

Setting limits for the Higgs boson search (2/2)

Luca Lista

INFN Napoli

Examples from real measurements

A rare process limit using event counting and combination of multiple channels

Search for B $\rightarrow \tau \nu$ at BaBar

Upper limits to $B \rightarrow \tau \nu$ at BaBar

- Reconstruct one B[±] with a complete hadronic decay (e⁺e⁻→ Y(4S)→B⁺B⁻)
- Look for a tau decay on other side with missing energy (neutrinos)
 - Five decay channels used: $\mu^-\nu\nu$, $e^-\nu\nu$, $\pi^-\nu$, $\pi^-\pi^0\nu$, $\pi^-\pi^+\pi^-\nu$
- Likelihood function: product of Poissonian likelihoods for the five channels
- Background is known with finite uncertainties from side-band applying scaling factors (taken from simulation)

BABAR Collaboration, Phys.Rev.Lett.95:041804,2005, Search for the Rare Leptonic Decay $B^- \to \tau \ \nu_{\tau}$

Combined likelihood

• Combine the five channels with likelihood $(n_{ch} = 5)$:

$$L(s+b) = \prod_{i=1}^{n_{ch}} \frac{e^{-(s_i+b_i)}(s_i+b_i)^{n_i}}{n_i!} \quad L(b) = \prod_{i=1}^{n_{ch}} \frac{e^{-b_i}b_i^{n_i}}{n_i!}$$

 Define likelihood ratio estimator, as for combined LEP Higgs search:

$$Q = \frac{L(s+b)}{L(b)} = e^{-\sum_{i=0}^{n_{\text{ch}}} s_i} \prod_{i=0}^{n_{\text{ch}}} \left(1 + \frac{s_i}{b_i}\right)^{n_i}$$

- In case the scan of $-2\ln Q$ vs s shows a significant minimum, a non-null measurement of s can be determined
- More discriminating variables may be incorporated in the likelihood definition

Upper limit evaluation

- Use toy Monte Carlo to generate a large number of counting experiments
- Evaluate the C.L. for a signal hypothesis defined as the fraction of C.L. for the s
 +b and b hypotheses:

$$CL_s = \frac{CL_{s+b}}{CL_b} = \frac{N_{Q_{s+b} \le Q}}{N_{Q_b < Q}}$$

Modified frequentist approach

Including (Gaussian) uncertainties

- Nuisance parameters are the background yields b_i known with some uncertainty from side-band extrapolation
- Convolve likelihood with a Gaussian PDF (assuming negligible the tails at negative yield values!)

$$L(s+b) = \prod_{i=1}^{n_{ch}} \int_{-\infty}^{+\infty} db' \frac{1}{\sqrt{2\pi\sigma_i^2}} e^{-(b'_i - b_i)^2/2\sigma_i^2} \frac{e^{-(s_i + b'_i)}(s_i + b'_i)^{n_i}}{n_i!}$$

$$L(b) = \prod_{i=1}^{n_{ch}} \int_{-\infty}^{+\infty} db' \frac{1}{\sqrt{2\pi\sigma_i^2}} e^{-(b'_i - b_i)^2/2\sigma_i^2} \frac{e^{-b'_i}b'_i^{n_i}}{n_i!}$$

- Note: b_i is the estimated background, not the "true" one!
- ... but C.L. evaluated anyway with a frequentist approach (Toy Monte Carlo)!
- Analytical integrability leads to huge CPU saving! (L.L., A 517 (2004) 360–363)

Analytical expression

Simplified analytic Q derivation:

$$Q = \frac{L(s+b)}{L(b)} = e^{-\sum_{i=0}^{n_{\text{ch}}} s_i} \prod_{i=0}^{n_{\text{ch}}} \frac{p_{n_i}(s_i + b_i - \sigma_i^2, \sigma_i)}{p_{n_i}(b_i - \sigma_i^2, \sigma_i)}$$

• Where $p_n(\alpha, \beta)$ are $p_2(\alpha, \beta) = \alpha^2 + \beta^2$, polynomials defined with a recursive relation: $p_3(\alpha, \beta) = \alpha^3 + 3\alpha\beta^2$, $p_4(\alpha, \beta) = \alpha^4 + 6\alpha^2\beta^2$

$$p_0(\alpha, \beta) = 1,$$

$$p_1(\alpha, \beta) = \alpha,$$

$$p_2(\alpha, \beta) = \alpha^2 + \beta^2,$$

$$p_3(\alpha, \beta) = \alpha^3 + 3\alpha\beta^2,$$

$$p_4(\alpha, \beta) = \alpha^4 + 6\alpha^2\beta^2 + 3\beta^4,$$

$$p_5(\alpha, \beta) = \alpha^5 + 10\alpha^3\beta^2 + 15\alpha\beta^4,$$

$$\vdots$$

$$p_n(\alpha, \beta) = \alpha p_{n-1}(\alpha, \beta) + (n+1)\beta^2 p_{n-2}(\alpha, \beta)$$

... but in many cases it's hard to be so lucky!

