin{aligned}
& \int d^{2} q_{T} \sigma\left(q_{T}\right)=\int d^{2} p_{T} \Phi_{1}\left(p_{T}\right) \int d^{2} k_{T} \Phi_{2}\left(k_{T}\right) \ldots \\
& \int d^{2} q_{T} q_{T}^{\alpha} \sigma\left(q_{T}\right)=\int d^{2} p_{T} \Phi_{1}\left(p_{T}\right) \iint d^{2} k_{T} k_{T}^{\alpha} \Phi_{2}\left(k_{T}\right) \ldots \\
& \\
& +\int d^{2} p_{T} p_{T}^{\alpha} \Phi_{1}\left(p_{T}\right) \int d^{2} k_{T} \Phi_{2}\left(k_{T}\right) \ldots
\end{aligned}
$$

■ Weighted:

■ Examples in DY: Ralston \& Soper; Kotzinian; M \& Tangerman

- Examples in SIDIS: Collins \& Sivers asymmetries

■ Examples in pp-scattering: deviations from back-to-back situation in 2-jet production: Boer, Vogelsang
■ In particular single-spin asymmetries: T-odd observables (!) requiring T-odd correlators (hard T-odd effects are higher order or mass effects)

T-odd \leftrightarrow single spin asymmetry

- $W_{\mu v}\left(q ; P, S ; P_{h}, S_{h}\right)=-W_{v \mu}\left(-q ; P_{r} S_{;} P_{h} S_{h}\right)$
- $\mathrm{W}_{\mathrm{uv}}^{*}\left(\mathrm{q} ; \mathrm{P}_{1} \mathrm{~S} ; \mathrm{P}_{\mathrm{h}} \mathrm{S}_{\mathrm{h}}\right)=\mathrm{W}_{\mathrm{vu}}\left(\mathrm{q} ; \mathrm{P}, \mathrm{S} ; \mathrm{P}_{\mathrm{h}}, \mathrm{S}_{\mathrm{h}}\right)$
- $\mathrm{W}_{\mu v}\left(\mathrm{q} ; \mathrm{P}, \mathrm{S} ; \mathrm{P}_{\mathrm{h}}, \mathrm{S}_{\mathrm{h}}\right)=\bar{W}_{\mu v}\left(\overline{\mathrm{q}} ; \bar{P}_{,}-\overline{\mathrm{S}} ; \bar{P}_{\mathrm{h}},-\bar{S}_{\mathrm{h}}\right)$
- $\mathrm{W}_{\mu v}^{*}\left(\mathrm{q} ; \mathrm{P}, \mathrm{S} ; \mathrm{P}_{\mathrm{h}}, \mathrm{S}_{\mathrm{h}}\right)=\overline{\mathrm{W}}_{\mu v}\left(\overline{q_{;}} \overline{\mathrm{P}, \mathrm{S} ; \mathrm{P}_{\mathrm{h}}, \mathrm{S}_{\mathrm{h}}}\right)$
symmetry structure
hermiticity
parity
time
reversal

■ with time reversal constraint only even-spin asymmetries
■ the time reversal constraint cannot be applied in DY or in ≥ 1-particle inclusive DIS or $\mathrm{e}^{+}{ }^{-}$

- In those cases single spin asymmetries can be used to measure T-odd quantities (such as T-odd distribution or fragmentation functions)

Lepto-production of pions

MATRIX REPRESENTATION FOR SPIN 0

p_{T}-dependent quark fragmentation functions:

$$
M^{(\mathrm{dec})}=\left(\begin{array}{cc}
D_{1} & i \frac{\left|k_{T}\right| e^{-i \phi}}{M_{h}} H_{1}^{\perp} \\
-i \frac{\left|k_{T}\right| e^{+i \phi}}{M_{h}} H_{1}^{\perp} & D_{1} \tag{L}\\
\text { (R) } & \text { (L) }
\end{array}\right)
$$

SIDIS: $\ell+H^{\uparrow} \rightarrow \ell+h+X$

$$
\begin{aligned}
& \left\langle\frac{Q_{T}}{M} \sin \left(\phi_{h}^{\ell}-\phi_{S}^{\ell}\right)\right\rangle_{\text {OTO }} \\
& \quad=\frac{2 \pi \alpha^{2} s}{Q^{4}}\left|S_{T}\right|\left(1-y+\frac{1}{2} y^{2}\right) \sum_{a, \bar{\alpha}} e_{a}^{2} x_{B} f_{1 T}^{\perp(1) a}\left(x_{B}\right) D_{1}^{a}\left(z_{h}\right) \\
& \left\langle\frac{Q_{T}}{M_{h}} \sin \left(\phi_{h}^{\ell}+\phi_{S}^{\ell}\right)\right\rangle_{\text {OTO }} \\
& \quad=\frac{2 \pi \alpha^{2} s}{Q^{4}}\left|S_{T}\right| 2(1-y) \sum_{a, \bar{\alpha}} e_{a}^{2} x_{B} h_{1}^{a}\left(x_{B}\right) H_{1}^{\perp(1) a}\left(z_{h}\right)
\end{aligned}
$$

