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Outline

•What’s Unfolding? 
• Initial unfolding schemes
‣  the ML solution: matrix inversion
‣  correction coefficients

•Exploring ML:
•Regularized Unfolding & not
‣ curvature Tikhonov
‣ iterative: Bayes inspired
‣ entropy
‣ Fully Bayesian unfolding

•Other unfolding schemes
•Two cents of experience and conclusions
‣ optimization
‣ bias & uncertainty 
‣ systematics  (& combination)
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The “inverse” problem (I)

3

“True”
Reco/

Measured

Gaussian 
blurring

how do we “go back”, invert the procedure?
What does “going back “ mean?

Cat

Unfolding, Deconvolving, Unsmearing

?

Vardi, Shepp, Kaufman JSTOR,V80, N389 (1985) pp.8

The diagonal of the deconvolved spectrum and the true
one are shown in Fig. 7A. Since the correlation coefficients
between neighbors are positive and near to 1, the large

fluctuations give rise to artifacts. However, after regular-
ization, the artifacts are strongly reduced, as shown
in Fig. 7B.
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Fig. 4. Example: two-dimensional spectra. The true spectrum (A) was
blurred with Gaussian response functions (B) and deconvolved (C).
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Fig. 5. Convolution of the true image of Fig. 4A with a Gaussian response
function, summed to a random noise. (B) Deconvolution of the image
gives chess board-type artifacts. (C) After regularization, the true image
was partially recovered.
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The diagonal of the deconvolved spectrum and the true
one are shown in Fig. 7A. Since the correlation coefficients
between neighbors are positive and near to 1, the large

fluctuations give rise to artifacts. However, after regular-
ization, the artifacts are strongly reduced, as shown
in Fig. 7B.
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Fig. 4. Example: two-dimensional spectra. The true spectrum (A) was
blurred with Gaussian response functions (B) and deconvolved (C).
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Fig. 5. Convolution of the true image of Fig. 4A with a Gaussian response
function, summed to a random noise. (B) Deconvolution of the image
gives chess board-type artifacts. (C) After regularization, the true image
was partially recovered.
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The “inverse” problem (II)

4

“True”

Reco/
Measured

Unfolding, Deconvolving, Unsmearing
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Fig. 1 Expected and observed distributions for the invariant mass (plots (a) and (b)) and transverse momentum (plots (c)
and (d)) of the reconstructed tt̄ system. The left hand panels show distributions in the electron channel, while the right
hand panels show distributions in the muon channel. The data are compared to the sum of the tt̄ signal contribution and
backgrounds. The background contributions from W+jets and multijet production have been estimated from data, while the
other backgrounds are estimated from simulation. The uncertainty on the combined signal and background estimate includes
systematic contributions. Overflows are shown in the highest bin of each histogram.

distribution ∆|y| as a function of the reconstructed top-
antitop invariant mass mtt̄ (a two-dimensional unfold-
ing problem).

Two bins are used for mtt̄ in the two-dimensional
unfolding of∆|y| versusmtt̄, separated atmtt̄ = 450 GeV.
The choice of this mtt̄ value is motivated by the ob-
served CDF forward-backward asymmetry [6] and by
separating the data sample into two bins with roughly
equal number of events.

An additional cut on the value of the likelihood for
the tt̄ candidate is required in the two-dimensional un-
folding, since a large fraction of simulated events with
a badly reconstructed mtt̄ are found to have a low like-
lihood value.

The response matrix (including both detector and
acceptance effects) for the inclusive AC measurement
is shown in Fig. 2. Six bins in ∆|y| are used in the
response matrix, with the outermost bins broader than

arxiv:1203.4211[hep-ex]
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Figure 10: Left: Fixed-order predictions for the K factor and invariant mass spectrum at LO
(light), NLO (darker), and approximate NNLO (dark bands) for the LHC. Right: Correspond-
ing predictions at NLL (light) and NLO+NNLL (darker bands) in resummed perturbation
theory. The width of the bands reflects the uncertainty of the spectrum under variations of
the matching and factorization scales, as explained in the text.

using the MCFM program in this case; however, the differences compared with the shown
curves are so small that they would hardly be visible on the scales of the plots. The upper
two plots show K factors, which are defined as the ratio of the cross section to the default
lowest-order prediction dσLO,def/dM . Contrary to Figure 7, we now use the same normaliza-
tion in both fixed-order and resummed perturbation theory, so that the two spectra can more
readily be compared to each other. The lower plots show the corresponding spectra directly.
We observe similar behavior as in the low-mass region. The bands obtained in fixed-order
perturbation theory become narrower in higher orders and overlap. The bands obtained in
resummed perturbation theory are narrower than the corresponding ones at fixed order. The
leading-order resummed prediction is already close to the final result.

The information contained in Figures 8–10 can be represented differently in terms of the

35

ATLAS

mtt
true mtt reco

how do we “go back”, invert the procedure?
What does “going back “ mean?

?
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•Estimate the prob distribution function for a (random) variable y

5

“True” Measured/
observed

reconstruction limitations 
non uniform efficiency

resolution effects 
(smearing)

f(y)
g(s)

Measurement
 g(s)= ∫Ω K(s,y) f(y)dy 

‣ Due to the transformation, in general y and s can belong to multi-
dimensional spaces with different dimensions

Stating the “inverse” problem
Unfolding, Deconvolving, Unsmearing

Fredholm equation of 1st type

Goal is to find f(y) : statistical estimation problem
efficiency, consistency, unbiasedness

if have theory prediction g
(y,a), fold it with K(y,x) and  

compare/extract parameters

if no parametrized 
prediction exists, unfolding 
means finding f(x) from g(x) 
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Stating the inverse problem: continuous to discrete
•Operatively: measurements  are limited in number and 

resolution → converted to histograms: discretization

6

where gives the expectation values for the histogram of and
gives the expected number of events in bins of the observed variable . The actual data are given as a
vector of numbers . These represent the actual (integer) number of entries observed in
the histogram, which of course differ in general from the (non-integer) expectation values .

The response matrix has the simple interpretation as a conditional probability:

observed in bin true value in bin (3)

By summing over all possible bins of the observed value , one obtains

observed anywhere true value in bin (4)

This gives the efficiency, , which depends in general on the bin of the true histogram. A summary of
the ingredients so far is illustrated in Figs. 1.

(a) (b) (c)

Fig. 1: Illustration of ingredients for unfolding: (a) a ‘true histogram’ , (b) a possible set of efficiencies , and (c) the observed
histogram (dashed) and the corresponding expectation values (solid).

In general, equation (2) must be modified to include the expected number of background events
in bin , . The data , the corresponding expectation values , the response matrix , the expectation
values for the true histogram , and the expected number of background events are finally related by

(5)

3 WHY UNFOLD?
Before proceeding it should be emphasized that in many problems it is not necessary to unfold the
measured distribution, in particular if the goal is to compare the result with the prediction of an existing
theory. In that case one can simply modify the prediction to include the distortions of the detector, and
this can be directly compared with the measurement. That is, one finds and compares this to the data
. This procedure is considerably simpler than unfolding the measurement and comparing it with the
original (unmodified) theory.