Branching ratio: $\int L dt = 82 \text{ fb}^{-1}$

Low statistics scenario

RooStats::HypoTestInverter

$B \rightarrow \tau \nu$ was eventually measured

... and is now part of the PDF

2011 Review of Particle Physics.

Please use this **CITATION**: K. Nakamura *et al.* (Particle Data Group), Journal of Physics G**37**, 075021 (2010) and 2011 partial update for the 2012 edition.

B* BRANCHING RATIOS

$\Gamma(\tau^+ v_{\tau})/\Gamma_{\text{total}}$							References	History since 1996
See the note on "Decay Constants of Charged Pseudoscalar Mesons" in the D_s^+ Listings. VALUE (10^{-4}) CL% DOCUMENT ID TECN COMMENT								Γ ₂₆ /Γ
1.65±0.34	.34 OUR AVERAGE							
1.7±0.8±0.2			AUBERT	10E	BABR	$e^+ e^- \rightarrow Y(4S)$		
1.54+0.38-0.37+0.29-0.31			HARA	10	BELL	$e^+e^- \rightarrow Y(4S)$		
1.8+0.9-0.8±0.45	4,	1	AUBERT	08D	BABR	$e^+ e^- \rightarrow Y(4S)$		
1.79+0.56-0.49+0.46-0.51 * * * We do not use the follow			IKADO erages, fits, lim	-	BELL ***	$e^+ e^- \rightarrow Y(4S)$		
$0.9 \pm 0.6 \pm 0.1$	1,	2	AUBERT	07AL	BABR	Repl. by AUBERT 2010E		
<2.6	90	1	AUBERT	06K	BABR	$e^+ e^- \rightarrow Y(4S)$		
<4.2	90	1	AUBERT,B	05B	BABR	Repl. by AUBERT 2006K		
<8.3	90	5	BARATE	01E	ALEP	$e^+e^- \rightarrow Z$		
<8.4	90	1	BROWDER	01	CLE2	$e^+e^- \rightarrow Y(4S)$		
<5.7	90	6	ACCIARRI	97F	L3	$e^+ e^- \rightarrow Z$		
<104	90	7	ALBRECHT	95D	ARG	$e^+ e^- \rightarrow Y(4S)$		
<22	90		ARTUSO	95	CLE2	$e^+ e^- \rightarrow Y(4S)$		
<18	90	8	BUSKULIC	95	ALEP	$e^+ e^- \rightarrow Z$		

¹ Assumes equal production of B^+ and B^0 at the Y(4S).

² Requires one reconstructed semileptonic B decay $B^- \to D^0 \Gamma \overline{\nu}_l X$ in the recoil.

 $^{^{3}}$ Requires one reconstructed semileptonic B decay $B^{-}\to D^{(^{*})0}$ Γ $\overline{\nu}_{l}$ X in the recoil.

⁴ The analysis is based on a sample of events with one fully reconstructed tag B in a hadronic decay mode $B^- \to D^{(^+)0} X^-$.

⁵ The energy-flow and *b*-tagging algorithms were used.

⁶ ACCIARRI 1997F uses missing-energy technique and $f(b \rightarrow B^-) = (38.2 \pm 2.5)\%$.

⁷ ALBRECHT 1995D uses full reconstruction of one *B* decay as tag.

⁸ BUSKULIC 1995 uses same missing-energy technique as in $\overline{b} \to \tau^+ \nu_\tau X$, but analysis is restricted to endpoint region of missing-energy distribution.

A Bayesian approach to Higgs search with small background

Higgs search at LEP-I (L3)

Higgs search at LEP

- Production via $e^+e^- \rightarrow HZ^* \rightarrow bbl^+l^-$
- Higgs candidate mass measured via missing mass to lepton pair
- Most of the background rejected via kinematic cuts and isolation requirements for the lepton pair
- Search mainly dominated by statistics
- A few background events survived selection (first observed in L3 at LEP-I)

First Higgs candidate (m_H ≈ 70 GeV)

Extended likelihood approach

 Assume both signal and background are present, with different PDF for mass distribution: Gaussian peak for signal, flat for background (from Monte Carlo samples):

$$L = e^{-(s+b)} \prod_{i=1}^{n} (sP_s(m_i) + bP_b(m_i))$$

• Bayesian approach can be used to extract the upper limit, with uniform prior, $\pi(s) = 1$:

$$1 - CL = \frac{\int_{s^{up}}^{\infty} e^{-s} \prod_{i=1}^{n} (sP_s(m_i) + bP_b(m_i)) ds}{\int_{0}^{\infty} e^{-s} \prod_{i=1}^{n} (sP_s(m_i) + bP_b(m_i)) ds}$$

Application to Higgs search at L3

Comparison with frequentist C.L.

