
Color test

I just want to be

sure

that all my favourite colors

are

being displayed correctly on this

new

device. If not I’ll modify them.
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Today’s talk: sampling for Bayesian Inference

When

I a model p(data|θ) of an experiment has been written,

I a prior p(θ) has been set on the parameters,

then by Bayes’ theorem:

π(θ) := p(θ|data) =
p(data|θ)p(θ)∫

Θ p(data|θ)p(θ)dθ
.
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Rémi Bardenet Bayesian numerical methods A very generic problem 5 / 50



The generative process of an air shower
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Looking at Auger tank signals

112 Chapitre 5 : Identification du rayonnement cosmique : étude de la composante muonique
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Modelling tank signals: the single muon case

Figure: Muonic time response model pτ,td
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ni Poisson with mean n̄i (Aµ, tµ) =

Nµ∑
j=1

n̄i (Aµj , tµj),
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So what is what in the cas Nµ = 1 ?

I Parameters to infer are θ = (tµ,Aµ).

I The likelihood is fixed by the model:

p(data|θ) =

Nbins∏
i=1

n̄i (θ)
ni

ni !
e−n̄i (θ).

I Choose e.g. a uniform prior:

p(θ) =
1

C

1

D
χ[0,C ](tµ) χ[0,D](Aµ),

I Then the posterior reads

p(θ|data) ∝ χ[0,C ](tµ) χ[0,D](Aµ)

Nbins∏
i=1

n̄i (θ)
ni e−n̄i (θ).
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Bayesian inference requires computing integrals

I MEP estimate (aka Bayes’): compute

θ̂MEP :=

∫
Θ

θp(θ|data)dθ,

I credible intervals: find I such that∫
I
p(θ|data)dθ ≥ 1− α.

I Bayes’ factors: require evidence computations

p(data|M) =

∫
p(data|θ, M)p(θ|M)dθ.

The MAP estimate

θMAP := arg max p(θ|data)

with “Hessian” credible interval does not require integrals.
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Averaging whenever necessary

Most Bayesian inference tasks require integrals wrt. the posterior∫
h(θ)p(θ|data)dθ.

The Monte Carlo principle

I :=

∫
h(x)π(x)dx ≈ 1

N

N∑
i=1

h(xi ) =: ÎN ,

where X1:N ∼ π i .i .d .

I ÎN is unbiased:
EÎN = I .

I Error bars shrink at speed 1/
√

N:

Var(ÎN) =
Var(X )

N
.
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Pros & Cons

Pros

I Numerical integration (grid methods) is too costly and
imprecise when d ≥ 6.

I MC should concentrate the effort on places where π is big.

I Many, many applications !

Cons

One must be able to sample from π !

→ Need for generic clever sampling methods !
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Non-Bayesian applications of sampling algorithms: Auger

“A complete Monte Carlo hybrid simulation has been performed to study the
trigger efficiency and the detector performance. The simulation sample consists
of about 6000 proton and 3000 iron CORSIKA [19] showers”

from “The exposure of the hybrid detector of the P. Auger Observatory”, the
Auger Collab., Astroparticle Phys., 2010.
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Non-Bayesian applications of sampling algorithms: EPOS

“The difficulty with Monte Carlo generation of interaction configurations arises
from the fact that the configuration space is huge and rather nontrivial [...] the
only way to proceed amounts to employing dynamical MC methods”

from “Parton-based Gribov-Regge theory”, Drescher et al., Phys.Rept., 2008.
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Summary

1 A very generic problem

2 First sampling methods

3 MCMC algorithms

4 A taste of a monster MCMC sampler for Auger
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The inverse function method

Principle

If U ∼ U(0,1) and F is a cdf, then

F−1(U) ∼ F .

I It assumes we know how to sample from U(0, 1) !

I It needs a known and convenient cdf.
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Rejection Sampling 1/2

Assumptions

I Target π is known up to a multiplicative constant,

I an easy-to-sample distribution q s.t. π ≤ Mq is known.

RejectionSampling
(
π, q,M,N

)
1 for i ← 1 to N,

2 Sample θ(i) ∼ q and u ∼ U(0,1).

3 Form the acceptance ratio ρ = π(θ(i))

Mq(θ(i))
.

4 if u < ρ, then accept θ(i).

5 else reject.
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Rejection Sampling 2/2

Remarks & Drawbacks

I One needs to know good q and M,

I Lots of wasted samples.
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Importance Sampling 1/2

Assumptions & principle

I Target π is fully known,

I an easy-to-sample distribution q is known s.t.
Supp(π) ⊂ Supp(q).

Then

ÎN :=
1

N

N∑
i=1

h(θ(i))
π(θ(i))

q(θ(i))
→
∫

Θ
h(θ)π(θ)dθ, θ(i) ∼ q i .i .d .