Without unfolding, however, the measurement cannot be compared with the results of other exper-
iments, for which the response matrix will in general be different. It can also happen that a new theory is
developed many years after a measurement has been carried out, and the response matrix may no longer
be available. If a particularly important measured distribution is to retain its value, then both the data and
the response matrix should be preserved. Unfortunately, this is often impractical.

249

where gives the expectation values for the histogram of and
gives the expected number of events in bins of the observed variable . The actual data are given as a
vector of numbers . These represent the actual (integer) number of entries observed in
the histogram, which of course differ in general from the (non-integer) expectation values .

The response matrix has the simple interpretation as a conditional probability:

observed in bin true value in bin (3)

By summing over all possible bins of the observed value , one obtains

observed anywhere true value in bin (4)

This gives the efficiency, , which depends in general on the bin of the true histogram. A summary of
the ingredients so far is illustrated in Figs. 1.

(a) (b) (c)

Fig. 1: Illustration of ingredients for unfolding: (a) a ‘true histogram’ , (b) a possible set of efficiencies , and (c) the observed
histogram (dashed) and the corresponding expectation values (solid).

In general, equation (2) must be modified to include the expected number of background events
in bin , . The data , the corresponding expectation values , the response matrix , the expectation
values for the true histogram , and the expected number of background events are finally related by

(5)

3 WHY UNFOLD?
Before proceeding it should be emphasized that in many problems it is not necessary to unfold the
measured distribution, in particular if the goal is to compare the result with the prediction of an existing
theory. In that case one can simply modify the prediction to include the distortions of the detector, and
this can be directly compared with the measurement. That is, one finds and compares this to the data
. This procedure is considerably simpler than unfolding the measurement and comparing it with the
original (unmodified) theory.

Without unfolding, however, the measurement cannot be compared with the results of other exper-
iments, for which the response matrix will in general be different. It can also happen that a new theory is
developed many years after a measurement has been carried out, and the response matrix may no longer
be available. If a particularly important measured distribution is to retain its value, then both the data and
the response matrix should be preserved. Unfortunately, this is often impractical.

249

 μj = ∫ f(y)dy  
yj

yj-1
 νi = ∫  g(s)ds  

si

si-1

true

μtot=Sμj

expected/observed

n =(n1,..n)

ν = (ν,,,, 

R(i,j) = μj/νi   

 g(s)= ∫Ω K(s,y) f(y)dy 

f(y)→

K(s,y)

g(s)→

→

E[ni] = νi = ∑ j R(i,j) μj 

P(observed in 
bin i |true in 

bin j)

figures from G Cowan, A survey of 
unfolding methods for Part  

Phys ,PHYSTAT2002

ν, μ: constants 
n random
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Ingredients: from transfer function to  matrix

• If we have the Kernel from the problem we 
solve it directly

•R is usually obtained from
‣  detailed simulation of the measuring apparatus  

when many effects are included: MC events are 
generated  with fSim , our best guess of f  and 
mapped to gSim the resulting best guess  of g

‣  test measurements, for instance exposing 
calorimeter  to particle beam of well known fixed 
energy x=x0 implies we measure δ(y-y0) so the 
measurement gives R directly

7

R is in general a rectangular MxN matrix
 ∫ab K(s,y) δ(y-y0)dy= K(s,y0) 

R(i,j) =    
 ∫ f(y)dy    

 ∫  ∫ K(s,y) f(y)dy ds    

•The general definition of the transfer matrix
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Additional Ingredients: efficiency and backgrounds

•Some interesting events are not observed due to detection 
inefficiency. The efficiency of detection/acceptance be included 
in the estimate of the response matrix. 

8

βi is expected N of bkg events in OBSERVED distribution

•Some observed events are due to backgrounds and they 
modify the observed distribution

∑ j=1 R(i,j) = ∑ j=1 P(observed in bin i| true value in bin j) =
                  = P(observed anywhere| true value in bin j)   =  εj

E[ni ] = νi  = ∑ j R(i,j) μj  + βi 

 g(s)= ∫Ω K(s,y) f(y)dy + b(y) 

βi = ∫ b(y)dy 
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The first step: maximum likelihood solution

•Given the problem ν  = R μ  + β one can consider if the 
inverse of R exists and then provide the solution as 

 μ= R-1 (ν - β)

9

•Suppose the data are independent Poisson observation

P(ni | νi )= 

•The maximum likelihood  (ML) estimator is (dlogL/dμ=0)

niνi
ni!
e-νi

•The log likelihood is

logL(μ)= ∑ j=1N (ni log νi - νi -log ni!  )

νML = n μML = R-1 (ν - β) 

log=loge
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ML solution:does it work?

•Major 
failure?

10

True Expected

μML = R-1 (ν - β) 

G. Cowan  CERN Academic Training 2012 / Statistics for HEP / Lecture 4 9 

Example with ML solution 

Catastrophic 
failure??? 

G. Cowan  CERN Academic Training 2012 / Statistics for HEP / Lecture 4 9 

Example with ML solution 

Catastrophic 
failure??? 

G. Cowan  CERN Academic Training 2012 / Statistics for HEP / Lecture 4 9 

Example with ML solution 

Catastrophic 
failure??? 

Consider data example

G. Cowan  CERN Academic Training 2012 / Statistics for HEP / Lecture 4 9 

Example with ML solution 

Catastrophic 
failure??? 

? The result from

G Cowan, A survey of 
unfolding methods for Part  

Phys ,PHYSTAT2002
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ML solution: What was wrong?

•Take the case where μ really had 
a lot of fine structure

11

•The response  R dilutes the info 
(smoothen), but allows residual structure 
to be present

•The application of R-1 restores the structure μML = R-1 (ν - β) 
BUT we do not have ν, we have  n: R “assumes” the fluctuations 
in n are the residual of the “real” original structure and puts the 
pattern back into ν  to get μ ( i.e. “magnifies” flucts back)

G. Cowan  CERN Academic Training 2012 / Statistics for HEP / Lecture 4 10 

What went wrong? 

Suppose µ really had a lot of 
fine structure. 

Applying R washes this 
out, but leaves a residual 
structure: 

But we don’t have !, only n.   R-1 “thinks” fluctuations in n are  
the residual of original fine structure, puts this back into  µ̂.

G Cowan, A survey of 
unfolding methods for Part  

Phys ,PHYSTAT2002

G. Cowan  CERN Academic Training 2012 / Statistics for HEP / Lecture 4 10 

What went wrong? 

Suppose µ really had a lot of 
fine structure. 

Applying R washes this 
out, but leaves a residual 
structure: 

But we don’t have !, only n.   R-1 “thinks” fluctuations in n are  
the residual of original fine structure, puts this back into  µ̂.

μ

ν
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ML solution: before you leave (1)

•Bias: the ML solution is an unbiased estimator   

E[μML] = E [R-1 (n - β)] = R-1 (E[n]-β) = R-1 (ν-β)

12

• Its covariance is 

Uij = cov[μML,i μML,j] = ∑k,l=1N  (R-1)ik (R-1)jl cov[nk ,nl]
= ∑k,l=1N  (R-1)ik (R-1)jl δk,l νk = ∑k=1N (R-1)ik (R-1)jk νk
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ML solution: important properties (2)
•The Cramér-Rao inequality states that for unbiased estimators  

the co-variance has a minimum value (lower bound) 

13

Uij,bound = ∑k=1N  (R-1)ik (R-1)jk νk= Uij 

(U-1bound )kl  = - E[ ∂
2log L 

 ∂μk ∂μl 
] = ∑i=1N  Rik Rjl

νi

• If we invert it we get

this IS the variance!

