Unfolding in particle physics
 a window on solving inverse problems

Francesco Spanò
I) Roval Holloway

IN2P3/CNRS School of Statistics
Autrans (Grenoble)
28th May - 1st June 2012

Outline

- What's Unfolding?
- Initial unfolding schemes
- the ML solution: matrix inversion
- correction coefficients
- Exploring ML:
- Regularized Unfolding \& not
- curvature Tikhonov
- iterative: Bayes inspired
- entropy
- Fully Bayesian unfolding
- Other unfolding schemes
- Two cents of experience and conclusions
- optimization
- bias \& uncertainty
- systematics (\& combination)

The "inverse" problem (I)
 Unfolding, Deconvolving, Unsmearing Reco/

"True"
Vardi, Shepp, Kaufman JSTOR,V80, N389 (1985) pp. 8

O.Helene et al, Nucl Instr Meth. A, 580 (2007) pp.

Figure 2. The phantom used in the computer simulation of the PET experiment.

Gaussian
blurring

how do we "go back", invert the procedure? What does "going back " mean?

School of Statistics - IN2P3/CNRS - 28th May-1st June 2012 (Autrans)

The "inverse" problem (II)

Unfolding, Deconvolving, Unsmearing Reco/

"True"
$\boldsymbol{m}_{t t}{ }^{\text {true }}$
accepted by Eur Phys J O arxiv:1203.4211[hep-ex]

ATLAS

how do we "go back", invert the procedure? What does "going back " mean?

School of Statistics - IN2P3/CNRS - 28th May 1st Juen (Autrans) 2012

Stating the "inverse" problem

Unfolding, Deconvolving, Unsmearing

- Estimate the prob distribution function for a (random) variable y

Fredholm equation of 1st type
Measurement $g(s)=\int_{\Omega} K(s, y) f(y) d y$ reconstruction limitations non uniform efficiency resolution effects (smearing)

- Due to the transformation, in general y and s can belong to multidimensional spaces with different dimensions
Goal is to find $f(y)$: statistical estimation problem

efficiency, consistency, unbiasedness

if have theory prediction g (y, a), fold it with $K(y, x)$ and compare/extract parameters
if no parametrized prediction exists, unfolding means finding $f(x)$ from $g(x)$

Stating the inverse problem: continuous to discrete

- Operatively: measurements are limited in number and resolution \rightarrow converted to histograms: discretization

$$
g(s)=\int_{\Omega} K(s, y) f(y) d y
$$

figures from G Cowan, A survey of unfolding methods for Part Phys.PHYSTAT2002
true

expected/observed

Si

Ingredients: from transfer function to matrix

- The general definition of the transfer matrix

$$
R(i, j)=\frac{\iint K(s, y) f(y) d y d s}{\int f(y) d y}
$$

- If we have the Kernel from the problem we solve it directly
- R is usually obtained from
- detailed simulation of the measuring apparatus when many effects are included: MC events are generated with fSim, our best guess of f and mapped to gSim the resulting best guess of g
- test measurements, for instance exposing calorimeter to particle beam of well known fixed energy $x=x 0$ implies we measure $\delta\left(y-y_{0}\right)$ so the measurement gives R directly

$$
\int_{a}^{b} K(s, y) \delta\left(y-y_{0}\right) d y=K\left(s, y_{0}\right)
$$

R is in general a rectangular $M x N$ matrix

Additional Ingredients: efficiency and backgrounds

- Some interesting events are not observed due to detection inefficiency. The efficiency of detection/acceptance be included in the estimate of the response matrix.

$$
\begin{aligned}
\sum_{j=1} R(i, j) & =\sum_{j=1} P(\text { observed in bin il true value in bin } j)= \\
& =P(\text { observed anywhere| true value in bin } j)=\varepsilon_{j}
\end{aligned}
$$

- Some observed events are due to backgrounds and they modify the observed distribution

$$
\begin{gathered}
g(s)=\int_{\Omega} K(s, y) f(y) d y+b(y) \\
\beta_{i}=\int b(y) d y \\
E\left[\mathbf{n}_{i}\right]=v_{i}=\sum_{j} R(i, j) \mu_{j}+\beta_{i}
\end{gathered}
$$

β_{i} is expected N of bkg events in OBSERVED distribution

The first step: maximum likelihood solution

- Given the problem $\mathbf{V}=R \boldsymbol{\mu}+\boldsymbol{\beta}$ one can consider if the inverse of R exists and then provide the solution as

$$
\boldsymbol{\mu}=R^{-1}(\boldsymbol{v}-\boldsymbol{\beta})
$$

- Suppose the data are independent Poisson observation

$$
P\left(n_{i} \mid v_{i}\right)=v_{i}^{n_{i}} \frac{e^{-v_{i}}}{n_{i}!}
$$

- The log likelihood is

$$
\log L(\boldsymbol{\mu})=\sum_{j=1}^{N}\left(n_{i} \log v_{i}-v_{i}-\log n_{i}!\right)
$$

