I just want to be

sure

that all my favourite colors

are

being displayed correctly on this

new

device. If not I'll modify them.

How to unefficiently solve any problem A tutorial on Bayesian numerical methods

Rémi Bardenet

LAL, LRI, Univ. Paris-Sud XI
May 30th, 2012
(1) A very generic problem
(2) First sampling methods
(3) MCMC algorithms
(4) A taste of a monster MCMC sampler for Auger

(1) A very generic problem

(2) First sampling methods

(3) MCMC algorithms

4. A taste of a monster MCMC sampler for Auger

When

- a model $p($ data $\mid \theta)$ of an experiment has been written,

When

- a model $p($ data $\mid \theta)$ of an experiment has been written,
- a prior $p(\theta)$ has been set on the parameters,

When

- a model $p($ data $\mid \theta)$ of an experiment has been written,
- a prior $p(\theta)$ has been set on the parameters, then by Bayes' theorem:

$$
\pi(\theta):=p(\theta \mid \text { data })=\frac{p(\text { data } \mid \theta) p(\theta)}{\int_{\Theta} p(\text { data } \mid \theta) p(\theta) d \theta} .
$$

The generative process of an air shower

Looking at Auger tank signals

Event $1524469-E=10.6[E e V] / \theta=39.6^{\circ}-$ Station 612 at 1684 m

Event $1524469-E=10.6[\mathrm{EeV}] / \theta=39.6^{\circ}-$ Station 622 at 2031 m

Figure: Muonic time response model $p_{\tau, t_{d}}$

Mean number of Photo-electrons per bin

$$
\bar{n}_{i}\left(A_{\mu}, t_{\mu}\right)=A_{\mu} \int_{t_{i-1}}^{t_{i}} p_{\tau, t_{d}}\left(t-t_{\mu}\right) d t
$$

n_{i} Poisson with mean $\bar{n}_{i}\left(\mathbf{A}_{\boldsymbol{\mu}}, \mathbf{t}_{\boldsymbol{\mu}}\right)=\sum_{j=1}^{N_{\mu}} \bar{n}_{i}\left(A_{\boldsymbol{\mu}_{j}}, t_{\boldsymbol{\mu}_{j}}\right)$,

- Parameters to infer are $\theta=\left(t_{\mu}, A_{\mu}\right)$.
- The likelihood is fixed by the model:

$$
p(\operatorname{data} \mid \theta)=\prod_{i=1}^{N_{\text {bins }}} \frac{\bar{n}_{i}(\theta)^{n_{i}}}{n_{i}!} e^{-\bar{n}_{i}(\theta)} .
$$

- Choose e.g. a uniform prior:

$$
p(\theta)=\frac{1}{C} \frac{1}{D} \chi_{[0, C]}\left(t_{\mu}\right) \chi_{[0, D]}\left(A_{\mu}\right),
$$

- Then the posterior reads

$$
p(\theta \mid \text { data }) \propto \chi_{[0, C]}\left(t_{\mu}\right) \chi_{[0, D]}\left(A_{\mu}\right) \prod_{i=1}^{N_{\text {bins }}} \bar{n}_{i}(\theta)^{n_{i}} e^{-\bar{n}_{i}(\theta)} .
$$

- MEP estimate (aka Bayes'): compute

$$
\hat{\theta}_{\mathrm{MEP}}:=\int_{\Theta} \theta p(\theta \mid \text { data }) d \theta
$$

- credible intervals: find I such that

$$
\int_{I} p(\theta \mid \text { data }) d \theta \geq 1-\alpha .
$$

- Bayes' factors: require evidence computations

$$
p(\operatorname{data} \mid M)=\int p(\operatorname{data} \mid \theta, M) p(\theta \mid M) d \theta
$$

The MAP estimate

$$
\theta_{\mathrm{MAP}}:=\arg \max p(\theta \mid \text { data })
$$

with "Hessian" credible interval does not require integrals.

Averaging whenever necessary

Most Bayesian inference tasks require integrals wrt. the posterior

$$
\int h(\theta) p(\theta \mid \text { data }) d \theta
$$

The Monte Carlo principle

$$
I:=\int h(x) \pi(x) d x \approx \frac{1}{N} \sum_{i=1}^{N} h\left(x_{i}\right)=: \hat{l}_{N}
$$

where $X_{1: N} \sim \pi$ i.i.d.

Averaging whenever necessary

Most Bayesian inference tasks require integrals wrt. the posterior

$$
\int h(\theta) p(\theta \mid \text { data }) d \theta
$$

The Monte Carlo principle

$$
I:=\int h(x) \pi(x) d x \approx \frac{1}{N} \sum_{i=1}^{N} h\left(x_{i}\right)=: \hat{l}_{N},
$$

where $X_{1: N} \sim \pi$ i.i.d.