- Toy MC can be generated for different signal and background scenarios
- frequentist coverage ("classical" CL) can be computed counting the fraction of toy experiments above/below the Bayesian limit

Higgs search at LEP-II

Combined search using CLs

Combined Higgs search at LEP-II

Extended likelihood definition:

$$L(\eta) = \prod_{k=1}^{n_{\text{ch}}} \frac{e^{-(\eta s_k(m_H) + b_k)} (\eta s_k(m_H) + b_k)^{n_k}}{n_k!} \times \prod_{j=1}^{n_k} \frac{\eta s_k(m_H) S_k(\vec{x_{jk}}; m_H) + b_k B_k(\vec{x_{jk}})}{\eta s_k(m_H) + b_k}$$

- $\eta = 0$ for b only, 1 for s + b hypotheses
- Likelihood ratio:

$$-2\ln Q(m_H) = 2\sum_{k=1}^{n_{\text{ch}}} \left[s_k(m_H) - \sum_{j=1}^{n_k} \ln \left(1 + \frac{s_k(m_H)S_k(\vec{x_{jk}}; m_k)}{b_k B_k(\vec{x_{jk}})} \right) \right]$$

CLs PDF plot

LEP

Mass scan plot

INFN

By experiment & channel

Background hypothesis C.L.

Background C.L. by experiment

Signal hypothesis C.L.

Higgs search at LHC

Combined search using CLs

Higgs search at LHC method

- Agreed method between ATLAS and CLS
- Test statistics: $q_{\mu}=-2\ln\frac{L({\rm data};\mu\hat{\theta_{\mu}})}{L({\rm data};\hat{\mu},\hat{\theta_{\mu}})}$
- Has good asymptotic behavior
- Nuisance parameters are profiled
- Uncertainties are modeled with log-normal PDFs
- CLs protects against unphysical limits in cases of large downward background fluctuations
- Observed and median expected values of CLs limits presented as 68% and 95% belts

Higgs boson production at LHC

- Decays are favored into heavy particles (top, Z, W, b, ...)
- Most abundant production via "gluon fusion" and "vector-boson fusion"

"Golden" channel: $H \rightarrow ZZ \rightarrow 41$ ($l=e,\mu$) $\sqrt{s} = 7 \text{ TeV L} = 4.71 \text{ fb}^{-1}$

Large background, good resolution

$H\rightarrow WW\rightarrow 212v$

- W- H W- IF INFN
- Can't reconstruct Higgs mass due to neutrinos
- Signal can be discriminated vs background using angular distribution (Higgs boson has spin zero)
 - Two leptons tend to be alligned in Higgs event
- A multivariate analysis maximizes sig/bkg separation

Low mass sensitive channels

Combining limits to σ/σSM

Phys. Lett. B 710 (2012) 26-48, arXiv:1202.1488

Excluded range: 127.5–600 GeV al 95% CL (expected: 114.5-543 GeV)

Exclusion plot at 95% CL

CL_s vs Bayesian and asymptotic

What if we use 99%?

Excluded range: 127.5-600 GeV at 95% CL, 129-525 GeV at 99% CL

Cross section "measurement"

Comparing different channels

- Best fit to σ/σ_{SM} separately in various canals
- A modest excess is present consistently in all lowmass sensitive channels

"Hint" or fluctuation?

Probability of a bkg fluctuation ≥ than the observed one

"Hint" or fluctuation?

Probability of a bkg fluctuation ≥ than the observed one

ATLAS: γγ, 41

ATLAS: combined limit

arXiv:1202.1408 ATLAS-CONF-2012-019

- Local sifnificance: 2.8σ (γγ), 2.1σ (ZZ*→4I), 1.4σ (WW*→IvIv)
- Global significance (LEE) 2.2σ (110-600 GeV)
- Excluded ranges: (95% CL):110–115.5 GeV, 118.5-122.5 GeV, 129–539GeV (expected: 120–550 GeV)

INFN

Latest from Tevatron

arXiv:1203.3774

- Excluded ranges: 100-107 GeV, 147-179, expected: 100-119 GeV, 141-184 GeV
- Local significance (120 GeV): 2.7σ, global significance (LEE); 2.2σ

Latest SM fit

Perspectives for 2012

- LHC energy increased from 7 a 8 TeV. ATLAS and CMS are taking data now (+10% in cross section)
- In 2012 LHC should deliver about 4 times the 2011 integrated luminosity (~20fb⁻¹)

Higgs boson discovery or exclusion is very likely by 2012

In conclusion

- Many recipes and approaches available
- Bayesian and Frequentist approaches lead to similar results in the easiest cases, but may diverge in frontier cases
- Be ready to master both approaches!
- ... and remember that Bayesian and Frequentist limits have very different meanings
- If you want your paper to be approved soon:
 - Be consistent with your assumptions
 - Understand the meaning of what you are computing
 - Try to adopt a popular and consolidated approach (even better, software tools, like RooStats), wherever possible
 - Debate your preferred statistical technique in a statistics forum, not a physics result publication!