- The maximum likelihood (ML) estimator is (dlogL/d $\boldsymbol{\mu}=0$)

$$
\mathbf{v}_{\mathrm{ML}}=\mathbf{n} \longrightarrow \boldsymbol{\mu}_{\mathrm{ML}}=\mathrm{R}^{-1}(\boldsymbol{v}-\boldsymbol{\beta})
$$

ML solution:does it work?
True

Consider data example

Expected

$? \times 10^{2}$
The result from
$\boldsymbol{\mu}_{\mathrm{ML}}=\mathrm{R}^{-1}(\mathbf{v}-\boldsymbol{\beta})$

- Major failure?

ML solution: What was wrong?

- The response R dilutes the info (smoothen), but allows residual structure to be present
- Take the case where $\boldsymbol{\mu}$ really had a lot of fine structure

- The application of R^{-1} restores the structure $\boldsymbol{\mu}_{M L}=R^{-1}(\boldsymbol{v}-\boldsymbol{\beta})$ BUT we do not have v, we have n : R "assumes" the fluctuations in \mathbf{n} are the residual of the "real" original structure and puts the pattern back into \boldsymbol{v} to get $\boldsymbol{\mu}$ (i.e. "magnifies" flucts back)

ML solution: before you leave (1)

- Bias: the ML solution is an unbiased estimator

$$
\mathrm{E}\left[\boldsymbol{\mu}_{\mathrm{ML}}\right]=\mathrm{E}\left[\mathrm{R}^{-1}(\mathbf{n}-\boldsymbol{\beta})\right]=R^{-1}(E[\mathrm{n}]-\boldsymbol{\beta})=\mathrm{R}^{-1}(\mathbf{v}-\boldsymbol{\beta})
$$

- Its covariance is

$$
\begin{aligned}
& U_{i j}=\operatorname{cov}\left[\mu_{M L, i} \mu_{M L, j}\right]=\sum_{k, l=1}^{N}\left(R^{-1}\right)_{\text {ik }}\left(R^{-1}\right)_{j \mathrm{i}} \operatorname{COV}\left[n_{k}, n_{1}\right] \\
& =\sum_{k, l=1}^{N}\left(R^{-1}\right)_{i k}\left(R^{-1}\right)_{j \mathrm{j}} \delta_{k, l} V_{k}=\sum_{k=1}^{N}\left(R^{-1}\right)_{i k}\left(R^{-1}\right)_{j k} V_{k}
\end{aligned}
$$

ML solution: important properties (2)

- The Cramér-Rao inequality states that for unbiased estimators the co-variance has a minimum value (lower bound)

$$
\left(U^{-1} \text { bound }\right)_{k l}=-E\left[\frac{\partial^{2} \log L}{\partial \mu_{k} \partial \mu_{l}}\right]=\sum_{i=1} N \frac{R_{i k} R_{j \mid}}{v_{i}}
$$

- If we invert it we get

$$
\begin{aligned}
\bigcup_{i j, b o u n d}= & \sum_{k=1} N\left(R^{-1}\right)_{i k}\left(R^{-1}\right)_{j k} V_{k}=\bigcup_{i j} \\
& \text { this IS the variance! }
\end{aligned}
$$

- The ML solution provides the smallest variance amongst the unbiased estimators, albeit large

Turning point: bias vs variance

- ML estimator for unfolding attain minimum variance amongst unbiased estimators
- Estimators providing a reduction in variance will necessarily introduce bias
- The balance between bias and variance is the name of the game in unfolding/deconvolving/smearing
- Important to understand from where the problem is coming from: understanding source means understanding the cure and its validity

Take a step back: correction factors

- Use same binning for $\boldsymbol{\mu} \boldsymbol{v}$ and take $\boldsymbol{\mu}_{i, \text { est }}=C_{i}\left(n_{i}-\beta_{i}\right)$ where

$$
\text { - } \mathrm{C}_{\mathrm{i}}=\frac{\mu_{i}^{\mathrm{MC}}}{\mathrm{~V}_{\mathrm{i}}^{\mathrm{MC}}} \quad \begin{aligned}
& \mu_{\mathrm{i}}^{\mathrm{MC}} \text { and } \mathrm{V}_{i}^{\mathrm{MC}} \text { result from }
\end{aligned}
$$

$$
\bullet \mathrm{U}(\mathrm{i}, \mathrm{j})=\operatorname{cov}\left[\mu_{\mathrm{est}, \mathrm{i}} \mu_{\mathrm{est}, \mathrm{j}}\right]=\mathrm{C}_{\mathrm{i}}^{2} \operatorname{cov}\left[\mathrm{n}_{\mathrm{i}}, \mathrm{n}_{\mathrm{j}}\right]
$$

