Boosted decision trees in practice

Yann Coadou

CPPM Marseille

School of Statistics SOS2012, Autrans 1 June 2012

Outline

IN2P3 School of Statistics 2012

28 May - 2 June, Autrans (France)

Scientific programme

Fundamental concepts

Probability & Statistics Bayesian analysis tutorial Bayesian numerical methods R. Bardenet (LRI) X² method and MLM

B. Clement (LPSC) D. Sivia (Oxford) J. Baudot (IPHC)

Multivariate Discriminant

Introduction & theory Boosted decision trees Neural Networks

B. Kegl (LAL) Y. Coadou (CPPM) J. Therhaag (Bonn Univ.)

> Organizing Comittee J. Baudot (IPHC, Strasbourg)

C. Bérat (LPSC, Grenoble) J. Donini (LPC, Clermont) B. Kegl (LAL, Orsav)

I. Laktineh (IPNL, Lyon) O. Leroy (CPPM, Marseille)

A. Lucotte (LPSC, Grenoble)

Applied topics & tools

Unfolding: general approach E Spano (London Univ) Unfolding with sPlot F. Le Diberder (LAL) Fitting Higgs limits at colliders L. Lista (INFN) Statistics in tracking methods P. Billoir (LPNHE)

Conception C. Favro - Photo F. Melot (LPSC)

BDT performance

- Overtraining?
- Clues to boosting performance

Concrete examples

- First is best
- XOR problem
- Circular correlation
- Many small trees or fewer large trees?
- 3 BDTs in real life (... or at least

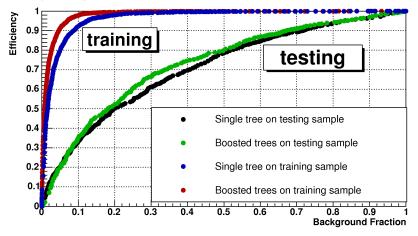
in real physics cases...)

- Single top search at D0
- More applications in HEP
- Software and references

!!! VERY IMPORTANT !!!

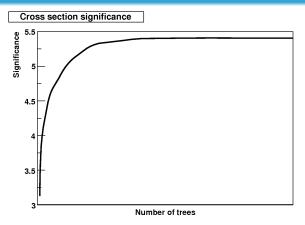
Understand your inputs well before you start playing with multivariate techniques

Efficiency vs. background fraction



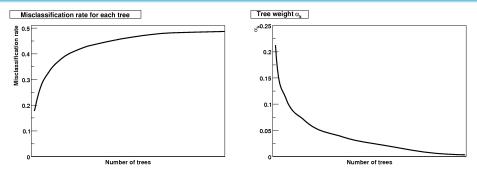
Clear overtraining, but still better performance after boosting

Cross section significance



- More relevant than testing error
- Reaches plateau
- Afterwards, boosting does not hurt (just wasted CPU)
- Applicable to any other figure of merit of interest for your use case

Clues to boosting performance



- First tree is best, others are minor corrections
- Specialised trees do not perform well on most events ⇒ decreasing tree weight and increasing misclassification rate
- Last tree is not better evolution of first tree, but rather a pretty bad DT that only does a good job on few cases that the other trees couldn't get right

BDT performance

- Overtraining?
- Clues to boosting performance

2 Concrete examples

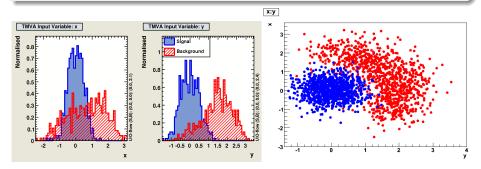
- First is best
- XOR problem
- Circular correlation
- Many small trees or fewer large trees?

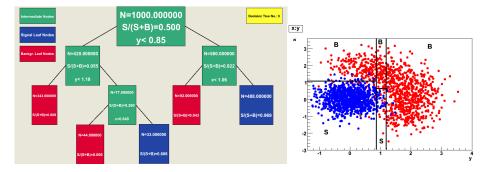
BDTs in real life (... or at least in real physics cases...)