- \hat{I}_{N} is unbiased:

$$
\mathbb{E} \hat{l}_{N}=I
$$

Averaging whenever necessary

Most Bayesian inference tasks require integrals wrt. the posterior

$$
\int h(\theta) p(\theta \mid \text { data }) d \theta
$$

The Monte Carlo principle

$$
I:=\int h(x) \pi(x) d x \approx \frac{1}{N} \sum_{i=1}^{N} h\left(x_{i}\right)=: \hat{l}_{N}
$$

where $X_{1: N} \sim \pi$ i.i.d.

- \hat{I}_{N} is unbiased:

$$
\mathbb{E} \hat{l}_{N}=I
$$

- Error bars shrink at speed $1 / \sqrt{N}$:

$$
\operatorname{Var}\left(\hat{I}_{N}\right)=\frac{\operatorname{Var}(X)}{N}
$$

Pros

- Numerical integration (grid methods) is too costly and imprecise when $d \geq 6$.

Pros

- Numerical integration (grid methods) is too costly and imprecise when $d \geq 6$.
- MC should concentrate the effort on places where π is big.
- Many, many applications !

Pros

- Numerical integration (grid methods) is too costly and imprecise when $d \geq 6$.
- MC should concentrate the effort on places where π is big.
- Many, many applications !

Cons

One must be able to sample from π !

Pros

- Numerical integration (grid methods) is too costly and imprecise when $d \geq 6$.
- MC should concentrate the effort on places where π is big.
- Many, many applications!

Cons

One must be able to sample from π !
\rightarrow Need for generic clever sampling methods!

"A complete Monte Carlo hybrid simulation has been performed to study the trigger efficiency and the detector performance. The simulation sample consists of about 6000 proton and 3000 iron CORSIKA [19] showers"
from "The exposure of the hybrid detector of the P. Auger Observatory", the Auger Collab., Astroparticle Phys., 2010.

Non-Bayesian applications of sampling algorithms: EPOS

"The difficulty with Monte Carlo generation of interaction configurations arises from the fact that the configuration space is huge and rather nontrivial [...] the only way to proceed amounts to employing dynamical MC methods"
from "Parton-based Gribov-Regge theory", Drescher et al., Phys.Rept., 2008.

(1) A very generic problem

(2) First sampling methods

(3) MCMC algorithms

4. A taste of a monster MCMC sampler for Auger

The inverse function method

Principle

If $U \sim \mathcal{U}_{(0,1)}$ and F is a cdf, then

$$
F^{-1}(U) \sim F .
$$

Principle

If $U \sim \mathcal{U}_{(0,1)}$ and F is a cdf, then

$$
F^{-1}(U) \sim F .
$$

- It assumes we know how to sample from $\mathcal{U}(0,1)$!
- It needs a known and convenient cdf.

Assumptions

- Target π is known up to a multiplicative constant,
- an easy-to-sample distribution q s.t. $\pi \leq M q$ is known.

$$
\begin{array}{ll}
\text { RejectionSampling }(\pi, q, M, N) \\
1 & \text { for } i \leftarrow 1 \text { to } N, \\
2 & \text { Sample } \theta^{(i)} \sim q \text { and } u \sim \mathcal{U}_{(0,1)} . \\
3 & \text { Form the acceptance ratio } \rho=\frac{\pi\left(\theta^{(i)}\right)}{M q\left(\theta^{(i)}\right)} . \\
4 & \text { if } u<\rho, \text { then accept } \theta^{(i)} . \\
5 & \text { else reject. }
\end{array}
$$

Remarks \& Drawbacks

- One needs to know good q and M,
- Lots of wasted samples.

Assumptions \& principle

- Target π is fully known,
- an easy-to-sample distribution q is known s.t. $\operatorname{Supp}(\pi) \subset \operatorname{Supp}(q)$.

Then

$$
\hat{\mathcal{I}}_{N}:=\frac{1}{N} \sum_{i=1}^{N} h\left(\theta^{(i)}\right) \frac{\pi\left(\theta^{(i)}\right)}{q\left(\theta^{(i)}\right)} \rightarrow \int_{\Theta} h(\theta) \pi(\theta) d \theta, \quad \theta^{(i)} \sim q \text { i.i.d. }
$$

$\operatorname{ImportanceSampling}(\pi, q, N)$
1 Sample independent $\theta^{(i)} \sim q, i=1 . . N$,
$2 \quad$ Form the weights $w_{i}=\frac{\pi\left(\theta^{(i)}\right)}{q\left(\theta^{(i)}\right)}$.
$3 \quad \pi$ is approximated by $\frac{1}{N} \sum_{i=1}^{N} w_{i} \delta_{\theta^{(i)}}$.