- C_{i} is often of $\mathrm{O}(1)$ so stat errors are much smaller than ML case
- However bias is $b=\left(\frac{\mu_{i}^{M C}}{V_{i}^{M C}}-\frac{\mu_{i}}{v_{i}^{\text {sig }}}\right) v_{i}^{\text {sig }} \quad v_{i}^{\text {sig }}=v_{i}-\beta_{i}$
- No bias only if MC=Nature; bias pulls results to MC
- Note: assuming R to be diagonal, while it might well (and usually) not be so

Take a step back: correction factor uncertainties (II)

- Assume the for some bin i one has
(Example
from R. Cousins)

$$
C_{i}=0.1 \quad \beta_{i}=0 \quad n_{i}=100
$$

- Then

$$
\mu_{i, \text { est }}=\mathrm{Cin}_{\mathrm{i}}=10 \quad \sigma_{\mu_{i, \text { est }}}=\mathrm{C}_{\mathrm{i}} \sqrt{ } \mathrm{n}_{\mathrm{i}}=1
$$

- However the estimate maintains that only 10 of 100 events observed in the bin really belong to it while the rest "migrated" in from outside the bin
- How can it be possible to have a 10% measurement if only 10 events are really carrying information about the bin content?

Take a step back: correction factors (III)

- Features
- C depends on the assumed distribution which one is trying to find
- Bin-to-bin correlations are completely neglected
- Sum of estimated \#events in truth can be different from sum of observed data
- Reduction of stat uncertainty is obtained in exchange for bias (standard unfolding). Hard to quantify the bias (also hard in other cases)
- Bias is reduced if bin width is large compared to resolution i.e. if migrations are small (non diagonal elements in R are
- Useful for quick solution, if bias << other uncertainties
- Best to avoid using it

Back to basics: where to from ML?

A problem is called improper when large and sometimes infinite changes in the solution could correspond to small changes in the input data.
I.P Nedelkov, Improper problems in computation physics, Com.Phys Comm 4 (1972) 157

- Propagation of uncertainties is a measure of stability
- When solving $\mathbf{n}-\boldsymbol{\beta}=R \boldsymbol{\mu}_{\text {est }}$ for $\boldsymbol{\mu}_{\text {est }}$, consider the maximum ratio of the relative inaccuracy on $\boldsymbol{\mu}_{\text {est }}$ to the one on $\mathbf{y}=\mathbf{n}-\boldsymbol{\beta}$

$$
c(R)=\max _{y, \delta y}\left\|\delta \boldsymbol{\mu}_{\text {est }}\right\| / /\left\|\boldsymbol{\mu}_{\text {est }}\right\| /\|\delta \mathbf{y} \mid /\| \mathbf{y} \|
$$

- $c(R)$ is called the condition of matrix R : upper bound on magnification factor for the input data uncertainties.
- Large $c(R)$ implies instability under small fluctuations in the data i.e. sensitivity to noise

Back to basics:where to from ?ML(II)

$$
n-\boldsymbol{\beta}=E[\mathbf{v}]-\boldsymbol{\beta}=\mathrm{R} \boldsymbol{\mu}
$$

- Given V_{y},cov matrix of \mathbf{y}, "rotate" R and y such that $V\left(y^{\prime}\right)=\mathbf{1}$ (identity matrix) \rightarrow normalized variables according to uncertainty
- i.e. $\left(R \mu_{\text {est }}-y\right) V_{y}{ }^{-1}\left(R \mu_{\text {est }}-y\right)=\left(R^{\prime} \mu_{\text {est }}-y^{\prime}\right)\left(R^{\prime} \mu_{\text {est }}-y^{\prime}\right)$
- Consider Singular Value Decomposition of R matrix Every matrix R of dimension MxN can be decomposed as

$$
R=U \Sigma V^{\top}
$$

such that $\mathrm{U}=\left(\mathbf{u}_{1}, \ldots . \mathbf{u}_{\mathrm{N}}\right) \in \mathrm{R}^{\mathrm{M} \times \mathrm{N}}$ and $\mathrm{V}=\left(\mathbf{v}_{1}, . ., \mathbf{v}_{N}\right) \in \mathrm{R}^{\mathrm{N} \times \mathrm{N}}$ are unitary matrices $\left(U^{\top} U=1\right)$ and $\Sigma=U^{\top} R V \in R^{M \times N}$ is diagonal $=\left\{\sigma_{1}, . ., \sigma_{n}\right\}$