- Single top search at D0
- More applications in HEP

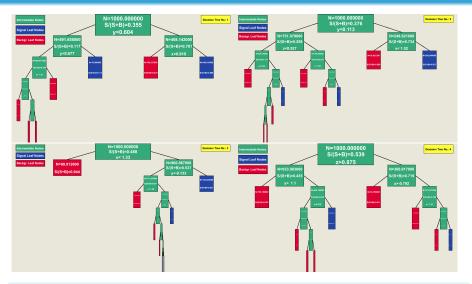
4 Software and references

• Using TMVA and some code modified from G. Cowan's CERN academic lectures (June 2008)





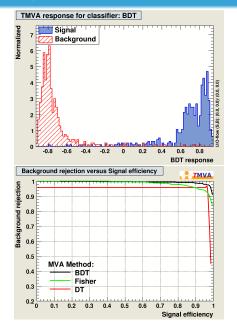
Concrete example



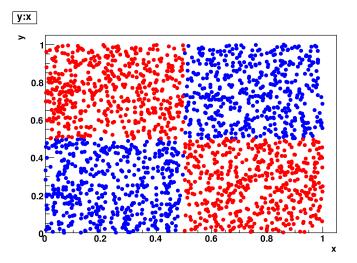
Specialised trees

Yann Coadou (CPPM) — Boosted decision trees (practice)

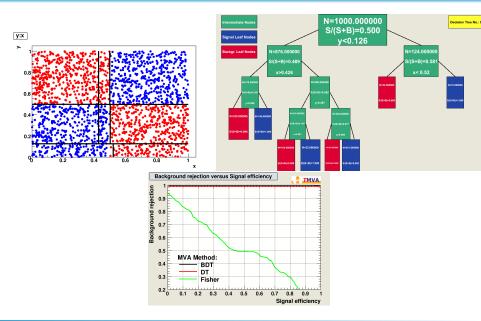
Concrete example



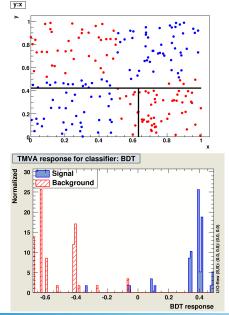
Concrete example: XOR



Concrete example: XOR

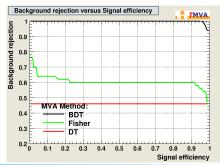


Concrete example: XOR with 100 events

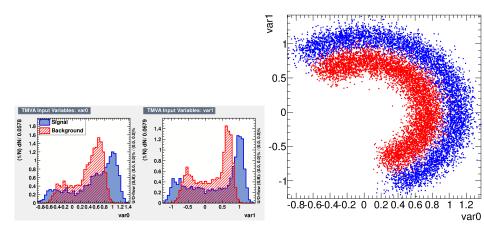


Small statistics

- Single tree or Fischer discriminant not so good
- BDT very good: high performance discriminant from combination of weak classifiers



 Using TMVA and create_circ macro from \$ROOTSYS/tmva/test/createData.C to generate dataset

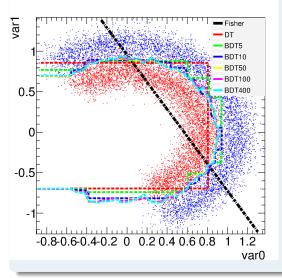


Boosting longer

- Compare performance of Fisher discriminant, single DT and BDT with more and more trees (5 to 400)
- All other parameters at TMVA default (would be 400 trees)

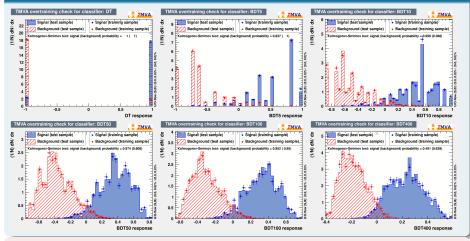


Decision contours



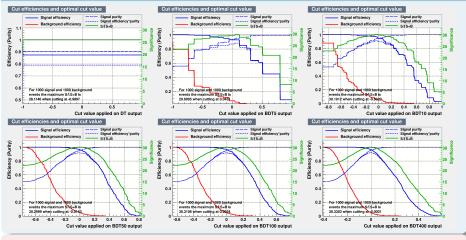
- Fisher bad (expected)
- Note: max tree depth = 3
- Single (small) DT: not so good. Note: a larger tree would solve this problem
- More trees ⇒ improve performance (less step-like, closer to optimal separation) until saturation
- Largest BDTs: wiggle a little around the contour
 ⇒ picked up features of training sample, that is, overtraining