Importance Sampling 2/2

- If $|h| \leq M$, then

$$
\operatorname{Var}\left(\hat{\mathcal{I}}_{N}\right) \leq \frac{M^{2}}{N}\left(\int \frac{(\pi-q)^{2}}{q} d \theta+1\right)
$$

thus q has to be close to π and have heavier tails than π.

- If $|h| \leq M$, then

$$
\operatorname{Var}\left(\hat{\mathcal{I}}_{N}\right) \leq \frac{M^{2}}{N}\left(\int \frac{(\pi-q)^{2}}{q} d \theta+1\right)
$$

thus q has to be close to π and have heavier tails than π.

- Further: the q achieving the smallest variance is

$$
q=\frac{|h| \pi}{\int|h| \pi d \theta} .
$$

- If $|h| \leq M$, then

$$
\operatorname{Var}\left(\hat{\mathcal{I}}_{N}\right) \leq \frac{M^{2}}{N}\left(\int \frac{(\pi-q)^{2}}{q} d \theta+1\right)
$$

thus q has to be close to π and have heavier tails than π.

- Further: the q achieving the smallest variance is

$$
q=\frac{|h| \pi}{\int|h| \pi d \theta} .
$$

- Better and achievable: For smaller variance, or if π is known up to a constant, use

$$
\tilde{\mathcal{I}}_{N}:=\frac{\sum_{i=1}^{N} h\left(\theta^{(i)}\right) \pi\left(\theta^{(i)}\right) / q\left(\theta^{(i)}\right)}{\sum_{i=1}^{N} \pi\left(\theta^{(i)}\right) / q\left(\theta^{(i)}\right)} \quad \text { (biased). }
$$

- If $|h| \leq M$, then

$$
\operatorname{Var}\left(\hat{\mathcal{I}}_{N}\right) \leq \frac{M^{2}}{N}\left(\int \frac{(\pi-q)^{2}}{q} d \theta+1\right)
$$

thus q has to be close to π and have heavier tails than π.

- Further: the q achieving the smallest variance is

$$
q=\frac{|h| \pi}{\int|h| \pi d \theta} .
$$

- Better and achievable: For smaller variance, or if π is known up to a constant, use

$$
\tilde{\mathcal{I}}_{N}:=\frac{\sum_{i=1}^{N} h\left(\theta^{(i)}\right) \pi\left(\theta^{(i)}\right) / q\left(\theta^{(i)}\right)}{\sum_{i=1}^{N} \pi\left(\theta^{(i)}\right) / q\left(\theta^{(i)}\right)} \quad \text { (biased). }
$$

- One needs to know a good, heavy-tailed q.
- Adaptive strategies for tuning q are possible [WKB+ ${ }^{+} 09$.

Benchmark

Let $\pi(\theta)=\mathcal{N}\left(0, I_{d}\right)$ and $q(\theta)=\mathcal{N}\left(0, \sigma l_{d}\right)$.

Rejection sampling
needs $\sigma \geq 1$
Fraction of accept

- variance of the weights goes as

Benchmark

Let $\pi(\theta)=\mathcal{N}\left(0, I_{d}\right)$ and $q(\theta)=\mathcal{N}\left(0, \sigma I_{d}\right)$.

- Rejection sampling
- needs $\sigma \geq 1$.
- Fraction of accepted proposals goes as σ^{-d}.
> Importance sampling
- yields infinite variance when $\sigma \leq 1 / \sqrt{2}$,

Benchmark

Let $\pi(\theta)=\mathcal{N}\left(0, I_{d}\right)$ and $q(\theta)=\mathcal{N}\left(0, \sigma l_{d}\right)$.

- Rejection sampling
- needs $\sigma \geq 1$.
- Fraction of accepted proposals goes as σ^{-d}.
- Importance sampling
- yields infinite variance when $\sigma \leq 1 / \sqrt{2}$,
- variance of the weights goes as

$$
\left(\frac{\sigma^{2}}{2-1 / \sigma^{2}}\right)^{d / 2}
$$

We have seen that

- Sums \& integrals are ubiquitous in Statistics.
- Numerical integration is limited to small dimensions.
- "Basic" sampling is limited to full-information easy cases.
- RS and IS, well-tuned, are efficient and versatile,

We have seen that

- Sums \& integrals are ubiquitous in Statistics.
- Numerical integration is limited to small dimensions.
- "Basic" sampling is limited to full-information easy cases.
- RS and IS, well-tuned, are efficient and versatile,

Now what do we do when

- it is not possible to sample from π directly, but only evaluate it pointwise, possibly up to a multiplicative constant:

$$
\pi(\theta)=\frac{p(x \mid \theta) p(\theta)}{\int_{\Theta} p(x \mid \theta) p(\theta) d \theta} .
$$

- We don't know a good approximation q of π.
- Θ is high-dimensional.