•The ML solution provides the smallest variance amongst the 
unbiased estimators, albeit large
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Turning point: bias vs variance

•ML estimator for unfolding attain minimum variance amongst 
unbiased estimators

•Estimators providing a reduction in variance will necessarily 
introduce bias

•The balance between bias and variance is the name of the game 
in unfolding/deconvolving/smearing 

• Important to understand from where the problem is coming 
from: understanding source means understanding the cure and 
its validity

14
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Take a step back: correction factors

•Use same binning for μ ν  and take μi,est = Ci (ni - βi ) where

15

•Note: assuming  R to be diagonal, while it might well (and 
usually) not be so 

• U(i,j) = cov[μest,i μest,j] = Ci2 cov[ni ,nj]

μiMC  and νiMC result from 
simulation (no bkg included)

•Ci  is often of O(1) so  stat errors are much smaller than ML case

•However bias is νisig μiMC

νiMC 
μi

νisig 
-( ) νisig=  νi - βi

•Ci = 
μiMC

νiMC 

•No bias only if MC=Nature; bias pulls results to MC

b =
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Take a step back: correction factor uncertainties (II)

•Assume the for some bin i one has  

16

(Example
from R. Cousins)

•Then
Ci =0.1     βi =0     ni=100

•However the estimate maintains that only 10 of 100 events 
observed in the bin really belong to it while the rest “migrated” 
in from outside the bin

•How can it be possible to have a 10% measurement if only 10 
events are really carrying information about the bin content?

μi,est =Cini =10   μi,est  σμ  = Ci √ni =1
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Take a step back: correction factors (III)
•Features

‣ C depends on the assumed distribution which one is trying to find
‣ Bin-to-bin correlations are completely neglected
‣ Sum of estimated #events in truth can be different from sum of 

observed data

•Reduction of stat uncertainty is obtained in exchange for bias 
(standard unfolding). Hard to quantify the bias (also hard in other 
cases)

•Bias is reduced if bin width is large compared to resolution i.e. if 
migrations are small (non diagonal elements in R are 

•Useful for quick solution, if bias << other uncertainties 

•Best to avoid using it
17
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Back to basics: where to from ML? 

18

•Propagation of uncertainties is a measure of stability

COMPUTER PHYSICSCOMMUNICATIONS 4 (1972) 157-164. NORTH-HOLLAND PUBLISHING COMPANY

IMPROPER PROBLEMS IN COMPUTATIONAL PHYSICS~

I.P. NEDELKOV
Institute ofPhysics, Bulgarian Academy of Sciences, Sofia 13, Bulgaria

Several examples of improper problems in computational physics are considered. The examples are from astrophysics,
atomic physics, biophysics, geophysics, high-energy physics, hydrodynamics, nuclear physics, plasma physics, solid state
physics and statistical mechanics. The basic methods for solving improper problems — the method of regularization and
the method of selection are briefly discussed.

1. Introduction
2.0

A problem is called improper when large and some-

to small changes in the input data.
The well-known example of Hadamard [1]concern-

ing Cauchy’s problem for the Laplace equation is atimes infinite changes in the solution could correspond x(t) ~good illustration of the concept of improper problems. 1.0
It is to be shown in the present paper that the

example of Hadamard is not isolated, and that in al- 05
most every field of physics there exist interesting prob-
lems which are improper but nevertheless could be
numerically solved. 0.0 2 4 6 8 10
The improper problems are quite often formulated

in the form of an integral equation of the first kind Fig. 1. Numerical solution of the integral equation (1) in a
b special case [81. 1. Exact solution. 2. Solution of the varia-

tional problem with input data error t = 2.5%. 3. Solution off A (t, r)x(r)dr — b (t) = 0. (U the algebraic system (2). This is a model problem from nu-
a clear spectroscopy concerning the spectrum of fast neutrons

generated by a polonium—berlilium source. The kernel is
Algorithms which are successfully applied for the choosen in the form A (t, r) = i—nt, n ~Zt, A (t, n) 0, r>O.

solution of well-posed problems, as a rule fail when
used for the solution of(l). So, for example, (1) can larized, i.e., eq. (1) is replaced by an auxiliary problem,
be replaced approximately by the algebraic system. which is stable and whose solution can be regarded as
N an approximate solution of(l), when the latter exists.

~ = b~, i= ~, 2, .., N. (2) A way for regularization of(l) consists in its replace-
ment by the variational problem [2]

It turns out that the roots x1,x2, ...,xN of (2) do
not lead to a continuous curve, but to a curve which b b 12
makes violent oscillations (fig. 1). f [f A(t, r)~(r)dr— ~(t)] dt
In order to suppress the oscillations eq. (1) is regu- a a

~ Paper presented at the First European Conference on Corn- b
putational Physics, Geneva, 10—14 April 1972. +a J’ (d2.~/dt2)2dt=mm, (3)

a
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Example with ML solution 

Catastrophic 
failure??? 

I.P Nedelkov, Improper problems in computation physics, 
Com.Phys Comm 4 (1972) 157

•c(R) is called the condition of matrix  R : upper bound on 
magnification factor for the input data uncertainties.

•Large c(R) implies instability under small fluctuations in the data  
i.e. sensitivity to noise

||δμest||/||μest ||/ ||δy|/||y||max
y,δy

c(R) =

•When solving n-β=Rμest for μest ,consider the maximum ratio of 
the relative inaccuracy on μest to the one on  y=n-β  

see for instance S Leach SVD A primer and ref. therein  
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Back to basics:where to from ?ML(II)

•  Consider Singular Value Decomposition of R matrix

19

n-β=E[ν]-β=Rμ

R = U Σ VT
Every matrix R of dimension MxN  can be decomposed as 

such that  U=(u1 ,...uN ) ∈ RMxN  and V=(v1,..,vN) ∈ RNxN are unitary 
matrices (UTU=1) and Σ = UTRV ∈ RMxN  is diagonal = {σ1,..,σn }

• If R’ is inverted using SVD decomposition and σj ≠0  ∀ j 
μest=R’-1 (n-β)=R’-1 y’ = (V Σ-1 UT)y = ∑ j=1N (uTj y) vj 1

σj

_ ∑ j=1N cj vj 
1
σj

_=

• if ordered in value, cj decreases with j : often steeply 
(exponentially for Gaussian response)

• Contribution of cj is weighted with inverse of singular value: 
small singular values →  large fluctuations

see also V Blobel, in Proc of PHYSTAT2011

•Given Vy,cov matrix of y,  “rotate” R and y such that V(y’)=1 
(identity matrix) → normalized variables according to uncertainty
‣ i.e.  (Rμest - y)Vy

-1(Rμest - y)= (R’μest - y’)(R’μest - y’)

mailto:fracesco.spano@cern.ch
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Back to basics: Where to from ML?   (III)

20

if R: RN → RM  with euclidean norm (||x|| = ∑i  |xi|2) a norm on the 
matrix is induced as

 ||R|| = √(max eigenval of RTR)  

c(R) =  ||R|| ||R-1|| 

||δμest||/||μest ||/ ||δy|/||y||

• Is there a  connection with magnification of uncertainties?

||R(δy)||/||Ry ||/ ||δy|/||y||

• || || is the operator norm of a matrix induced by the euclidean norm

•The condition of R matrix can be read off its SVD decomposition

= σmax  /σmin 

=

from SVD 
decomposition 

of R

• It can be shown that
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 Where to from ML? The picture

•SVD decomposition gives insight into the unfolding problem: 
small effects can lead to large changes in ML estimator→ large 
sensitivity to small fluctuations, high frequency →large condition 
number

•Need to suppress “noise” info i.e. reduce impact of high 
frequency, noisy components while preserving as much “signal” 
as possible. Come to terms with condition number.