Training/testing output



- Better shape with more trees: quasi-continuous
- Overtraining because of disagreement between training and testing? Let's see

Performance in optimal significance

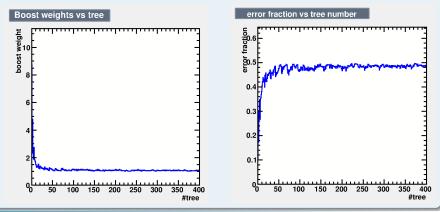


- Best significance actually obtained with last BDT, 400 trees!
- But to be fair, equivalent performance with 10 trees already
- Less "stepped" output desirable? \Rightarrow maybe 50 is reasonable

SOS2012, Autrans, 1 June 2012 18/37

Control plots

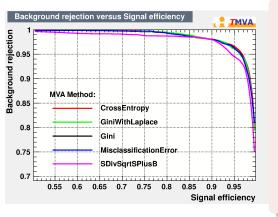
- Boosting weight decreases fast and stabilises
- First trees have small error fractions, then increases towards 0.5 (random guess)
- ullet \Rightarrow confirms that best trees are first ones, others are small corrections



Separation criterion for node splitting

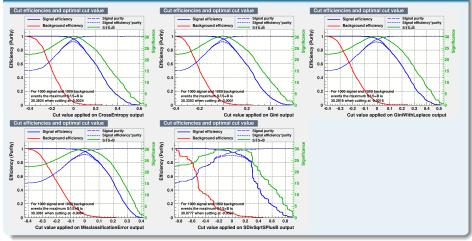
- Compare performance of Gini, entropy, misclassification error, $\frac{s}{\sqrt{s+b}}$

All other parameters at TMVA default



- Very similar performance (even zooming on corner)
- Small degradation (in this particular case) for $\frac{s}{\sqrt{s+b}}$: only criterion that doesn't respect good properties of impurity measure (see yesterday: maximal for equal mix of signal and bkg, symmetric in psig and p_{bkg}, minimal for node with either signal only or bkg only, strictly concave)

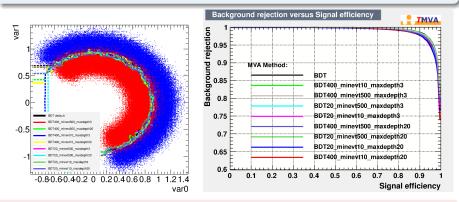
Performance in optimal significance



 Confirms previous page: very similar performance, worse for BDT optimised with significance!

Many small trees or fewer large trees?

- Using same create_circ macro but generating larger dataset to avoid stats limitations
- 20 or 400 trees; minimum leaf size: 10 or 500 events
- Maximum depth (max number of cuts to reach leaf): 3 or 20



• Overall: very comparable performance. Depends on use case.

BDTs in real life

BDT performance

- Overtraining?
- Clues to boosting performance

2) Concrete examples

- First is best
- XOR problem
- Circular correlation
- Many small trees or fewer large trees?

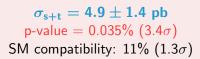
3 BDTs in real life (... or at least in real physics cases...)

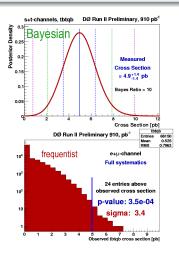
- Single top search at D0
- More applications in HEP

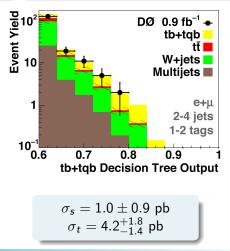
4 Software and references

Single top production evidence at D0 (2006)

- Three multivariate techniques: BDT, Matrix Elements, BNN
- Most sensitive: BDT







Decision trees — 49 input variables

Object Kinematics

 $p_{T}(jet1)$ $p_{T}(jet2)$ $p_{T}(jet3)$ $p_{T}(jet4)$ $p_{T}(obest1)$ $p_{T}(ontbest1)$ $p_{T}(notbest2)$ $p_{T}(tag1)$ $p_{T}(untag1)$ $p_{T}(untag2)$