We have seen that

- Sums \& integrals are ubiquitous in Statistics.
- Numerical integration is limited to small dimensions.
- "Basic" sampling is limited to full-information easy cases.
- RS and IS, well-tuned, are efficient and versatile,

Now what do we do when

- it is not possible to sample from π directly, but only evaluate it pointwise, possibly up to a multiplicative constant:

$$
\pi(\theta)=\frac{p(x \mid \theta) p(\theta)}{\int_{\Theta} p(x \mid \theta) p(\theta) d \theta} .
$$

- We don't know a good approximation q of π.
- Θ is high-dimensional.

Well, MCMC is bringing both answers and new problems !

(1) A very generic problem

(2) First sampling methods

(3) MCMC algorithms
4. A taste of a monster MCMC sampler for Auger

Metropolis' algorithm $1 / 2$
Goal is to explore Θ, spending more time in places where π is high.

Figure: Taken from [Bis06]

- Metropolis' algorithm builds a random walk with symmetric steps q, that mimics independent draws from π.
- Symmetricity means $q(x \mid y)=q(y \mid x)$, e.g. $q(y \mid x)=\mathcal{N}(x, \sigma)$.

$$
\begin{array}{ll}
\operatorname{MetropolisSampler}\left(\pi, q, T, \theta^{(0)}\right) \\
1 & \mathcal{S} \leftarrow \emptyset . \\
2 & \text { for } t \leftarrow 1 \text { to } T, \\
3 & \text { Sample } \theta^{*} \sim q\left(. \mid \theta^{(t-1)}\right) \text { and } u \sim \mathcal{U}_{(0,1)} . \\
4 & \text { Form the acceptance ratio } \\
& \rho=1 \wedge \frac{\pi\left(\theta^{*}\right)}{\pi\left(\theta^{(t-1)}\right)} . \\
5 & \text { if } u<\rho, \text { then } \theta^{(t)} \leftarrow \theta^{*} \text { else } \theta^{(t)} \leftarrow \theta^{(t-1)} . \\
6 & \mathcal{S} \leftarrow \mathcal{S} \cup\left\{\theta^{(t)}\right\} .
\end{array}
$$

- When no symmetricity is assumed, change acceptance to

$$
\rho(x, y)=1 \wedge \frac{\pi(y)}{q(y \mid x)} \frac{q(x \mid y)}{\pi(x)} .
$$

- Remark the exploration/exploitation trade-off.
$\operatorname{MetropolisHastingsSampler}\left(\pi, q, T, \theta^{(0)}\right)$
$1 \quad \mathcal{S} \leftarrow \emptyset$.
$2 \quad$ for $t \leftarrow 1$ to T,
3
$4 \quad$ Form the acceptance ratio

$$
\rho=1 \wedge \frac{\pi\left(\theta^{*}\right)}{q\left(\theta^{*} \mid \theta^{(t-1)}\right)} \frac{q\left(\theta^{(t-1)} \mid \theta^{*}\right)}{\pi\left(\theta^{(t-1)}\right)}
$$

if $u<\rho$, then $\theta^{(t)} \leftarrow \theta^{*}$ else $\theta^{(t)} \leftarrow \theta^{(t-1)}$.
6

$$
\mathcal{S} \leftarrow \mathcal{S}::\left\{\theta^{(t)}\right\} .
$$

- A (stationary) Markov chain $\left(\theta^{(t)}\right)$ is defined through a kernel:

$$
\mathbb{P}\left(\theta^{(t+1)} \in d y \mid \theta^{(t)}=x\right)=K(x, d y) .
$$

- If $\theta^{(0)}=x$, then

$$
\begin{aligned}
\mathbb{P}\left(\theta^{(t)} \in d y \mid \theta^{(0)}=x\right) & =\iint K\left(x, d x_{1}\right) \ldots K\left(d x_{t-1}, d y\right) \\
& =: K^{t}(x, d y) .
\end{aligned}
$$

- Under technical conditions, the MH kernel K satisfies

$$
\left\|\pi-K^{t}(x, .)\right\| \rightarrow 0, \forall x
$$

- This justifies a burn-in period after which samples are discarded.
- Further results like a Law of Large Numbers guarantee that

$$
\frac{1}{T+1} \sum_{t=0}^{T} h\left(\theta^{(t)}\right) \rightarrow \int h(\theta) \pi(\theta) d(\theta)
$$

for h bounded.