• “Regularize” the problem, by accepting some bias in exchange 
for reduced variance

21

mailto:fracesco.spano@cern.ch
mailto:fracesco.spano@cern.ch


francesco.spano@cern.ch Unfolding in particle physics School of Statistics - IN2P3/CNRS - 28th May 1st Juen (Autrans) 2012

 Regularized unfolding- General view (I)

•LKL  (or sum of squares~-2logL )  quantifies the distance 
between data n and expectation ν.

22

•Out of these estimators choose the “smoothest” (one with less 
fluctuations) according to some measure i.e. maximize 

•Take a step back and consider region of  μ around ML solution

 log L(μ) ≥log Lmax - ∆ln L 

 ϕ(μ) = αlog L(μ) + S(μ) 

S(μ): regularization function (to measure smoothness)

α or τ: regularization parameter (to give the desired ∆ln L)  

 ϕ(μ) = log L(μ) +τS(μ) or
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Regularized unfolding- General view (II)

•Possibly add ntot =  ∑i=1 N νi  if one wants solutin to provide an 
unbiased estimate of total entries and consequently maximize 

23

•α =0   smoothest solution  (data are ignored! impose S shape)

 ϕ(μ, λ) = αlog L(μ) + S(μ) + λ(ntot  - ∑i=1 N νi) 

over μ and λ  function of μi as νi = ∑i=1 N μi + βi 

•α →∞ recover ML solution (S carries no weight in the maximization)

Ingredients 

 S(μ)

prescription for α 

mailto:fracesco.spano@cern.ch
mailto:fracesco.spano@cern.ch


francesco.spano@cern.ch Unfolding in particle physics School of Statistics - IN2P3/CNRS - 28th May 1st Juen (Autrans) 2012

Regularization: Tikhonov scheme
•Consider  the mean square of the kth derivative = measure of 

smoothness

24

S(μ)= ∑ j=1M-2 [ (μi+1-μi)- (μi-μi-1)]2 

with k=1,2,3...S[f(y)]=
 dk f(x)

dyk
∫ dy)2(

•Using k=2  one has   

 ϕ(μ, λ) = -α/2 χ2 (μ)  + S(μ)  

 and summing it with  log L = -1/2 χ2, χ2 = (Rμ - y)T Vy-1(Rμ - ny)  with 
y=n-β,  the result is

quadratic in μ

•First derivatives of ϕ(μ, λ) w.r.t. μ, λ return linear equations

numerical 2nd derivative
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Tikhonov with k=2 + SVD

• Minimize 

25

• “Rotate” R and y = n-β so that Vy~Id (→in χ2  Id-1= Id)

•In matrix format, minimize 
(R’μ -y’)T (R’μ -y’) + τ (C μ)T (C μ)

• Expand R’C-1 with SVD and express solution as a function of τ and 
of the solution for τ=0

Equivalent to 

Hoecker, V Kartvelishvili Nucl Instr Meth A 372 
1996 469

see also V Blobel, in Proc of PHYSTAT2011A

∑ j=1N ϕj cj vj 1
σj

_μest = ϕj = 
σj2

σj2 + τwith
low pass filter with a 
preference for small 

curvature 
• Choice of τ 
‣ number of transformed values significantly different from zero
‣  unfold folded test distribution vs τ: choose τ with best χ2(unfolded, true)

 ϕ(μ, λ) = -1/2 χ2 (μ)  + τ ∑ j=1M-2 [ (μi+1-μi)- (μi-μi-1)]2  

C encodes 2nd derivaties

R’C-1

√τ Id
y
0

( )
R’μ 

√τCμ
( ) = y

0
( )Cμ=( )
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Response 
matrix

26

G. Cowan  CERN Academic Training 2012 / Statistics for HEP / Lecture 4 20 

SVD example 
Tikhonov with n=2 + SVD

deviation
of unfolded 
from true

di = normalized, SVD-transformed, observed bin content

solid: true
dashed: 

regularized
dotted: no stat 

fuctuations 

solid line: true  
dist

dashed hist : 
measured 

dots: unfolded

stat errors 
in di

significant/non-
significant boundary

A Hoecker, V Kartvelishvili Nucl Instr Meth 
A 372 1996 469
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Iterative unfolding: the idea

• Use the ansatz of (II) and 
integrate P(true|obs) over ĝ
(obs) estimated from data 

27

L.B.Lucy, An iterative technique for the 
rectification of observed distributions 
Astronomical Journal 79 (6) (1974) 745

P(true|obs) = P(obs | true) f(true) 

g(obs) 

f(true) = ∫ g(obs)P(true|obs)dobs 

=(I)

(II)

 fr+1(true) = ∫ ĝ(obs) Pr(true|obs) dobs

 Pr(true|obs) =  fr(true) P(obs,true)
gr(obs)

 gr(obs) = ∫ fr(true) P(obs,true) true

fr+1(true)= ĝ(obs) 
 gr(obs) 
∫ P(obs,true)dtrue fr(true)

•Guess f(true) and use (I) to 
estimate P(true|obs) using 
known P(obs | true)

∫ f(true)P(obs| true)dtrue 

P(obs | true) f(true) 

Iterate following steps

Note from (I)  P(true|obs) is function of f
(true), the real inverse kernel  for f needs 

to be function of P(obs | true) only

known wanted

•Check quality measure

• Consider Bayes’ theorem with “true” and “reco” labels 
guess
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Iterative unfolding (II): implementation
• Idea: if R is positive definite, invert relation x= n-β=E[ν]-β=Rμ  

iteratively

28

•xi(k) =  ∑ j Rij  μj(k)

•kth estimate of true μj 
formed by “integrating” 
Rij over updating 
function  xi/xi(k) 

•Dividing by efficiency εj corrects for  acceptance losses

•μj(k+1) = 1/εj ∑i Rij  μj(k)  (xi/xi(k) )
         

converge to ML solution for Poisson uncertainties (empirical)

•Start with a guess of μ(0) calculate x (0) = R μ(0)

“Fold”

if xi/xi(k) ~1, ∑ i Rij  =1 so μj(k+1)= μj(k)

see G.Zech in PHYSTAT 
2011 proceedings

known wanted

Iterate

• Predict xi(k)  from k-
th estimate of μj

“Unfold”
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• Standard basic iterative steps:
‣ initial guess is pi =1/M, so μi =ntot p0

‣ estimate kth observed with kth guess of “true” dist (“fold”)
‣ get k+1st estimate of “true” dist by integrating data-scaled kth 

estimate over observed  (“unfold”)

29

Iterative unfolding and regularization 
arxiv:1010.0632
and ref therein

C1 C2 Ci CnC

E1 E2 Ej EnE T

Figure 2: Probabilistic links from causes to effects. The node indicated by
T (‘trash’) stand for the inefficiency bin and corresponds to EnE+1

space of the problem. For the same reason, the treatment of background,
and even of several independent sources of background, can be easily em-
bodied in the algorithm by just adding extra cause-cells, one cell per source
of background. As a by-product, the algorithm also provides the number
of events to be attributed to each source of background. (It is worth re-
membering that background might have an interesting physical meaning,
and thus the estimation of the level ‘noise’ might provides indeed a physics
measurement, as in the analysis of Ref. [8].)