- If R^{\prime} is inverted using SVD decomposition and $\sigma_{j} \neq 0 \quad \forall j$
$\boldsymbol{\mu}_{\text {est }}=R^{\prime-1}(\mathbf{n}-\boldsymbol{\beta})=\mathbf{R}^{\mathbf{\prime}-1} \boldsymbol{y}^{\prime}=\left(V \Sigma^{-1} U^{\top}\right) \mathbf{y}=\sum_{j=1}{ }^{N} \frac{1}{\sigma_{j}}\left(\mathbf{u}_{j}^{\top} \mathbf{y}\right) \mathbf{v}_{j}=\sum_{j=1}{ }^{N} \frac{1}{\sigma_{j}} \mathbf{c}_{j} \mathbf{v}_{j}$
- if ordered in value, c_{j} decreases with j : often steeply (exponentially for Gaussian response)
- Contribution of c_{j} is weighted with inverse of singular value: small singular values \rightarrow large fluctuations

Back to basics: Where to from ML?

- Is there a connection with magnification of uncertainties?

$\left\|\delta \boldsymbol{\mu}_{\text {est }}\left|/ /\left|\left|\boldsymbol{\mu}_{\text {est }}\right|\right| /\|\delta \mathbf{y}|/|\boldsymbol{y}\|=\| \mathbf{R}(\delta \mathbf{y})| / /||\mathbf{R y}\|/\| \delta \mathbf{y}| /| \boldsymbol{y} \|\right.\right.$

- It can be shown that

$$
c(R)=\|R\|\left\|R^{-1}\right\|=\sigma_{\max } / \sigma_{\min }
$$

- The condition of R matrix can be read off its SVD decomposition
- || || is the operator norm of a matrix induced by the euclidean norm if $R: R^{N} \rightarrow R^{M}$ with euclidean norm $\left(\|x\|=\sum_{i}\left|x_{i}\right|^{2}\right)$ a norm on the matrix is induced as

$$
\|R\|=\sqrt{ }\left(\text { max eigenval of } R^{\top} R\right)
$$

Where to from ML? The picture

- SVD decomposition gives insight into the unfolding problem: small effects can lead to large changes in ML estimator \rightarrow large sensitivity to small fluctuations, high frequency \rightarrow large condition number
- Need to suppress "noise" info i.e. reduce impact of high frequency, noisy components while preserving as much "signal" as possible. Come to terms with condition number.
- "Regularize" the problem, by accepting some bias in exchange for reduced variance

Regularized unfolding- General view (I)

- LKL (or sum of squares~-2logL) quantifies the distance between data n and expectation \mathbf{v}.
- Take a step back and consider region of $\boldsymbol{\mu}$ around ML solution

$$
\log \mathrm{L}(\boldsymbol{\mu}) \geq \log \mathrm{L}_{\max }-\Delta \ln \mathrm{L}
$$

- Out of these estimators choose the "smoothest" (one with less fluctuations) according to some measure i.e. maximize

$$
\phi(\boldsymbol{\mu})=\alpha \log L(\boldsymbol{\mu})+S(\boldsymbol{\mu}) \quad \text { or } \quad \phi(\boldsymbol{\mu})=\log L(\boldsymbol{\mu})+T S(\boldsymbol{\mu})
$$

$\mathrm{S}(\boldsymbol{\mu})$: regularization function (to measure smoothness) α or T : regularization parameter (to give the desired $\Delta \ln \mathrm{L}$)

Regularized unfolding- General view (II)

- Possibly add $n_{t o t}=\sum_{i=1}{ }^{N} v_{i}$ if one wants solutin to provide an unbiased estimate of total entries and consequently maximize

$$
\phi(\boldsymbol{\mu}, \lambda)=\alpha \log L(\boldsymbol{\mu})+S(\boldsymbol{\mu})+\lambda\left(n_{\text {tot }}-\sum_{i=1}^{N} v_{i}\right)
$$

over $\boldsymbol{\mu}$ and λ
function of μ_{i} as $v_{i}=\sum_{i=1} N \mu_{i}+\beta_{i}$

- $\alpha=0$ smoothest solution (data are ignored! impose S shape)
- $\alpha \rightarrow \infty$ recover ML solution (S carries no weight in the maximization)