- Central Limit Theorem-type results also exist, see Section 6.7 of [RC04].

Autocorrelation in equilibrium

- For a scalar chain, define the integrated autocorrelation time

$$
\tau_{\text {int }}=1+2 \sum_{k>0} \operatorname{Corr}\left(\theta^{(t)}, \theta^{(t+k)}\right)
$$

Rule of thumb for the proposal

- For a scalar chain, define the integrated autocorrelation time

$$
\tau_{\text {int }}=1+2 \sum_{k>0} \operatorname{Corr}\left(\theta^{(t)}, \theta^{(t+k)}\right)
$$

- One can show that

$$
\operatorname{Var}\left(\frac{1}{T} \sum_{t=1}^{T} h\left(\theta^{(t)}\right)\right)=\frac{\tau_{\text {int }}}{T} \operatorname{Var}\left(h\left(\theta^{(0)}\right)\right)
$$

Autocorrelation in equilibrium

- For a scalar chain, define the integrated autocorrelation time

$$
\tau_{\text {int }}=1+2 \sum_{k>0} \operatorname{Corr}\left(\theta^{(t)}, \theta^{(t+k)}\right)
$$

- One can show that

$$
\operatorname{Var}\left(\frac{1}{T} \sum_{t=1}^{T} h\left(\theta^{(t)}\right)\right)=\frac{\tau_{\text {int }}}{T} \operatorname{Var}\left(h\left(\theta^{(0)}\right)\right)
$$

Rule of thumb for the proposal

Optimizing similar criteria leads to choosing $q(. \mid x)=\mathcal{N}\left(x, \sigma^{2}\right)$ s.t.

- acceptance rate is ≈ 0.5 for $d=1,2$.
- acceptance rate is ≈ 0.25 for $d \geq 3$.

A practical wrap-up

We have justified the acceptance ratio, the burn-in period, and the optimization of the proposal.
$\operatorname{MetropolisHastingsSampler}\left(\pi, q, T, \theta^{(0)}, \Sigma_{0}\right)$
$1 \quad \mathcal{S} \leftarrow \emptyset$.
$2 \quad$ for $t \leftarrow 1$ to T,
$3 \quad$ Sample $\theta^{*} \sim \mathcal{N}\left(. \mid \theta^{(t-1)}, \sigma \Sigma_{0}\right)$ and $u \sim \mathcal{U}_{(0,1)}$.
$4 \quad$ Form the acceptance ratio

$$
\rho=1 \wedge \frac{\pi\left(\theta^{*}\right)}{q\left(\theta^{*} \mid \theta^{(t-1)}\right)} \frac{q\left(\theta^{(t-1)} \mid \theta^{*}\right)}{\pi\left(\theta^{(t-1)}\right)}
$$

5
if $u<\rho$, then $\theta^{(t)} \leftarrow \theta^{*}$ else $\theta^{(t)} \leftarrow \theta^{(t-1)}$.
6 if $t \leq T_{b}$,
7
8
else if $t>T_{b}$, then $\mathcal{S} \leftarrow \mathcal{S} \cup \theta^{(t)}$.

Feel free to experiment with Laird Breyer's applet on
http://www.lbreyer.com/classic.html.

- Consider again our muonic signal reconstruction task, with

$$
p(\text { data } \mid \theta)=\prod_{i=1}^{N_{\text {bins }}} \frac{\bar{n}_{i}(\theta)^{n_{i}}}{n_{i}!} e^{-\bar{n}_{i}(\theta)} .
$$

- The model (the physics) suggest using specific independent priors for A_{μ} and t_{μ}.

Figure: Prior on A_{μ} for a given zenith angle

Case study: simulation results

- One can often detect bad mixing by eye.
- Acceptance for the left panel chain is only 3%.

Case study: simulation results

- Marginals are simply component histograms !
- Even the marginals look ugly when mixing is bad.

Case study: simulation results

- From now on, we only consider the good mixing case.
- Try to reproduce your marginals with different starting values!
- Producing the chain was the hard part. Now everything is easy: estimation, credible intervals, ...