Given the discretization of the problem, the Bayesian network relating
causes and effects is that shown in Fig. 2, where we use the same notation of
Ref. [2], with the addition of the effect bin T (‘trash’), equivalent to EnE+1,
to describe inefficiency (the reason to introduce this extra bin will become
clear later).

Rephrasing the problem in probabilistic terms, the purpose of the un-
folding is to find the ‘true’ number of events in each cause bin [#(Ci) in
Fig. 3, indicated by x(Ci) in the text], given the observed spectrum and
assuming some knowledge about the smearing.

Since the links cause→effects have a probabilistic nature, it follows that
also the links effect→causes will be probabilistic, and therefore it will be
uncertain the number of events to be attributed to the cause-cells. We can
only attempt to rank in probability all possible spectra that might have
caused the observed one. In other words, the realistic goal of our analysis is
not to determine the the true spectrum, but rather to assess

P (xC |xE, Λ, I) , (1)

5
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• Distinctive: 
• Smoothen estimated distribution in each iteration step before 

“unfold” step (not last) : by polynomial fit (user can change it)
• Continue until solution is stable  (χ2 test with previous iteration )
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No final estimator in terms of prior
updating rule inspired to Bayes
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Rij

μi(1)

 G. D’Agostini  Nucl. Instr. Meth A 362 1995 (487) 

xi 

μi(0)xi1 
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with ATLAS @ LHC

30

11

Source of systematic uncertainty on AC Electron channel Muon channel

Detector modelling

Jet energy scale 0.012 0.006
Jet efficiency and resolution 0.001 0.007
Muon efficiency and resolution <0.001 0.001
Electron efficiency and resolution 0.003 0.001
b-tag scale factors 0.004 0.002
Calorimeter readout 0.001 0.004
Charge mis-ID <0.001 <0.001
b-tag charge 0.001 0.001

Signal and background modelling

Parton shower/fragmentation 0.010 0.010
Top mass 0.007 0.007
tt̄ modelling 0.011 0.011
ISR and FSR 0.010 0.010
PDF <0.001 <0.001
W+jets normalization and shape 0.008 0.005
Z+jets normalization and shape 0.005 0.001
Multijet background 0.011 0.001
Single top <0.001 <0.001
Diboson <0.001 <0.001

MC Statistics 0.006 0.005
Unfolding convergence 0.001 0.001
Unfolding bias 0.004 <0.001
Luminosity 0.001 0.001

Total systematic uncertainty 0.028 0.023

Table 2 List of sources of systematic uncertainties and their impact on the measured asymmetry in the electron and muon
channel. In cases where asymmetric uncertainties were obtained, a symmetrisation of the uncertainties was performed by taking
the average of the absolute deviations under systematic shifts from the nominal value.
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Fig. 3 The measured ∆|y| distribution before unfolding for the electron channel (left) and for the muon channel (right) after
b-tagging is applied. Data (points) and Monte Carlo estimates (solid lines) are represented. The multijet background and the
normalisation of the W+jets background are obtained as explained in Section 5. The uncertainty on the combined signal and
background estimate includes both statistical and systematic contributions.

Example Iterative unfolding: tt charge asymmetry
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Charge asymmetry at LHC

At the LHC, AFB = 0. Charge asymmetry ↔ tops preferentially emitted in quark
direction. Since quarks generally carry a larger momentum fraction of the proton than
antiquarks, tops tend to be more forward than antitops in the lab frame:

Consider instead the observable:

AC =
N(∆|Y | > 0)−N(∆|Y | < 0)
N(∆|Y | > 0) +N(∆|Y | < 0)

, (1)

with ∆|Y | = |Yt|− |Yt̄|. MC@NLO prediction is 0.006.
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 MC@NLO@ 7TeV LHC predicts  Ac = 

0.006 +/- 0.002  

∫Ldt = 1 fb-1 (2011) 

•Expect

• Reconstruct tt and study-
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Source of systematic uncertainty on AC Electron channel Muon channel

Detector modelling

Jet energy scale 0.012 0.006
Jet efficiency and resolution 0.001 0.007
Muon efficiency and resolution <0.001 0.001
Electron efficiency and resolution 0.003 0.001
b-tag scale factors 0.004 0.002
Calorimeter readout 0.001 0.004
Charge mis-ID <0.001 <0.001
b-tag charge 0.001 0.001

Signal and background modelling

Parton shower/fragmentation 0.010 0.010
Top mass 0.007 0.007
tt̄ modelling 0.011 0.011
ISR and FSR 0.010 0.010
PDF <0.001 <0.001
W+jets normalization and shape 0.008 0.005
Z+jets normalization and shape 0.005 0.001
Multijet background 0.011 0.001
Single top <0.001 <0.001
Diboson <0.001 <0.001

MC Statistics 0.006 0.005
Unfolding convergence 0.001 0.001
Unfolding bias 0.004 <0.001
Luminosity 0.001 0.001

Total systematic uncertainty 0.028 0.023

Table 2 List of sources of systematic uncertainties and their impact on the measured asymmetry in the electron and muon
channel. In cases where asymmetric uncertainties were obtained, a symmetrisation of the uncertainties was performed by taking
the average of the absolute deviations under systematic shifts from the nominal value.
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Fig. 3 The measured ∆|y| distribution before unfolding for the electron channel (left) and for the muon channel (right) after
b-tagging is applied. Data (points) and Monte Carlo estimates (solid lines) are represented. The multijet background and the
normalisation of the W+jets background are obtained as explained in Section 5. The uncertainty on the combined signal and
background estimate includes both statistical and systematic contributions.
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Fig. 4 The unfolded ∆|y| distribution for the electron channel (left) and the muon channel (right) after b-tagging, compared
to the prediction from MC@NLO. The uncertainties on the measurement include both statistical and systematic contributions.
The error bands on the MC@NLO prediction include uncertainties from parton distribution functions and renormalisation and
factorisation scales.

Asymmetry reconstructed detector and acceptance unfolded

AC (electron) -0.034 ± 0.019 (stat.) ± 0.010 (syst.) -0.047 ± 0.045 (stat.) ± 0.028 (syst.)

AC (muon) -0.010 ± 0.015 (stat.) ± 0.008 (syst.) -0.002 ± 0.036 (stat.) ± 0.023 (syst.)

Combined -0.018 ± 0.028 (stat.) ± 0.023 (syst.)