Angular Correlations

 ΔR (jet1,jet2) $\cos(best1, lepton)_{besttop}$ cos(best1,notbest1) cos(tag1,alljets)alljets $\cos(tag1, lepton)_{btaggedtop}$ cos(jet1,alljets)alljets $\cos(jet1, lepton)_{btaggedtop}$ cos(jet2,alljets)alljets $\cos(jet2, lepton)_{btaggedtop}$ $\cos(\text{lepton}, Q(\text{lepton}) \times z)_{\text{besttop}}$ $cos(lepton_{besttop}, besttop_{CMframe})$ $cos(lepton_{btaggedtop}, btaggedtop_{CMframe})$ cos(notbest,alljets)alliets cos(notbest,lepton) cos(untag1,alljets)alljets cos(untag1,lepton)

Event Kinematics

```
Aplanarity(alliets,W)
M(W.best1) ("best" top mass)
M(W,tag1) ("b-tagged" top mass)
H_{T}(\text{alljets})
H_T(\text{alljets}-\text{best1})
H_T(alljets-tag1)
H_{T}(alliets, W)
H_T(jet1, jet2)
H_T(jet1, jet2, W)
M(alljets)
M(alliets-best1)
M(alliets - tag1)
M(jet1, jet2)
M(jet1, jet2, W)
M_{\tau}(jet1, jet2)
M_{\tau}(W)
Missing E_{T}
p<sub>T</sub>(alljets-best1)
p_T(alljets-tag1)
p_{\tau}(\text{iet1.iet2})
Q(lepton) \times \eta(untag1)
\sqrt{\hat{s}}
Sphericity(alliets, W)
```

- Adding variables did not degrade performance
- Tested shorter lists, lost some sensitivity
- Same list used for all channels

Decision trees — 49 input variables

Object Kinematics

 $p_{T}(jet1)$ $p_{T}(jet2)$ $p_{T}(jet3)$ $p_{T}(jet4)$ $p_{T}(obest1)$ $p_{T}(ontbest1)$ $p_{T}(notbest2)$ $p_{T}(tag1)$ $p_{T}(untag1)$ $p_{T}(untag2)$

Angular Correlations

```
\Delta R(jet1,jet2)
\cos(best1, lepton)_{besttop}
cos(best1,notbest1)
cos(tag1,alljets)alljets
\cos(tag1, lepton)_{btaggedtop}
cos(jet1,alljets)alljets
\cos(jet1, lepton)_{btaggedtop}
cos(jet2,alljets)alljets
\cos(jet2, lepton)_{btaggedtop}
\cos(\operatorname{lepton}, Q(\operatorname{lepton}) \times z)_{\operatorname{besttop}}
cos(lepton_{besttop}, besttop_{CMframe})
cos(lepton_{btaggedtop}, btaggedtop_{CMframe})
cos(notbest,alljets)alliets
\cos(\text{notbest,lepton})_{\text{besttop}}
cos(untag1,alljets)alljets
cos(untag1,lepton)
```

Event Kinematics

```
Aplanarity(alliets,W)
M(W.best1) ("best" top mass)
M(W,tag1) ("b-tagged" top mass)
H_{T}(alliets)
H_T(alljets-best1)
H_{T}(\text{alljets}-\text{tag1})
H_{T}(\text{alljets}, W)
H_{T}(jet1, jet2)
H_T(jet1, jet2, W)
M(alliets)
M(alliets-best1)
M(alliets - tag1)
M(jet1, jet2)
M(jet1, jet2, W)
M_{\tau}(jet1, jet2)
M_{\tau}(W)
Missing E_{T}
p_{T}(alljets-best1)
p_T(alljets-tag1)
p_{\tau}(\text{iet1.iet2})
Q(lepton) \times \eta(untag1)
\sqrt{\hat{s}}
Sphericity(alliets, W)
```

- Adding variables did not degrade performance
- Tested shorter lists, lost some sensitivity
- Same list used for all channels
- Best theoretical variable: H_T (alljets, W). But detector not perfect \Rightarrow capture the essence from several variations usually helps "dumb" MVA

BDT choices

- 1/3 of MC for training
- AdaBoost parameter $\beta = 0.2$
- 20 boosting cycles
- Signal leaf if purity > 0.5

- Minimum leaf size = 100 events
- Same total weight to signal and background to start
- Goodness of split Gini factor