(1) A very generic problem

2 First sampling methods
(3) MCMC algorithms
(4) A taste of a monster MCMC sampler for Auger

- A generative model for the tank signals [BK12]
- Reconstruction/Inference
- Recall

$$
\bar{n}_{i}\left(A_{\mu}, t_{\mu}\right)=A_{\mu} \int_{t_{i-1}}^{t_{i}} p_{\tau, t_{d}}\left(t-t_{\mu}\right) d t
$$

- Now

$$
n_{i} \text { Poisson with mean } \bar{n}_{i}\left(\mathbf{A}_{\boldsymbol{\mu}}, \mathbf{t}_{\boldsymbol{\mu}}\right)=\sum_{j=1}^{N_{\mu}} \bar{n}_{i}\left(A_{\boldsymbol{\mu}_{j}}, t_{\boldsymbol{\mu}_{j}}\right)
$$

MCMC 101: Metropolis

- Bayesian inference: obtain

$$
\pi\left(\mathbf{A}_{\boldsymbol{\mu}}, \mathbf{t}_{\boldsymbol{\mu}}\right)=p\left(\mathbf{A}_{\boldsymbol{\mu}}, \mathbf{t}_{\boldsymbol{\mu}} \mid \text { signal }\right) \propto p\left(\operatorname{signal} \mid \mathbf{A}_{\boldsymbol{\mu}}, \mathbf{t}_{\boldsymbol{\mu}}\right) p\left(\mathbf{A}_{\mu}, \mathbf{t}_{\mu}\right)
$$

- MCMC methods sample from π.


```
\(\mathrm{M}\left(\pi(x), X_{0}, \Sigma_{0}, T,\right)\)
    \(1 \quad \mathcal{S} \leftarrow \emptyset, \Sigma \leftarrow \Sigma_{0}\)
    \(2 \quad\) for \(t \leftarrow 1\) to \(T\)
    3
    \(4 \quad \widetilde{X} \sim \mathcal{N}\left(\cdot \mid X_{t-1}, \Sigma\right) \quad \triangleright\) proposal
    \(5 \quad\) if \(\frac{\pi(\tilde{X})}{\pi\left(X_{t-1}\right)}>\mathcal{U}[0,1]\) then
    \(6 \quad X_{t} \leftarrow X \quad \triangleright\) accept
    \(7 \quad\) else
    \(8 \quad X_{t} \leftarrow X_{t-1} \quad \triangleright\) reject
    9
        \(\mathcal{S} \leftarrow \mathcal{S} \cup\left\{X_{t}\right\} \quad \triangleright\) update posterior sample
10
11
12
13
    return \(\mathcal{S}\)
```

```
\(\operatorname{AM}\left(\pi(x), X_{0}, \Sigma_{0}, T, \mu_{0}, c\right)\)
    \(1 \quad \mathcal{S} \leftarrow \emptyset\),
    \(2 \quad\) for \(t \leftarrow 1\) to \(T\)
    \(3 \quad \Sigma \longleftarrow c \Sigma_{t-1} \triangleright\) scaled adaptive covariance
    \(4 \quad \widetilde{X} \sim \mathcal{N}\left(\cdot \mid X_{t-1}, \Sigma\right) \quad \triangleright\) proposal
    \(5 \quad\) if \(\frac{\pi(\widetilde{X})}{\pi\left(X_{t-1}\right)}>\mathcal{U}[0,1]\) then
    \(6 \quad X_{t} \leftarrow X \quad \triangleright\) accept
    \(7 \quad\) else
    \(8 \quad X_{t} \leftarrow X_{t-1} \triangleright\) reject
    \(9 \mathcal{S} \leftarrow \mathcal{S} \cup\left\{X_{t}\right\} \quad \triangleright\) update posterior sample
10
\(11 \quad \Sigma_{t} \leftarrow \Sigma_{t-1}+\frac{1}{t}\left(\left(X_{t}-\mu_{t-1}\right)\left(X_{t}-\mu_{t-1}\right)^{\top}-\Sigma_{t-1}\right)\)
12
    \(c \leftarrow c+\frac{1}{t^{0.6}}(\) acc. rate \(-0.25 / 0.50)\).
13
    return \(\mathcal{S}\)
```

Three problems, many "solutions"