Ingredients

> | $S(\boldsymbol{\mu})$ |
| :--- |
| prescription for α |

Regularization: Tikhonov scheme

- Consider the mean square of the $\mathrm{k}^{\text {th }}$ derivative $=$ measure of smoothness

$$
S[f(y)]=\int\left(\frac{d^{k} f(x)}{d y^{k}}\right)^{2} d y
$$

with $k=1,2,3 \ldots$

- Using k=2 one has

$$
\begin{array}{r}
\mathrm{S}(\boldsymbol{\mu})=\sum_{\mathrm{j}=1} \mathrm{M}-2 \mathrm{C}\left[\left(\boldsymbol{\mu}_{i+1}-\boldsymbol{\mu}_{\mathrm{i}}\right)-\left(\boldsymbol{\mu}_{\mathrm{i}}-\boldsymbol{\mu}_{\mathrm{i}-1}\right)\right]^{2} \\
\text { numerical 2nd derivative }
\end{array}
$$

and summing it with $\log L=-1 / 2 \chi^{2}, X^{2}=(R \mu-y)^{\top} V_{y^{-1}}(R \mu-n y)$ with $\mathbf{y}=\mathbf{n}-\boldsymbol{\beta}$, the result is

$$
\phi(\boldsymbol{\mu}, \lambda)=-\alpha / 2 \chi^{2}(\boldsymbol{\mu})+S(\boldsymbol{\mu})
$$

quadratic in $\boldsymbol{\mu}$
\downarrow

- First derivatives of $\phi(\boldsymbol{\mu}, \lambda)$ w.r.t. $\boldsymbol{\mu}, \lambda$ return linear equations

Tikhonov with $\mathrm{k}=2+\mathrm{SVD}$

- Minimize

$$
\phi(\boldsymbol{\mu}, \lambda)=-1 / 2 \chi^{2}(\boldsymbol{\mu})+\mathrm{T} \sum_{\mathrm{j}=1^{\mathrm{M}-2}\left[\left(\boldsymbol{\mu}_{i+1}-\boldsymbol{\mu}_{\mathrm{i}}\right)-\left(\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{\mathrm{i}-1}\right)\right]^{2} .}
$$

- "Rotate" R and $\mathbf{y}=\mathbf{n} \mathbf{-} \boldsymbol{\beta}$ so that $\mathrm{V}_{\mathbf{y}} \sim \mathbf{I d}\left(\rightarrow \mathrm{in} \mathrm{X}^{2} \mathbf{I d}^{-1}=\mathrm{Id}\right)$
- In matrix format, minimize

- Expand $\mathrm{R}^{\prime} \mathrm{C}^{-1}$ with SVD and express solution as a function of T and of the solution for $\mathrm{T}=0$

Equivalent to

$$
\boldsymbol{\mu}_{\mathrm{est}}=\sum j=1 \mathrm{~N} \frac{1}{\sigma_{j}} \phi_{\mathrm{j}} \mathbf{c}_{\mathrm{j}} \mathbf{v}_{\mathrm{j}} \text { with } \phi_{\mathrm{j}}=\frac{\sigma_{\mathrm{j}}^{2}}{\sigma_{j}^{2}+\mathrm{T}}
$$

low pass filter with a preference for small curvature

- Choice of T
- number of transformed values significantly different from zero
- unfold folded test distribution vs T : choose T with best X^{2} (unfolded, true)

A Hoecker, V Kartvelishvili Nucl Instr Meth A 3721996469

Response matrix

 $d_{i}=$ normalized, SVD-transformed, observed bin content

deviation of unfolded from true

Iterative unfolding: the idea

L.B.Lucy, An iterative technique for the rectification of observed distributions
Astronomical Journal 79 (6) (1974) 745

- Consider Bayes' theorem with "true" and "reco" labels

$$
\text { f(true) = } \int \mathrm{g}(\mathrm{obs}) \mathrm{P}(\text { truelobs)dobs }
$$

Note from (I) P(true|obs) is function of f (true), the real inverse kernel for f needs to be function of P (obs | true) only

Iterate following steps

- Guess $f($ true $)$ and use (I) to estimate $P($ true|obs) using known P(obs | true)
- Use the ansatz of (II) and integrate P (true|obs) over \hat{g} (obs) estimated from data
- Check quality measure
$g^{r}($ obs $)=\int f^{\prime}($ true $) P($ obs, true true
$P^{\prime}($ truelobs $)=\frac{f^{\prime}(\text { true }) P(\text { obs, true })}{g^{r}(\text { obs })}$
$\mathrm{f}^{\mathrm{r}+1}$ (true) $=\int \hat{g}(\mathrm{obs}) \mathrm{Pr}^{\prime}($ true|obs $)$ dobs
$\mathrm{f}^{\mathrm{r}+1}$ (true) $=\mathrm{f}^{\mathrm{r}}$ (true) $\int \frac{\hat{g}(\mathrm{obs})}{g^{r}(\mathrm{obs})} \mathrm{P}$ (obs, true)dtrue