$\mathrm{H}_{1}{ }^{\perp}$ is T -odd and chiral-odd

Operator structure in collinear case

■ Collinear functions

$$
\begin{aligned}
& \Phi^{q}(x)=\int \frac{d(\xi \cdot P)}{(2 \pi)} e^{i p \cdot \xi}\langle P| \bar{\psi}(0) U_{[0, \xi]}^{[n]} \psi(\xi)|P\rangle_{\xi . n=\xi_{T}=0} \\
& x^{N-1} \Phi^{q}(x)=\int \frac{d(\xi \cdot P)}{(2 \pi)} e^{i p \cdot \xi}\langle P| \bar{\psi}(0)\left(\partial^{n}\right)^{N-1} U_{[0, \xi]}^{[n]} \psi(\xi)|P\rangle_{\xi . n=\xi_{T}=0} \\
&=\int \frac{d(\xi \cdot P)}{(2 \pi)} e^{i p \cdot \xi}\langle P| \bar{\psi}(0) U_{[0, \xi]}^{[n]}\left(D^{n}\right)^{N-1} \psi(\xi)|P\rangle_{\xi \cdot n=\xi_{T}=0}
\end{aligned}
$$

■ Moments correspond to local matrix elements with calculable anomalous dimensions, that can be Mellin transformed to splitting functions

$$
\Phi^{(N)}=\langle P| \bar{\psi}(0)\left(D^{n}\right)^{N-1} \psi(0)|P\rangle
$$

■ All operators have same twist since $\operatorname{dim}\left(D^{n}\right)=0$

Operator structure in TMD case

■ For TMD functions one can consider transverse moments

$$
\begin{aligned}
& \Phi\left(x, p_{T} ; n\right)=\int \frac{d(\xi . P) d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p . \xi}\langle P| \bar{\psi}(0) \psi(\xi)|P\rangle_{\xi \cdot n=0} \\
& p_{T}^{\alpha} \Phi^{[\pm]}\left(x, p_{T} ; n\right)=\int \frac{d(\xi . P) d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p . \xi}\langle P| \bar{\psi}(0) U D_{T}^{\alpha}(\pm \infty) U \psi(\xi)|P\rangle_{\xi \cdot n=0}
\end{aligned}
$$

■ Transverse moments involve collinear twist-3 multi-parton correlators Φ_{D} and Φ_{F} built from non-local combination of three parton fields

$$
\Phi_{F}^{\alpha}\left(x-x_{1}, x_{1} \mid x\right)=\int \frac{d \xi \cdot P}{(2 \pi)} e^{i\left(p-p_{1}\right) \cdot \xi+i p_{1} \cdot \eta}\langle P| \bar{\psi}(0) F^{n \alpha}(\eta) \psi(\xi)|P\rangle_{\xi \cdot n=\xi_{T}=0}
$$

$$
\begin{aligned}
\Phi_{D}^{\alpha}(x) & =\int d x_{1} \Phi_{D}^{\alpha}\left(x-x_{1}, x_{1} \mid x\right) \\
\Phi_{A}^{\alpha}(x) & =P V \int d x_{1} \frac{1}{x_{1}} \Phi_{F}^{n \alpha}\left(x-x_{1}, x_{1} \mid x\right)
\end{aligned}
$$

T-invariant definition

Operator structure in TMD case

■ Transverse moments can be expressed in these particular collinear multi-parton twist-3 correlators
■ $\int d^{2} p_{T} p_{T}^{\alpha} \Phi^{[\pm]}\left(x, p_{T} ; n\right)=\tilde{\Phi}_{\partial}^{\alpha}(x) \pm \pi \Phi_{G}^{\alpha}(x)$

T-even T-odd (gluonic pole or ETQS m.e.)

$$
\tilde{\Phi}_{\partial}^{\alpha}(x)=\Phi_{D}^{\alpha}(x)-\Phi_{A}^{\alpha} \quad \Phi_{G}^{\alpha}(x)=\Phi_{F}^{n \alpha}(x, 0 \mid x)
$$

■ Transverse moments connect to local operators; it is sometimes nicer to work in b_{T}-space with Bessel-weighted asymmetries

$$
e^{i M \varphi_{b}} F\left(b_{T}\right)=\int d^{2} p_{T} e^{i p_{T} \cdot b_{T}} e^{i M \varphi_{p}} \tilde{F}\left(p_{T}\right) \sim e^{i M \varphi_{b}} \int p_{T} d p_{T} J_{M}\left(p_{T} b_{T}\right) \tilde{F}\left(p_{T}\right)
$$

- Operators remain nonlocal because of gauge link
\checkmark Accounts in natural way for asymptotic behavior
\checkmark Advantages when considering evolution (cancellation of soft factors)