- Possibly high dimensions but also highly correlated model.
- Use adaptive proposals.
- Possibly high dimensions but also highly correlated model.
- Use adaptive proposals.
- The number of muons N_{μ} is unknown.
- Use a nonparametric prior [Nea00] or
- use a Reversible Jump sampler [Gre95].
- Possibly high dimensions but also highly correlated model.
- Use adaptive proposals.
- The number of muons N_{μ} is unknown.
- Use a nonparametric prior [$\mathrm{Nea00]}$ or
- use a Reversible Jump sampler [Gre95].
- Likelihood $\mathcal{P}\left(\mathbf{n} \mid \mathbf{A}_{\boldsymbol{\mu}}, \mathbf{t}_{\boldsymbol{\mu}}\right)$ is permutation invariant.
- Indeed, if $N_{\mu}=2$,

$$
p\left(\mathbf{n} \mid A_{1}, A_{2}, t_{1}, t_{2}\right)=p\left(\mathbf{n} \mid A_{2}, A_{1}, t_{2}, t_{1}\right) .
$$

- Marginals are useless, a problem known as label-switching [Ste00].
- If the prior is also permutation invariant, then so is $\pi\left(\mathbf{A}_{\mu}, \mathbf{t}_{\mu}\right)$.

Label-Switching

- If the prior is also permutation invariant, then so is $\pi\left(\mathbf{A}_{\mu}, \mathbf{t}_{\mu}\right)$.

- If the prior is also permutation invariant, then so is $\pi\left(\mathbf{A}_{\mu}, \mathbf{t}_{\mu}\right)$.


```
\(\operatorname{AMOR}\left(\pi(x), X_{0}, T, \mu_{0}, \Sigma_{0}, c\right)\)
```

1
$2 \quad$ for $t \leftarrow 1$ to T
3

4
5

6 7 7

8
9
10
11
12

13

14
15

$$
\begin{aligned}
& \mathcal{S} \leftarrow \emptyset \\
& \text { for } t \leftarrow 1 \text { to } T
\end{aligned}
$$

else
return \mathcal{S}

$$
\Sigma \leftarrow c \Sigma_{t-1} \triangleright \text { scaled adaptive covariance }
$$

$$
\widetilde{X} \sim \mathcal{N}\left(\cdot \mid X_{t-1}, \Sigma\right) \quad \triangleright \text { proposal }
$$

$$
\widetilde{P} \sim \underset{P \in \mathfrak{P}}{\arg \min } L_{\left(\mu_{t-1}, \Sigma_{t-1)}\right.}(P \widetilde{X}) \quad \triangleright \text { pick an optimal permutation }
$$

$$
\widetilde{X} \leftarrow \tilde{P} \tilde{X} \quad \triangleright \text { permute }
$$

$$
\text { if } \frac{\pi(\tilde{X}) \sum_{P \in \mathfrak{P}} \mathcal{N}\left(P X_{t-1} \mid X, \Sigma\right)}{\pi\left(X_{t-1}\right) \sum_{P \in \mathfrak{P}} \mathcal{N}\left(P X \mid X_{t-1}, \Sigma\right)}>\mathcal{U}[0,1] \text { then }
$$

$$
X_{t} \leftarrow X \quad \triangleright \text { accept }
$$

$$
\begin{array}{cc}
X_{t} \leftarrow X_{t-1} & \triangleright \text { reject } \\
\mathcal{S} \leftarrow \mathcal{S} \cup\left\{X_{t}\right\} & \triangleright \text { update posterior sample }
\end{array}
$$

$$
\mu_{t} \leftarrow \mu_{t-1}+\frac{1}{t}\left(X_{t}-\mu_{t-1}\right) \quad \triangleright \text { update running mean and covariance }
$$

$$
\Sigma_{t} \leftarrow \Sigma_{t-1}+\frac{1}{t}\left(\left(X_{t}-\mu_{t-1}\right)\left(X_{t}-\mu_{t-1}\right)^{\top}-\Sigma_{t-1}\right)
$$

$$
c \leftarrow c+\frac{1}{t^{0.6}}(\text { acc. rate }-0.25 / 0.50) .
$$

AMOR results on the previous example

Growing item number means higher complexity and either higher efficiency or wider applicability. Check [RC04] when no further indication is given.
(1) Quadrature,

Growing item number means higher complexity and either higher efficiency or wider applicability. Check [RC04] when no further indication is given.
(1) Quadrature,
(2) Quasi-MC,

Growing item number means higher complexity and either higher efficiency or wider applicability. Check [RC04] when no further indication is given.
(1) Quadrature,
(2) Quasi-MC,
(3) Simple MC, Importance Sampling,

Growing item number means higher complexity and either higher efficiency or wider applicability. Check [RC04] when no further indication is given.
(1) Quadrature,
(2) Quasi-MC,
(3) Simple MC, Importance Sampling,
(9) MCMC (MH, Slice sampling, etc.),

Growing item number means higher complexity and either higher efficiency or wider applicability. Check [RC04] when no further indication is given.
(1) Quadrature,
(2) Quasi-MC,
(3) Simple MC, Importance Sampling,
(9) MCMC (MH, Slice sampling, etc.),
(6) Adaptive MCMC [AFMP11], Hybrid MC [Nea10], Tempering methods [GRS96], SMC [DdFG01], particle MCMC [ADH10].