Iterative unfolding (II): implementation see G.Zech in PHYSTAT 2011 proceedings

- Idea: if R is positive definite, invert relation $x=\mathbf{n}-\boldsymbol{\beta}=E[\mathbf{v}]-\boldsymbol{\beta}=R \boldsymbol{\mu}$ iteratively
- Start with a guess of $\mu^{(0)}$ calculate $\mathbf{x}^{(0)}=R \mu^{(0)}$
"Fold"
- Predict $\mathbf{x}_{\mathrm{i}}{ }^{(\mathrm{k})}$ from k -

$$
\bullet \mathbf{x}_{\mathrm{i}}^{(\mathrm{k})}=\sum_{\mathrm{j}} \mathrm{R}_{\mathrm{ij}} \boldsymbol{\mu}_{\mathrm{j}}(\mathrm{k})
$$ th estimate of $\boldsymbol{\mu}_{\mathrm{j}}$

"Unfold"
-kth estimate of true $\boldsymbol{\mu}_{\mathrm{j}}$ formed by "integrating" R_{ij} over updating function $\mathbf{x}_{i} / \mathbf{x}_{i}{ }^{(k)}$

$$
\begin{aligned}
\bullet \mu_{j}^{(k+1)}= & 1 / \varepsilon_{j} \sum_{i}\left|R_{i j}\right| \mu_{j}^{(k)} \mid\left(\mathbf{x}_{i} / \mathbf{x}_{i}^{(k)}\right) \\
& \text { if } \mathbf{x}_{i} / \mathbf{x}_{i}^{(k)} \sim 1, \sum_{i} R_{i j}=1 \text { so } \boldsymbol{\mu}_{j}^{(k+1)}=\boldsymbol{\mu}_{j}^{(k)}
\end{aligned}
$$

- Dividing by efficiency ε_{j} corrects for acceptance losses
converge to ML solution for Poisson uncertainties (empirical)

Iterative unfolding and regularization

- Standard basic iterative steps:
- initial guess is $\mathrm{p}_{\mathrm{i}}=1 / \mathrm{M}$, so $\mu_{\mathrm{i}}=\mathrm{n}_{\text {tot }} \mathrm{p}_{0}$
- estimate kth observed with kth guess of "true" dist ("fold")
- get $\mathrm{k}+1$ st estimate of "true" dist by integrating data-scaled kth estimate over observed ("unfold")
No final estimator in terms of prior updating rule inspired to Bayes

- Distinctive:

$$
P\left(C_{i} \mid E_{j}\right)=\frac{P\left(E_{j} \mid C_{i}\right) \cdot P_{o}\left(C_{i}\right)}{\sum_{l=1}^{n_{C}} P\left(E_{j} \mid C_{i}\right) \cdot P_{o}\left(C_{l}\right)}
$$

- Smoothen estimated distribution in each iteration step before "unfold" step (not last) : by polynomial fit (user can change it)
- Continue until solution is stable (X^{2} test with previous iteration)

Example Iterative unfolding: tt charge asymmetry

- Expect

MC@NLO@ 7TeV LHC predicts $\mathrm{A}_{\mathrm{c}}=$ 0.006 +/- 0.002

- Reconstruct tt ānd study

$$
A_{C}=\frac{N(\Delta|Y|>0)-N(\Delta|Y|<0)}{N(\Delta|Y|>0)+N(\Delta|Y|<0)}
$$

with ATLAS @ LHC
$\int L d t=1 \mathbf{f b}^{-1}$ (2011)
accepted by Eur.Phys.J 30th May2012
arxiv:1203.4211[hep-ex]

Example of iterative unfolding: t̄̄ charge asymmetry

 with ATLAS @ LHC
$\int L d t=\mathbf{1} \mathbf{f b}^{-1}$ (2011)
accepted by Eur.Phys.J 30th May2012
arxiv:1203.4211[hep-ex]

consistent with SM, main syst: parton shower, top mass , ISR/FSR, jet scale

$$
A_{C}=-0.018 \pm 0.028 \text { (stat.) } \pm 0.023 \text { (syst.) }
$$

- Stop when A_{c} changes by less than 0.1% on MC
- Stat uncertainty checked with pseudoexpriments
- Syst uncertainty propagated to response matrix and bkg
- Re-weight $t \bar{t}$ events to vary A_{c} and check unfolding linearity.