Table 3 The measured inclusive charge asymmetry values for the electron and muon channels after background substraction,
before and after unfolding.
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Fig. 5 Unfolded asymmetries in two regions of mtt̄ compared to the prediction from MC@NLO. The error bands on the
MC@NLO prediction include uncertainties from parton distribution functions and renormalisation and factorisation scales.

considering masses between 100 GeV and 10 TeV and
the range of couplings for which the new physics con-
tribution to the tt̄ cross section at the Tevatron lies in
the interval [-0.8,1.7] pb. This is a conservative require-
ment which takes into account the different predictions

for the SM cross section as well as the experimental
measurement (see Ref. [17] for details).

In addition, a conservative upper limit on new physics
contributions to σtt̄ for mtt̄ > 1 TeV is imposed. Fur-
ther details can be found in Refs [17,55]. The coloured
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Fig. 2 Correlations between the true and reconstructed values of ∆|y| encoded in the unfolding response matrix for the
electron (left) and muon (right) channels. The value of an entry in the matrix is proportional to the area of the corresponding
box.

measurements. The uncertainty in the estimate of the
multijet background is evaluated by considering mod-
ified definitions of the loose data sample, taking into
account the statistical uncertainty in measuments of
εreal, εfake described in Section 5.1 as well as the un-
certainties in the normalisations of the W+jets and
Z+jets backgrounds which are subtracted in the con-
trol region. The total uncertainty is estimated to be
100%. The normalisation of W+jets processes is evalu-
ated from auxiliary measurements using the asymmet-
ric production of positively and negatively charged W
bosons in W+jets events. The uncertainty is estimated
to be 21% and 23% in the four jet bin, for the elec-
tron and muon channels respectively. This uncertainty
was estimated by evaluating the effect on both rMC

and k2→≥4 from the JES uncertainty and different PDF
and generator choices. Systematic uncertainties on the
shape of W+jets distributions are assigned based on
differences in simulated events generated with differ-
ent simulation parameters. Scaling factors correcting
the fraction of heavy flavour contributions in simulated
W+jets samples are estimated in auxiliary measure-
ments, as described in Section 5.2. The systematic un-
certainties are found by changing the normalisations
of the non-W processes within their uncertainties when
computing WData

i,pretag,W
Data
i,tagged, as well as taking into ac-

count the impact of uncertainties in b-tagging efficien-
cies. The total uncertainties are 47% for Wbb̄+jets and
Wcc̄+jets contributions and 32% forWc+jets contribu-
tions. The normalisation of Z+jet events is estimated
using Berends-Giele-scaling [50]. The uncertainty in the

normalisation is 48% in the four jet bin and increases
with the jet multiplicity. A systematic uncertainty in
the shape is accounted for by comparing simulated sam-
ples generated with ALPGEN and SHERPA [51]. The
uncertainty on the normalisation of the small back-
ground contributions from single top and diboson pro-
duction is estimated to be about 10% (depending on
the channel) and 5%, respectively.

Limited Monte Carlo sample sizes give rise to a sys-
tematic uncertainty in the response matrix. This is ac-
counted for by independently varying the bins of the
response matrix according to Poisson distributions.

8.3 Uncertainties from unfolding

Closure tests are performed in order to check the valid-
ity of the unfolding procedure. Reweighted tt̄ samples
with different amounts of asymmetry are considered.
Pseudoexperiments are performed to confirm that the
response of the unfolding is linear in the true value of
AC and that the true value of AC is recovered on aver-
age. A total of 40 iterations are used in both channels
for the inclusive AC measurement. For the measure-
ment of AC as a function of mtt̄, 80 iterations are used.
The number of iterations is chosen by ensuring that the
unfolding procedure has converged in the sense that the
absolute change in the unfolded value of AC after per-
forming an extra iteration is less than 0.001. It is found
that the unfolded values of AC from all pseudoexperi-
ments and the data converge before the chosen numbers
of iterations. The potential bias arising from the choice

accepted by Eur.Phys.J 
30th May2012

arxiv:1203.4211[hep-ex]

∫Ldt = 1 fb-1 (2011) 

with ATLAS @ LHC
Example of iterative unfolding: tt charge asymmetry

• Stop when AC changes by less than 0.1% on MC
• Stat uncertainty checked with pseudoexpriments
• Syst uncertainty propagated to response matrix 

and bkg
• Re-weight tt  events to vary AC and check 

unfolding linearity.
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Source of systematic uncertainty on AC Electron channel Muon channel

Detector modelling

Jet energy scale 0.012 0.006
Jet efficiency and resolution 0.001 0.007
Muon efficiency and resolution <0.001 0.001
Electron efficiency and resolution 0.003 0.001
b-tag scale factors 0.004 0.002
Calorimeter readout 0.001 0.004
Charge mis-ID <0.001 <0.001
b-tag charge 0.001 0.001

Signal and background modelling

Parton shower/fragmentation 0.010 0.010
Top mass 0.007 0.007
tt̄ modelling 0.011 0.011
ISR and FSR 0.010 0.010
PDF <0.001 <0.001
W+jets normalization and shape 0.008 0.005
Z+jets normalization and shape 0.005 0.001
Multijet background 0.011 0.001
Single top <0.001 <0.001
Diboson <0.001 <0.001

MC Statistics 0.006 0.005
Unfolding convergence 0.001 0.001
Unfolding bias 0.004 <0.001
Luminosity 0.001 0.001

Total systematic uncertainty 0.028 0.023

Table 2 List of sources of systematic uncertainties and their impact on the measured asymmetry in the electron and muon
channel. In cases where asymmetric uncertainties were obtained, a symmetrisation of the uncertainties was performed by taking
the average of the absolute deviations under systematic shifts from the nominal value.

muon channels after correction for detector resolution679

and acceptance.680

To summarize, the top quark charge asymmetry was681

measured in tt̄ events with a single lepton (electron682

or muon), at least four jets and large missing trans-683

verse energy using an integrated luminosity of 1.04 fb−1
684

recorded by the ATLAS experiment at a centre of mass685

energy of
√
s = 7 TeV. The reconstruction of tt̄ events686

was performed using a kinematic fit. The reconstructed687

inclusive distribution of ∆|y| and the distribution as688

a function of mtt̄ were unfolded after background sub-689

traction to obtain results that can be directly compared690

with theoretical computations.691

The measured asymmetry is:692

AC = −0.018± 0.028 (stat.)± 0.023 (syst.)

and693

AC = −0.053± 0.070 (stat.)± 0.054 (syst.)

for mtt̄ < 450 GeV,

AC = −0.008± 0.035 (stat.)± 0.032 (syst.)

for mtt̄ > 450 GeV.