Analysis strategy

- Train 36 separate trees:
 - 3 signals (s,t,s+t)
 - 2 leptons (*e*,*µ*)
 - 3 jet multiplicities (2,3,4 jets)
 - 2 *b*-tag multiplicities (1,2 tags)
- For each signal train against the sum of backgrounds

Ensemble testing

- Test the whole machinery with many sets of pseudo-data
- Like running D0 experiment 1000s of times
- Generated ensembles with different signal contents (no signal, SM, other cross sections, higher luminosity)

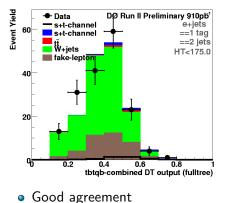
Ensemble generation

- Pool of weighted signal + background events
- Fluctuate relative and total yields in proportion to systematic errors, reproducing correlations
- Randomly sample from a Poisson distribution about the total yield to simulate statistical fluctuations
- Generate pseudo-data set, pass through full analysis chain (including systematic uncertainties)

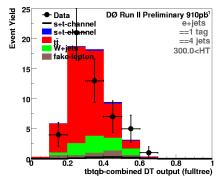
Achieved linear response to varying input cross sections and negligible bias

Cross-check samples

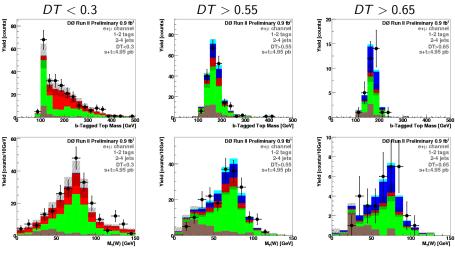
• Validate method on data in no-signal region



 "ttbar": = 4 jets, H_T(lepton,∉_T,alljets) > 300 GeV

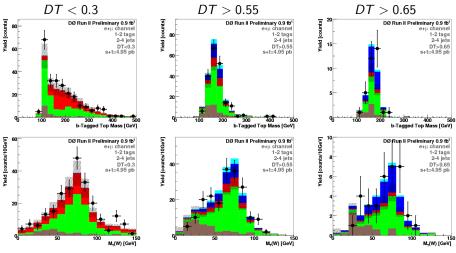


Boosted decision tree event characteristics



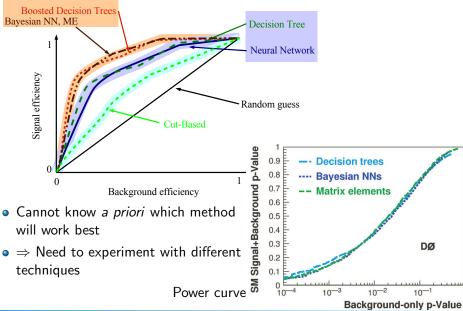
High BDT region = shows masses of real t and W ⇒ expected
 Low BDT region = background-like ⇒ expected

Boosted decision tree event characteristics



- High BDT region = shows masses of real t and $W \Rightarrow$ expected
- Low BDT region = background-like \Rightarrow expected
- Above doesn't tell analysis is ok, but not seeing this could be a sign of a problem

Comparison for D0 single top evidence

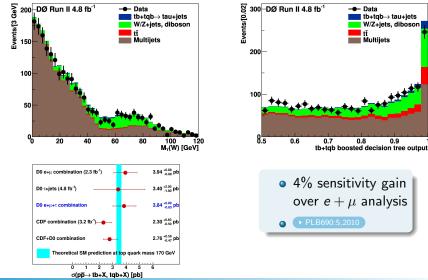


SOS2012, Autrans, 1 June 2012

30/37

Search for single top in tau+jets at D0 (2010)

Tau ID BDT and single top search BDT



tb+tqb→ tau+jets

tŤ

Multilets

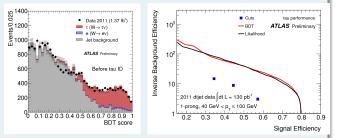
W/Z+jets, diboson

0.9

Recent results in HEP with BDT

ATLAS tau identification

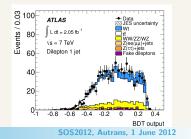
- Now used both offline and online
- Systematics: propagate various detector/theory effects to BDT output and measure variation



Hot from the press: ATLAS Wt production evidence (since Monday)