Regularization with Entropy: the idea

- Shannon's entropy is

$$
\mathbf{H}=-\sum_{i=1}{ }^{M} p_{i} \log p_{i}
$$

- p_{i} are equal \rightarrow maximal smoothness
- one $\mathrm{p}_{\mathrm{i}}=1 \mathrm{~m}$ all others $=0 \rightarrow$ minimum entropy
- Use H as regularization function

$$
\mathbf{S}(\boldsymbol{\mu})=\mathbf{H}(\mu)=\sum_{i=1}^{\mathrm{M}} \frac{\mu_{\mathrm{i}}}{\mu_{\text {tot }}} \log \frac{\mu_{\mathrm{i}}}{\mu_{\text {tot }}} \quad \sim \log \text { (number of ways to }
$$

- Bayesian justification: S is a prior pdf for $\boldsymbol{\mu}$

Regularization with entropy - ARU Automatic Regularized Unfolding

- 1 dimensional non parametric unfolding
- Parametrize unfolded distribution as sum of B-spline functions
- Fold it with detector Kernel (calibration, efficiency , resolution..)

$$
f(y)=\int K(y, x) b(x) \mathrm{d} x=\sum_{j} c_{j} \int K(y, x) b_{j}(x) \mathrm{d} x=\sum_{j} c_{j} f_{j}(y)
$$

- Fit to data with extended ML method: minimize $-\log L$

$$
L(\boldsymbol{c})=L_{1}(\boldsymbol{c})+w L_{2}(\boldsymbol{c})
$$

- where L1 is the negative log of the likelihood...

$$
L_{1}(\boldsymbol{c})=\sum_{i} c_{j} F_{j}-\sum_{i} \ln f\left(y_{i}\right), \quad \text { Choose uniform } \mathrm{g}
$$

- ... and L 2 is the regularization term

$$
L_{2}(\boldsymbol{c})=\int b(x) \ln \frac{b(x)}{g(x)} \mathrm{d} x-\sum_{j} c_{j} B_{j}
$$

Choose w by minimizing

Regularization with entropy - ARU

- Two Gaussians smeared out with Gaussian kernel
- Perform 2000 pseudo-exp: uncertainty is consistent with stand dev. from ARU

Figure 1: Unfolding of a toy data set of 1000 events. $t(x)$ is the true distribution, the points show a histogram of the smeared data. In this case, the folded solution $f(y)$ is on top of the reference distribution $g(x)$ used for regularization. The regularized solution $b(x)$ shows no undesired oscillations, in contrast to the solution $b_{w=0}(x)$, which is obtained if no regularization is applied.

Choice of regularization par:example criteria

$$
\alpha=0 \rightarrow \ddot{\vec{\mu}} \quad \alpha \rightarrow \infty
$$

- Minimize

$$
\begin{aligned}
& \mathrm{MSE}=\frac{1}{n r} \sum^{M}\left(U_{i i}+\hat{b}_{i}^{2}\right) \\
& \mathrm{MSE}^{\prime}=\frac{1}{M} \sum_{i=1}^{M} \frac{U_{i i}+\hat{b}_{i}^{2}}{\hat{\mu}_{i}}
\end{aligned}
$$

- Consider changes in Chi2 from unregularized solution

$$
\Delta \chi^{2}=2 \Delta \log L=N
$$

- Bias consistent with zero withing its own uncertainty

$$
\chi_{b}^{2}=\sum_{i=1}^{M} \frac{\hat{b}_{i}^{2}}{W_{i i}}=M \text { where } W_{i j}=\operatorname{cov}\left[\hat{b}_{i}, \hat{b}_{j}\right]
$$

if bias is non zero, one should correct for it

Fully Bayesian Unfolding (FBU)

- Unfolding question: find Truth spectrum T given Data D and migration model P. Give Bayesian answer

$$
p(\mathbf{T} \mid \mathbf{D} \wedge \mathcal{P}) \propto P(\mathbf{D} \mid \mathbf{T} \wedge \mathcal{P}) p(\mathbf{T} \wedge \mathcal{P})
$$

$p(\mathbf{T} \mid \mathbf{D} \wedge \mathcal{P})$: \quad The posterior p.d.f. of \mathbf{T}.
$P(\mathbf{D} \mid \mathbf{T} \wedge \mathcal{P})$: The likelihood of \mathbf{D}, as a function of \mathbf{T} and \mathcal{P}
$p(\mathbf{T} \wedge \mathcal{P})$: The prior p.d.f. of \mathbf{T} and \mathcal{P}.
\mathbf{T} : The truth-level binned spectrum. $\mathbf{T} \in \mathbb{R}^{N_{t}}$.
D: The observed binned spectrum; $\mathbf{D} \in \mathbb{N}^{N_{r}}$, if Poisson.
\mathcal{P} : The conditional migrations matrix: $\mathcal{P}_{t, r} \equiv P(r \mid t)=P_{t \rightarrow r}$. computed from the migrations matrix, $\mathcal{M}_{t r} \equiv P(t, r) \quad$ its efficiency, $\epsilon_{t} \equiv \frac{\sum_{r} P(r \mid \breve{t})}{P(t)}$

Result is posterior pdf $p(T \mid D, P)$ defined in space of possible spectra (not estimator and variance).