Fig. 5 summarizes the measurements for the two mtt̄694

regions. These results are compatible with the predic-695

tion from the MC@NLO Monte Carlo generator of696

AC = 0.006 ± 0.0024, showing no evidence for an en-697

hancement from physics beyond the Standard Model.698

The measurement of the charge asymmetry at the699

LHC is a test of the unexpectedly large forward-backward700

asymmetry observed at the Tevatron. However, because701

the LHC is a pp collider and the centre of mass energy702

is around three times larger, any relation between both703

asymmetries is model-dependent. Here a comparison is704

made between the predicted values of the Tevatron and705

LHC asymmetries for a few simple models. These are:706

(i) a flavour-changing Z ′ boson with right-handed cou-707

plings, exchanged in the t channel in uū → tt̄ [13]; (ii) a708

W ′ boson, also with right-handed couplings, contribut-709

ing in dd̄ → tt̄ [14]; a heavy axigluon Gµ exchanged710

in the s channel [11, 12]; (iv) a scalar doublet φ, with711

the same quantum numbers as the SM Higgs [57]; (v)712

a charge 4/3 scalar, colour-sextet (Ω4) or colour-triplet713

(ω4), contributing in the u channel to uū → tt̄ [15, 16].714

4The SM prediction of 0.0115 ± 0.0006 for the charge asym-
metry found in [6] differs from the MC@NLO prediction of
0.006 ± 0.002, due to the former taking the LO prediction
for the denominator in the definition (1) of AC , and taking
into account QED effects. The uncertainty on the MC@NLO

prediction is obtained by considering variations in the renor-
malisation and factorisation scales and different sets of PDFs.

measured unfolded

consistent with SM, main syst: parton 
shower, top mass , ISR/FSR, jet scale

-

-
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Regularization with Entropy: the idea

32

• Shannon’s entropy is 

H = -  ∑i=1M pi log pi

•pi are equal →maximal smoothness
•  one pi =1 m all others = 0→minimum entropy

•Use H as regularization function 

~log (number of ways to 
arrange μtot  in M bins)

S(μ)= H(μ)=  μi
μtot

log  μi
μtot

∑i=1M

See for instance
M Schmelling ,Nucl. Instr. Meth. A 340 

(1994) 400-412 

•Bayesian justification: S is a prior pdf for μ 
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Regularization with entropy - ARU

•1 dimensional non parametric unfolding
•Parametrize unfolded distribution as sum of B-spline functions

33

http://aru.hepforge.org/
H. P. Dembinski, M.Roth in
 Proc  PHYSTATProc2011

•Fold it with detector Kernel (calibration, efficiency , resolution..)

•Fit to data with extended ML method: minimize -log L 

of a grid of m so-called knots xi. The j-th B-spline is defined by the recursion

bj,0(x) =

�
1 if xj ≤ x < xj+1

0 otherwise
(1)

bj,n(x) =
x− xj

xj+n − xj
bj,n−1(x) +

xj+n+1 − x

xj+n+1 − xj+1
bj+1,n−1(x), j = 0, . . . ,m + n− 2 (2)

ARU uses B-splines with n = 3 and the index n will be omitted in the following. The solution b(x), a

general distribution function, is parametrized as

b(x) =
�

j

cjbj(x), (3)

with coefficients cj . None of the usual boundary conditions are enforced on the B-spline curve which

therefore has m + 2 free parameters. The solution b(x) is not normalized; the normalization is also

determined from the data. The knots of b(x) need to be narrow enough to pick up all features of the

unfolded solution. Above this point, the number of knots and their positions become uncritical. It is not

possible to have too many knots, but it will not change the result but increases the computing time of the

regularized fit described below.

The solution b(x) is then forward-folded with the detector kernel K(y, x) which quantifies effects

of non-linear calibration, efficiency, and limited resolution on the true quantity x

f(y) =
�

K(y, x)b(x)dx =
�

j

cj

�
K(y, x)bj(x)dx =

�

j

cjfj(y), (4)

yielding folded basis functions fj(y) of the folded solution f(y) in the space of the observations. The

folded basis functions fj(y) are computed numerically by the algorithm. Thanks to the linearity of the

parametrization, this expensive step needs to be performed only once per application.

The folded solution f(y) is then fitted to the data with the extended maximum-likelihood method

[2, 10], i.e., by minimizing the negative log-likelihood function L1(c)

L1(c) =
�

j

cjFj −
�

i

ln f(yi), (5)

under the constraint cj > 0, whereas Fj =
�

dyfj(y) is the total integral of fj(y) and the yi denote the

observations.

Without an additional constrain, the parameters cj will have a huge variance and the solution

b(x) will be dominated by oscillations that mainly represent noise. In order to compensate for this the

combination L(c) = L1(c) + wL2(c) is minimized for a given w with the regularization term

L2(c) =
�

b(x) ln
b(x)
g(x)

dx−
�

j

cjBj (6)

and Bj =
�

dx bj(x). The regularization term L2 is a variant of the Kullback-Leibler divergence (b(x)
and g(x) are not normalized). If only L2 is minimized, b(x) approaches g(x). This narrows down the

solution space but also introduces a bias. The bias can be reduced by choosing g(x) properly, which will

be discussed in the next section.

Minimizing L(c) appears to be difficult since L1 and L2 are non-linear functions of c. However,

one can show that the curvature of both terms is always positive and thus only a single global minimum

exists. Standard non-linear minimization algorithms with always converge to it, independent of the

starting point.
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ARU uses B-splines with n = 3 and the index n will be omitted in the following. The solution b(x), a

general distribution function, is parametrized as

b(x) =
�

j

cjbj(x), (3)

with coefficients cj . None of the usual boundary conditions are enforced on the B-spline curve which

therefore has m + 2 free parameters. The solution b(x) is not normalized; the normalization is also
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The solution b(x) is then forward-folded with the detector kernel K(y, x) which quantifies effects

of non-linear calibration, efficiency, and limited resolution on the true quantity x

f(y) =
�

K(y, x)b(x)dx =
�

j

cj

�
K(y, x)bj(x)dx =

�

j

cjfj(y), (4)

yielding folded basis functions fj(y) of the folded solution f(y) in the space of the observations. The

folded basis functions fj(y) are computed numerically by the algorithm. Thanks to the linearity of the

parametrization, this expensive step needs to be performed only once per application.

The folded solution f(y) is then fitted to the data with the extended maximum-likelihood method

[2, 10], i.e., by minimizing the negative log-likelihood function L1(c)

L1(c) =
�

j

cjFj −
�

i

ln f(yi), (5)

under the constraint cj > 0, whereas Fj =
�

dyfj(y) is the total integral of fj(y) and the yi denote the

observations.

Without an additional constrain, the parameters cj will have a huge variance and the solution

b(x) will be dominated by oscillations that mainly represent noise. In order to compensate for this the

combination L(c) = L1(c) + wL2(c) is minimized for a given w with the regularization term

L2(c) =
�

b(x) ln
b(x)
g(x)

dx−
�

j

cjBj (6)

and Bj =
�

dx bj(x). The regularization term L2 is a variant of the Kullback-Leibler divergence (b(x)
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be discussed in the next section.
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one can show that the curvature of both terms is always positive and thus only a single global minimum

exists. Standard non-linear minimization algorithms with always converge to it, independent of the

starting point.
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•where L1 is the negative log of the likelihood...

3 Choice of the reference distribution g(x)

Eq. (6) vanishes if g(x) is equal to the true solution [2]. Since the true solution is unknown, g(x) can
be made only as close as possible to the correct solution. The simplest choice is g(0)(x), a uniform
distribution with the correct normalization of the final result

g(0)(x) =
1

xm−1 − x0

�

i

�−1(yi), (7)

whereas �(y) is the efficiency, yi are the data points, and x0 and xm−1 the first and last knot position.
With this choice our regularization becomes equivalent to the maximum entropy approach [2, 6].