ImportanceSampling
(
π, q,N

)
1 Sample independent θ(i) ∼ q, i = 1..N,

2 Form the weights wi = π(θ(i))

q(θ(i))
.

3 π is approximated by 1
N

∑N
i=1 wiδθ(i) .
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Importance Sampling 2/2

I If |h| ≤ M, then

Var(ÎN) ≤ M2

N

( ∫ (π − q)2

q
dθ + 1

)
,

thus q has to be close to π and have heavier tails than π.
I Further: the q achieving the smallest variance is

q =
|h|π∫
|h|πdθ

.

I Better and achievable: For smaller variance, or if π is known
up to a constant, use

ĨN :=

∑N
i=1 h(θ(i))π(θ(i))/q(θ(i))∑N

i=1 π(θ(i))/q(θ(i))
(biased).

I One needs to know a good, heavy-tailed q.

I Adaptive strategies for tuning q are possible [WKB+09].
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ĨN :=

∑N
i=1 h(θ(i))π(θ(i))/q(θ(i))∑N

i=1 π(θ(i))/q(θ(i))
(biased).

I One needs to know a good, heavy-tailed q.

I Adaptive strategies for tuning q are possible [WKB+09].

Rémi Bardenet Bayesian numerical methods First sampling methods 21 / 50



Importance Sampling 2/2

I If |h| ≤ M, then
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ĨN :=

∑N
i=1 h(θ(i))π(θ(i))/q(θ(i))∑N

i=1 π(θ(i))/q(θ(i))
(biased).

I One needs to know a good, heavy-tailed q.

I Adaptive strategies for tuning q are possible [WKB+09].
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Going to high dimensions

Benchmark

Let π(θ) = N (0, Id) and q(θ) = N (0, σId).

I Rejection sampling
I needs σ ≥ 1.
I Fraction of accepted proposals goes as σ−d .

I Importance sampling
I yields infinite variance when σ ≤ 1/

√
2,

I variance of the weights goes as

( σ2

2− 1/σ2

)d/2
.
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So far, so good ?

We have seen that

I Sums & integrals are ubiquitous in Statistics.

I Numerical integration is limited to small dimensions.

I “Basic” sampling is limited to full-information easy cases.

I RS and IS, well-tuned, are efficient and versatile,

Now what do we do when

I it is not possible to sample from π directly, but only evaluate
it pointwise, possibly up to a multiplicative constant:

π(θ) =
p(x |θ)p(θ)∫

Θ p(x |θ)p(θ)dθ
.

I We don’t know a good approximation q of π.

I Θ is high-dimensional.

Well, MCMC is bringing both answers and new problems !
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Summary

1 A very generic problem

2 First sampling methods

3 MCMC algorithms

4 A taste of a monster MCMC sampler for Auger
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Metropolis’ algorithm 1/2

Goal is to explore Θ, spending more time in places where π is high.

Figure: Taken from [Bis06]
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Metropolis’ algorithm 2/2

I Metropolis’ algorithm builds a random walk with symmetric
steps q, that mimics independent draws from π.

I Symmetricity means q(x |y) = q(y |x), e.g. q(y |x) = N (x , σ).

MetropolisSampler
(
π, q,T , θ(0)

)
1 S ← ∅.
2 for t ← 1 to T ,

3 Sample θ∗ ∼ q(.|θ(t−1)) and u ∼ U(0,1).

4 Form the acceptance ratio

ρ = 1 ∧ π(θ∗)

π(θ(t−1))
.

5 if u < ρ, then θ(t) ← θ∗ else θ(t) ← θ(t−1).

6 S ← S ∪ {θ(t)}.
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The Metropolis-Hastings algorithm

I When no symmetricity is assumed, change acceptance to

ρ(x , y) = 1 ∧ π(y)

q(y |x)

q(x |y)

π(x)
.

I Remark the exploration/exploitation trade-off.

MetropolisHastingsSampler
(
π, q,T , θ(0)

)
1 S ← ∅.
2 for t ← 1 to T ,

3 Sample θ∗ ∼ q(.|θ(t−1)) and u ∼ U(0,1).

4 Form the acceptance ratio

ρ = 1 ∧ π(θ∗)

q(θ∗|θ(t−1))

q(θ(t−1)|θ∗)
π(θ(t−1))

.

5 if u < ρ, then θ(t) ← θ∗ else θ(t) ← θ(t−1).

6 S ← S :: {θ(t)}.
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All the maths in two slides 1/2

I A (stationary) Markov chain (θ(t)) is defined through a kernel:

P(θ(t+1) ∈ dy |θ(t) = x) = K (x , dy).

I If θ(0) = x , then

P(θ(t) ∈ dy |θ(0) = x) =

∫ ∫
K (x , dx1) . . .K (dxt−1, dy)

=: K t(x , dy).
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All the maths in two slides 2/2

I Under technical conditions, the MH kernel K satisfies

‖π − K t(x , .)‖ → 0,∀x .