FBU: general ides

- For Likelihood one can choose Poisson
with

$$
\begin{aligned}
& P(\mathbf{D} \mid \mathbf{T})=\prod_{r-1}^{N_{r}} \operatorname{Poisson}\left(D_{r} \mid \mathbf{T}\right)=\prod_{r=1}^{N_{r}} \frac{R_{r}^{D_{r}}}{D_{r}!} e^{-R_{r}} \\
& R_{r}=\sum_{t=1}^{N_{t}} T_{t} P_{t \rightarrow r}=\sum_{t=1}^{N_{t}} T_{t} \frac{\mathcal{M}_{t, r}}{\epsilon_{t}^{-1} \sum_{k=1}^{N_{r}} \mathcal{M}_{t, k}}
\end{aligned}
$$

- Regularization in standard form

$$
P(\mathbf{D} \mid \mathbf{T}) \cdot e^{-\alpha S(\mathbf{T})}
$$

For FBU that role is played by the Prior

$$
p(\mathbf{T})=e^{-\alpha S(\mathbf{T})}
$$

- Name of the game: integral calculation

Examples of other unfolding schemes

- IDS: iterative dynamically stabilized, B. Malaescu, arxiv: 0907.3791 [phys.data-an]
- used in ATLAS paper http://arxiv.org/abs/1112.6297
- Binning free Iterative Deconvolution, Lindemann, Zech, Nucl.Instr. Meth A 354 (1995) 516-521
- Satellite Method, see G. Bohm and G. Zech, Introduction to Statistics and Data Analysis for Physicists, Verlag Deutsches Elektronen-Synchrotron (2010), available at http://wwwlibrary.desy.de/elbook.html
-SPlot, M Pivk, F. Le Diberder, arXiv:physics/0402083v
by no means exhaustive (more in Nucl. Instr. Meth for instance)

2 cents on optimization/choice of technique

- Choices strongly analysis-dependent
- Always consider/produce/report un-regularized solution
- no bias form unfolding. Powerful to test a theory using full covariance matrix

$$
\chi^{2}(\theta)=\left(\boldsymbol{\mu}(\theta)-\hat{\mu}_{\mathrm{ML}}\right)^{T} U_{\text {stat }}^{-1}\left(\boldsymbol{\mu}(\boldsymbol{\theta})-\hat{\boldsymbol{\mu}}_{\mathrm{ML}}\right)
$$

- consider SVD decomposition diagnostic \& condition number for response matrix, also in the light of syst uncertainties
- Carefully consider the possible impact of the regularization on your analysis
- Can I afford to suppress bumps/large curvature?
- If regularizing a discrete estimator, choose bins using full stat and systematic uncertainty andfully propagate in analysis on simulated data (your best prediction)

2 cents on systematic uncertainties

- Include syst in your analysis: vary all elements in LKL according to their dependence on syst
- response matrix, bkg
- Possible inclusion of syst: use pseudoexpriments with given priors/hypothesis for distribution or resulting from ancillary measurement: take into account correlations induced by unfolding
- for instance hybrid bayesian: marginalize max of Ikl with pseudo exp
- Crucial to devise tests for stability and bias
- stress unfolding response with distorted shapes / varying parameter of interest in simulated events: unfold folded test distributions to check for bias, compare with overall expected syst+stat uncertainty or use x^{2} with model

Additional references

- G Cowan, Lecture 4, CERN academic lectures, available at http://indico.cern.ch/conferenceDisplay.py?confld=173729
- V Blobel, in CSC84, CERN-85-09
- PHYSTAT 2011 proceedings available at
- Agenda :http://indico.cern.ch/conferenceDisplay.py?confld=107747
- File: http://cdsweb.cern.ch/record/1306523/files/CERN-2011-006.pdf
- G. Bohm and G. Zech, Introduction to Statistics and Data Analysis for Physicists, Verlag Deutsches Elektronen-Synchrotron (2010), available at http://www-library.desy.de/elbook.html.

Tools and repositories

- The Unfolding Framework project at https://www.wiki.terascale.de/index.php/Unfolding Framework Project
- RooUnfold by T. Adye