• arXiv:1205.5764

- BDT output used in final fit to measure cross section
- Constraints on systematics from profiling

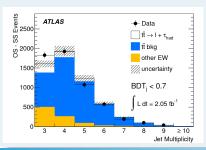


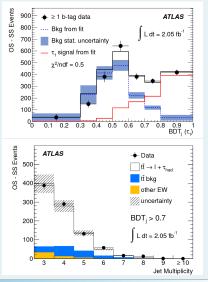
32/37

Recent results in HEP with BDT

ATLAS t ${f t} ightarrow {f e}/\mu + au + {f j}{f e}{f s}$ production cross section

- BDT for tau ID: one to reject electrons, one against jets
- Fit BDT output to get tau contribution in data





- MiniBooNE (e.g. physics/0408124 NIM A543:577-584, physics/0508045 NIM A555:370-385, hep-ex/0704.1500)
- D0 single top evidence (PRL98:181802,2007, PRD78:012005,2008)
- D0 and CDF single top quark observation (PRL103:092001,2009, PRL103:092002,2009)
- D0 tau ID and single top search (PLB690:5,2010)
- Fermi gamma ray space telescope (same code as D0)
- BaBar (hep-ex/0607112)
- ATLAS/CMS: Many other analyses
- *b*-tagging for LHC (physics/0702041)
- LHCb: $B^0_{(s)} \to \mu\mu$ search, selection of $B^0_s \to J/\psi\phi$ for ϕ_s measurement
- More and more underway

Boosted decision tree software

- Historical: CART, ID3, C4.5
- D0 analysis: C++ custom-made code. Can use entropy/Gini, boosting/bagging/random forests
- MiniBoone code at http://www-mhp.physics.lsa.umich.edu/ \sim roe/

Much better approach

- Go for a fully integrated solution
 - use different multivariate techniques easily
 - spend your time on understanding your data and model

Examples:

- Weka. Written in Java, open source, very good published manual. Not written for HEP but very complete http://www.cs.waikato.ac.nz/ml/weka/
- StatPatternRecognition http://www.hep.caltech.edu/~narsky/spr.html
- TMVA (Toolkit for MultiVariate Analysis). Now integrated in ROOT, complete manual http://tmva.sourceforge.net

References I

- L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, *Classification and Regression Trees*, Wadsworth, Stamford, 1984
- J.R. Quinlan, "Induction of decision trees", *Machine Learning*, 1(1):81–106, 1986
- J.R. Quinlan, "Simplifying decision trees", *International Journal of Man-Machine Studies*, 27(3):221–234, 1987
- R.E. Schapire, "The strength of weak learnability", Machine Learning, 5(2):197–227,1990
- Y. Freund, "Boosting a weak learning algorithm by majority", *Information and computation*. 121(2):256–285, 1995
- Y. Freund and R.E. Schapire, "Experiments with a New Boosting Algorithm" in *Machine Learning: Proceedings of the Thirteenth International Conference*, edited by L. Saitta (Morgan Kaufmann, San Fransisco, 1996) p. 148
- Y. Freund and R.E. Schapire, "A short introduction to boosting" *Journal of Japanese Society for Artificial Intelligence*, 14(5):771-780 (1999)

References II

- Y. Freund and R.E. Schapire, "A decision-theoretic generalization of on-line learning and an application to boosting", *Journal of Computer and System Sciences*, 55(1):119–139, 1997
- J.H. Friedman, T. Hastie and R. Tibshirani, "Additive logistic regression: a statistical view of boosting", *The Annals of Statistics*, 28(2), 377–386, 2000
- L. Breiman, "Bagging Predictors", *Machine Learning*, 24 (2), 123–140, 1996
- L. Breiman, "Random forests", *Machine Learning*, 45 (1), 5–32, 2001
- B.P. Roe, H.-J. Yang, J. Zhu, Y. Liu, I. Stancu, and G. McGregor, Nucl. Instrum. Methods Phys. Res., Sect.A 543, 577 (2005); H.-J. Yang, B.P. Roe, and J. Zhu, Nucl. Instrum.Methods Phys. Res., Sect. A 555, 370 (2005)
- V. M. Abazov *et al.* [D0 Collaboration], "Evidence for production of single top quarks,", Phys. Rev. D**78**, 012005 (2008)