I This justifies a burn-in period after which samples are
discarded.

I Further results like a Law of Large Numbers guarantee that

1

T + 1

T∑
t=0

h(θ(t))→
∫

h(θ)π(θ)d(θ)

for h bounded.

I Central Limit Theorem-type results also exist, see Section 6.7
of [RC04].
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Autocorrelation in equilibrium

I For a scalar chain, define the integrated autocorrelation time

τint = 1 + 2
∑
k>0

Corr (θ(t), θ(t+k)).

I One can show that

Var

(
1

T

T∑
t=1

h(θ(t))

)
=

τint

T
Var

(
h(θ(0))

)
.

Rule of thumb for the proposal

Optimizing similar criteria leads to choosing q(.|x) = N (x , σ2) s.t.

I acceptance rate is ≈ 0.5 for d = 1, 2.

I acceptance rate is ≈ 0.25 for d ≥ 3.
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A practical wrap-up

We have justified the acceptance ratio, the burn-in period, and the
optimization of the proposal.

MetropolisHastingsSampler
(
π, q,T , θ(0),Σ0

)
1 S ← ∅.
2 for t ← 1 to T ,

3 Sample θ∗ ∼ N (.|θ(t−1), σΣ0) and u ∼ U(0,1).

4 Form the acceptance ratio

ρ = 1 ∧ π(θ∗)

q(θ∗|θ(t−1))

q(θ(t−1)|θ∗)
π(θ(t−1))

.

5 if u < ρ, then θ(t) ← θ∗ else θ(t) ← θ(t−1).

6 if t ≤ Tb,

7 σ ← σ + 1
t0.6 (acc. rate− 0.25/0.50).

8 else if t > Tb, then S ← S ∪ θ(t).
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No maths on this slide

Feel free to experiment with Laird Breyer’s applet on

http://www.lbreyer.com/classic.html.
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A case study from particle physics

I Consider again our muonic signal reconstruction task, with

p(data|θ) =

Nbins∏
i=1

n̄i (θ)
ni

ni !
e−n̄i (θ).

I The model (the physics) suggest using specific independent
priors for Aµ and tµ.
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@ðPED
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Figure: Prior on Aµ for a given zenith angle
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Case study: simulation results
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I One can often detect bad mixing by eye.

I Acceptance for the left panel chain is only 3%.
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Case study: simulation results
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I Marginals are simply component histograms !

I Even the marginals look ugly when mixing is bad.
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I From now on, we only consider the good mixing case.

I Try to reproduce your marginals with different starting values!

I Producing the chain was the hard part. Now everything is
easy: estimation, credible intervals, ...
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Summary

1 A very generic problem

2 First sampling methods

3 MCMC algorithms

4 A taste of a monster MCMC sampler for Auger
A generative model for the tank signals [BK12]
Reconstruction/Inference
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Let’s go for Nµ > 1

I Recall

n̄i (Aµ, tµ) = Aµ

∫ ti

ti−1

pτ,td (t − tµ)dt.
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I Now

ni Poisson with mean n̄i (Aµ, tµ) =

Nµ∑
j=1

n̄i (Aµj , tµj),
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MCMC 101: Metropolis

I Bayesian inference: obtain

π(Aµ, tµ) = p(Aµ, tµ|signal) ∝ p(signal|Aµ, tµ)p(Aµ, tµ).

I MCMC methods sample from π.
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Metropolis (B) and adaptive Metropolis (B+G) algorithms

M
`
π(x), X0, Σ0, T ,

´
1 S ← ∅, Σ← Σ0

2 for t ← 1 to T

3

4 eX ∼ N`
· |Xt−1, Σ

´
. proposal

5 if
π(eX )

π(Xt−1)
> U [0, 1] then

6 Xt ← X . accept

7 else

8 Xt ← Xt−1 . reject

9 S ← S ∪ {Xt} . update posterior sample

10

11

12

13 return S
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Metropolis (B) and adaptive Metropolis (B+G) algorithms

AM
`
π(x), X0, Σ0, T , µ0, c

´
1 S ← ∅,

2 for t ← 1 to T

3 Σ← cΣt−1 . scaled adaptive covariance

4 eX ∼ N`
· |Xt−1, Σ

´
. proposal

5 if
π(eX )

π(Xt−1)
> U [0, 1] then

6 Xt ← X . accept

7 else

8 Xt ← Xt−1 . reject

9 S ← S ∪ {Xt} . update posterior sample

10 µt ← µt−1 +
1

t

`
Xt−µt−1

´
. update running mean and covariance

11 Σt ← Σt−1 +
1

t

``
Xt − µt−1

´ `
Xt − µt−1

´ᵀ − Σt−1
´

12 c ← c + 1
t0.6 (acc. rate− 0.25/0.50).