Distributions versus fragmentation

■ Operators:

$$
\begin{aligned}
& \Phi^{[\pm]}(p \mid p) \sim\langle P| \bar{\psi}(0) U_{ \pm} \psi(\xi)|P\rangle \\
& \Phi_{\partial}^{\alpha}(x)=\tilde{\Phi}_{\partial}^{\alpha}(x) \pm \pi \Phi_{G}^{\alpha}(x)
\end{aligned}
$$

T-even T-odd (gluonic pole)

$$
\Phi_{G}^{\alpha}(x)=\Phi_{F}^{n \alpha}(x, 0 \mid x) \neq 0
$$

■ Operators:
out state

$$
\Delta(k \mid k)
$$

$$
\sim \sum_{X}\langle 0| \psi(\xi)\left|K_{h} X\right\rangle\left\langle K_{h} X\right| \bar{\psi}(0)|0\rangle
$$

$$
\Delta_{G}^{\alpha}(x)=\Delta_{F}^{n \alpha}\left(\frac{1}{Z}, 0 \left\lvert\, \frac{1}{Z}\right.\right)=0
$$

$$
\Delta_{\partial}^{\alpha}(x)=\tilde{\Delta}_{\partial \uparrow}^{\alpha}(x)
$$

T-even operator combination, but no T-constraints!

Higher azimuthal asymmetries

- Transverse moments can be extended to higher moments, involving twist-4 correlators $\Phi_{\text {FF }}$ etc., where each of the gluon fields can be a gluonic pole. This is relevant for $\cos (2 \phi)$ and $\sin (2 \phi)$ asymmetries. Relevant e.g. in the study of transversely polarized quarks in a proton

$$
\Phi_{T}^{q}\left(x, p_{T}\right)=\ldots+\left(h_{1 T}^{q}\left(x, p_{T}^{2}\right) \gamma_{5} \not \subset-h_{1 T}^{\perp q}\left(x, p_{T}^{2}\right) \frac{p_{T} \cdot S_{T}}{M} \frac{\gamma_{5} \not p_{T}}{M}\right) \frac{\not P}{2}
$$

■ For gluons one needs operators $\langle\mathrm{FF},<\mathrm{F}[\mathrm{F}, \mathrm{F}]\rangle,\langle\mathrm{F},\{\mathrm{F}, \mathrm{F}\}\rangle$, $<[F, F][F, F]>,<\{F, F\}\{F, F\}>$ etc. again with increasing twist and several gluonic poles. Relevant in study of linearly polarized gluons in proton

$$
\Phi_{g}^{\mu \nu}\left(x, p_{T}\right)=\frac{1}{2 x}\left(-g_{T}^{\mu \nu} f_{1}^{g}\left(x, p_{T}^{2}\right)+\left(\frac{p_{T}^{u} p_{T}^{v}+\frac{1}{2} g_{T}^{\mu v}}{M^{2}}\right) h_{1}^{\perp g}\left(x, p_{T}^{2}\right)\right)
$$

■ Both $\Phi_{\mathrm{g}}{ }^{[+,+]}+\Phi_{\mathrm{g}}^{[-,-]}$and $\Phi_{\mathrm{g}}{ }^{[+,-]}+\Phi_{\mathrm{g}}^{[-,+]}$are T-even with $2^{\text {nd }}$ moments containing < $\mathrm{F}, \mathrm{G}][\mathrm{G}, \mathrm{F}]>$ and $<\{\mathrm{F}, \mathrm{G}\}\{\mathrm{G}, \mathrm{F}\}>$ operator terms respectively

C Bomhof and PJ Mulders, NPB 795 (2008) 409
F Dominguez, J-W Qiu, B-W Xiao and F Yuan, PR D85 (2012) 045003
M.G.A. Buffing, A. Mukherjee, PM, in preparation

TMD-factorization

■ TMD moments involve higher twist operators, with many possibilities, distinguishing T-even/odd, chiral-even/odd, ...

- To study scale dependence one needs to have a full definition that accounts for (transitions to) all regions, requiring renormalization scale, regularization of rapidity divergences, ...
■ In a process one needs to consider collinear and soft gluons, ...

J.C. Collins, Foundations of Perturbative QCD, Cambridge Univ. Press 2011
http://projects.hepforge.org/tmd/
Aybat, Prokudin, Rogers, Qiu, Collins,

Conclusions

■ TMDs enter in processes with more than one hadron involved (e.g. SIDIS and DY)

- Rich phenomenology and experiments!

■ Relevance for JLab, Compass, RHIC, JParc, GSI, LHC, EIC and LHeC

- Role for models using light-cone wf (Barbara Pasquini) and lattice gauge theories (Philipp Haegler)
■ Link of TMD (non-collinear) and GPDs (off-forward)
■ Link to small x (k_{T}-factorization, Emil Avsar)
■ Easy cases are collinear and 1-parton un-integrated (1PU) processes, with in the latter case for the TMD a (complex) gauge link, depending on the color flow in the tree-level hard process
■ Finding gauge links is only first step, (dis)proving QCD factorization is next (recent work of Ted Rogers and Mert Aybat).