Growing item number means higher complexity and either higher efficiency or wider applicability. Check [RC04] when no further indication is given.
(1) Quadrature,
(2) Quasi-MC,
(3) Simple MC, Importance Sampling,
(9) MCMC (MH, Slice sampling, etc.),
(3) Adaptive MCMC [AFMP11], Hybrid MC [Nea10], Tempering methods [GRS96], SMC [DdFG01], particle MCMC [ADH10].
(0) ABC [FP12].

Conclusions

```
Take-home message
    MC nrovides generic integration methods,
    Potential applications in Physics are numerous:
            > in forward sampling (aka "simulation"),
            > in Bayesian inference tasks.
    Producing a good mixing MCMC chain can be difficult
    Higher efficiency can result from:
    * Exploiting existing/added structure of the problem.
    Broad range of methods allows to find the level of
    sophistication required by the difficulty of your problem
```


Take-home message

- MC provides generic integration methods,
- Potential applications in Physics are numerous:
- in forward sampling (aka "simulation"),
- in Bayesian inference tasks.
- Producing a good mixing MCMC chain can be difficult
- Higher efficiency can result from:
- Learning dependencies.
- Exploiting existing/added structure of the problem.
- Broad range of methods allows to find the level of sophistication required by the difficulty of your problem.
- Tutorials: Lots on videoconference.net.
- I. Murray's video lessons:
videolectures.net/mlss09uk_murray_mcmc /
- A. Sokal's tutorial, MCMC from a physicist's point of view + applications to Statistical Physics [Sok96]
- The Monte Carlo bible: C. Robert \& G. Casella's "Monte Carlo Methods" [RC04], and references within.
- For more precise informations, please bug me.

目 Christophe Andrieu，Arnaud Doucet，and Roman Holenstein， Particle Markov chain Monte Carlo methods，Journal of the Royal Statistical Society B（2010）．
嗇 Y．Atchadé，G．Fort，E．Moulines，and P．Priouret，Bayesian time series models，ch．Adaptive Markov chain Monte Carlo ： Theory and Methods，pp．33－53，Cambridge Univ．Press， 2011.
围 R．Bardenet，O．Cappé，G．Fort，and B．Kégl，An adaptive Metropolis algorithm with online relabeling，International Conference on Artificial Intelligence and Statistics（AISTATS）， （JMLR workshop and conference proceedings），vol．22，April 2012，pp．91－99．
嗇 C．M．Bishop，Pattern recognition and machine learning， Springer， 2006.

R R. Bardenet and B. Kégl, An adaptive monte-carlo markov chain algorithm for inference from mixture signals, Proceedings of ACAT'11, Journal of Physics: Conference series, 2012.

嗇 A. Doucet, N. de Freitas, and N. Gordon, Sequential Monte Carlo in practice, Springer, 2001.

目 P. Fearnhead and D. Prangle, Constructing summary statistics for approx- imate bayesian computation; semi-automatic abc, Journal of the Royal Statistical Society B (2012).
P. J. Green, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika 82 (1995), no. 4, 711-732.
W.R. Gilks, S. Richardson, and D. Spiegelhalter (eds.), Markov chain Monte Carlo in practice, Chapman \& Hall, 1996.

围 R. M. Neal, Markov chain sampling methods for Dirichlet process mixture models, Journal of Computational and Graphical Statistics 9 (2000), 249-265.
直 Handbook of Markov Chain Monte Carlo, ch. MCMC using Hamiltonian dynamics, Chapman \& Hall / CRC Press, 2010.

R C. P. Robert and G. Casella, Monte Carlo statistical methods, Springer-Verlag, New York, 2004.
A.D. Sokal, Monte Carlo methods in statistical mechanics: Foundations and new algorithms, 1996, Lecture notes at the Cargèse summer school.
M. Stephens, Dealing with label switching in mixture models, Journal of the Royal Statistical Society, Series B 62 (2000), 795-809.

R D. Wraith, M. Kilbinger, K. Benabed, O. Cappé, J.-F. Cardoso, G. Fort, S. Prunet, and C. P. Robert, Estimation of cosmological parameters using adaptive importance sampling, Phys. Rev. D 80 (2009), no. 2.
(YETT ANOTHER) HISTORY OF LIFE AS WE KNOW IT...