13 return S

Rémi Bardenet Bayesian numerical methods A taste of a monster MCMC sampler for Auger 38 / 50



Three problems, many “solutions”

I Possibly high dimensions but also highly correlated model.
I Use adaptive proposals.

I The number of muons Nµ is unknown.
I Use a nonparametric prior [Nea00] or
I use a Reversible Jump sampler [Gre95].

I Likelihood P(n|Aµ, tµ) is permutation invariant.
I Indeed, if Nµ = 2,

p(n| A1,A2, t1, t2) = p(n| A2,A1, t2, t1).

I Marginals are useless, a problem known as label-switching
[Ste00].
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Label-Switching

I If the prior is also permutation invariant, then so is π(Aµ, tµ).
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Rémi Bardenet Bayesian numerical methods A taste of a monster MCMC sampler for Auger 40 / 50



Label-Switching
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AMOR
`
π(x), X0, T , µ0, Σ0, c

´
1 S ← ∅

2 for t ← 1 to T

3 Σ← cΣt−1 . scaled adaptive covariance

4 eX ∼ N`
· |Xt−1, Σ

´
. proposal

5 eP ∼ arg min
P∈P

L(µt−1,Σt−1)

`
P eX´

. pick an optimal permutation

6 eX ← eP eX . permute

7 if
π(eX )

P
P∈PN

`
PXt−1|X , Σ

´
π(Xt−1)

P
P∈PN

`
PX |Xt−1, Σ

´ > U [0, 1] then

8 Xt ← X . accept

9 else

10 Xt ← Xt−1 . reject

11 S ← S ∪ {Xt} . update posterior sample

12 µt ← µt−1 +
1

t

`
Xt − µt−1

´
. update running mean and covariance

13 Σt ← Σt−1 +
1

t

``
Xt − µt−1

´ `
Xt − µt−1

´ᵀ − Σt−1
´

14 c ← c + 1
t0.6 (acc. rate− 0.25/0.50).

15 return S
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AMOR results on the previous example

100 200 300 400 500 600
0

5

10

15

20

25

30

35

40

45

50

t @nsD

ð
PE
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The integration methods ladder (adapted from Iain Murray’s)

Growing item number means higher complexity and either higher
efficiency or wider applicability. Check [RC04] when no further
indication is given.

1 Quadrature,
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The integration methods ladder (adapted from Iain Murray’s)

Growing item number means higher complexity and either higher
efficiency or wider applicability. Check [RC04] when no further
indication is given.

1 Quadrature,

2 Quasi-MC,

3 Simple MC, Importance Sampling,

4 MCMC (MH, Slice sampling, etc.),

5 Adaptive MCMC [AFMP11], Hybrid MC [Nea10], Tempering
methods [GRS96], SMC [DdFG01], particle MCMC [ADH10].
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The integration methods ladder (adapted from Iain Murray’s)

Growing item number means higher complexity and either higher
efficiency or wider applicability. Check [RC04] when no further
indication is given.

1 Quadrature,

2 Quasi-MC,

3 Simple MC, Importance Sampling,

4 MCMC (MH, Slice sampling, etc.),

5 Adaptive MCMC [AFMP11], Hybrid MC [Nea10], Tempering
methods [GRS96], SMC [DdFG01], particle MCMC [ADH10].

6 ABC [FP12].
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Conclusions

Take-home message

I MC provides generic integration methods,
I Potential applications in Physics are numerous:

I in forward sampling (aka “simulation”),
I in Bayesian inference tasks.

I Producing a good mixing MCMC chain can be difficult
I Higher efficiency can result from:

I Learning dependencies.
I Exploiting existing/added structure of the problem.

I Broad range of methods allows to find the level of
sophistication required by the difficulty of your problem.

Rémi Bardenet Bayesian numerical methods A taste of a monster MCMC sampler for Auger 44 / 50



Conclusions

Take-home message

I MC provides generic integration methods,
I Potential applications in Physics are numerous:

I in forward sampling (aka “simulation”),
I in Bayesian inference tasks.

I Producing a good mixing MCMC chain can be difficult
I Higher efficiency can result from:

I Learning dependencies.
I Exploiting existing/added structure of the problem.

I Broad range of methods allows to find the level of
sophistication required by the difficulty of your problem.
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“Introductory” references

I Tutorials: Lots on videoconference.net.
I I. Murray’s video lessons:

videolectures.net/mlss09uk murray mcmc/

I A. Sokal’s tutorial, MCMC from a physicist’s point of view +
applications to Statistical Physics [Sok96]

I The Monte Carlo bible: C. Robert & G. Casella’s “Monte
Carlo Methods” [RC04], and references within.

I For more precise informations, please bug me.
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Thanks for your attention
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