An iterative approach comes to mind. The unfolding is started with g(0)(x) to obtain a solution
b(0)(x), which is then used as g(1)(x) := b(0)(x) to obtain b(1)(x), and so forth. Unfortunately, this
approach enhances artificial fluctuations and cannot be used. Instead, we propose to unfold once with
g(0)(x) and then use the folded solution f(0)(y) as g(1)(x)

g(1)(x) = f(0)(ȳ(x))
1

�
�
ȳ(x)

� ∂ȳ

∂x
(8)

whereas �(y) describes the efficiency and ȳ(x) the (possibly non-linear) average response of the detector.
By doing so, we get an approximation that includes all effects except the resolution.

4 Choice of regularization weight
The choice of the regularization weight w is the choice of the trade-off between bias and variance.
We minimize the mean integrated squared error (MISE) of the folded solution f(y) to get an optimal
compromise

MISE
�
f(y)

�
=

�
dy E

��
f(y)− ftrue(y)

�2� =
�

dy
�
V [f(y)] +

�
f(y)− ftrue(y)

�2�
. (9)

The variance V [f(y)] can be derived from the covariance matrix V [c] of the coefficient vector c

V [f(y)] �
�

i

�

j

∂f(y)
∂ci

∂f(y)
∂cj

V [c]ij =
�

i

�

j

fi(y) fj(y) V [c]ij . (10)

The analytical calculation of V [c] is shown in the next section.
What remains is to estimate the bias. Since ftrue(y) is unknown, we apply the plug-in principle1

[11] and replace ftrue(y) by the empirical distribution femp(y) =
�

i δ(y − yi) of the observations yi.
The empirical distribution femp(y) is a maximum likelihood estimate of ftrue(y) if no other information
is available. With these insights we can transform Eq. (9) after some steps into

MISE
�
f(y)

�
=

�

k

�

l

�
V [c]kl + ck cl

�
φkl − 2

�

i

f(yi) + const. (11)

The last term does not depend on w and therefore is irrelevant for the minimization. The matrix φkl =�
dy fk(y)fl(y) is computed numerically once per application of the algorithm.

The minimization of Eq. (11) as a function of the regularization weight w is carried out numeri-
cally. The coefficients ci and the covariance matrix V [c] are re-calculated in each step by minimizing
L(c).

1Physicists use the plug-in principle (unintentionally) whenever they approximate the Poisson uncertainty of a count n by√
n. In this case the unknown mean λ is replaced by its empirical value n.
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Automatic Regularized Unfolding
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Figure 1: Unfolding of a toy data set of 1000 events. t(x) is the true distribution, the points show a
histogram of the smeared data. In this case, the folded solution f(y) is on top of the reference distribution
g(x) used for regularization. The regularized solution b(x) shows no undesired oscillations, in contrast
to the solution bw=0(x), which is obtained if no regularization is applied.
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Figure 2: Monte-Carlo study of the unfolding method applied 1000 times to random toy data sets of 100
events (left) and 10000 events (right) each. The top plots show the true distribution t(x) and the unfolded
solutions b(x) plotted transparently on top of each other. The bottom plots show the bias �b(x) − t(x)�
of the unfolding, the standard deviation std

�
b(x)

�
of the unfolded set, and the median med(σfit) of the

estimated uncertainty of the solution.
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•Two Gaussians smeared 
out with Gaussian kernel

• Perform 2000 pseudo-exp: 
uncertainty is consistent with 
stand dev. from ARU 

Regularization with entropy - ARU
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Choice of regularization par:example criteria 

•Minimize 

36

G. Cowan  CERN Academic Training 2012 / Statistics for HEP / Lecture 4 25 

Choosing the regularization parameter 
G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11 
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G. Cowan  CERN Academic Training 2012 / Statistics for HEP / Lecture 4 25 

Choosing the regularization parameter 
G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11 

•Consider changes in Chi2 from unregularized solution 

G. Cowan  CERN Academic Training 2012 / Statistics for HEP / Lecture 4 26 

Choosing the regularization parameter (2) 
G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11 

•Bias consistent with zero withing its own uncertainty

G. Cowan  CERN Academic Training 2012 / Statistics for HEP / Lecture 4 26 

Choosing the regularization parameter (2) 
G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11 

G. Cowan  CERN Academic Training 2012 / Statistics for HEP / Lecture 4 26 

Choosing the regularization parameter (2) 
G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11 

if bias is non zero, one should correct for it

G. Cowan  CERN Academic Training 2012 / Statistics for HEP / Lecture 4 25 

Choosing the regularization parameter 
G. Cowan, Statistical Data Analysis, OUP (1998) Ch. 11 
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Fully Bayesian Unfolding (FBU)

•Unfolding question: find Truth spectrum T  given  Data D and 
migration model P. Give Bayesian answer

37

G. Choudalakis 
arxiv:1201.4612

FBU

About FBU (arXiv:1201.4612)

FBU solves Bayes’ equation, where the unknown is the truth-level spectrum:

p(T|D ∧ P) ∝ P(D|T ∧ P) p(T ∧ P) (1)

p(T|D ∧ P) : The posterior p.d.f. of T.
P(D|T ∧ P) : The likelihood of D, as a function of T and P.
p(T ∧ P) : The prior p.d.f. of T and P.

T: The truth-level binned spectrum. T ∈ RNt .
D: The observed binned spectrum; D ∈ NNr , if Poisson.
P: The conditional migrations matrix: Pt,r ≡ P(r |t) = Pt→r . It

is computed from the migrations matrix, Mtr ≡ P(t, r), and

its efficiency, εt ≡
∑

r P(r |t)
P(t) .

Assuming 0 uncertainty on the migration model (P), the notation is simplified:

p(T|D) ∝ P(D|T) p(T) (2)
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Result is posterior pdf p(T|D, P) defined in space of 
possible spectra (not estimator and variance).
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Assuming 0 uncertainty on the migration model (P), the notation is simplified:

p(T|D) ∝ P(D|T) p(T) (2)
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FBU: general ides
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•For Likelihood one can choose Poisson 

•Name of the game: integral calculation

•Regularization in standard form 

FBU

The likelihood function, assuming Poisson obeying data

The likelihood func. P(D|T) is a continuous func. of T.

P(D|T) =
Nr∏
r=1

Poisson(Dr |T) (3)

=
Nr∏
r=1

RDr
r

Dr !
e−Rr , (4)

where

Rr =
Nt∑
t=1

Tt Pt→r =
Nt∑
t=1

Tt
Mt,r

ε−1
t

∑Nr

k=1 Mt,k

(5)

So, for any T, we can compute P(D|T).
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Regularization, and the prior p(T)

The classical way to introduce regularization:
TMLE is the “max. likelihood estimator”, which maximizes P(D|T). [If P is

invertible, then TMLE = P−1D.]

TMLE is known to be unbiased, but to have large variance, which leads to
oscillatory solutions. [See Glen Cowan’s book.]

We intentionally introduce bias to the estimator, to reduce its variance. To cause
bias, instead of maximizing P(D|T), we maximize:

P(D|T) · e−α S(T). (6)

S(T) is the regularization function, and α is the regularization (strength)
parameter. E.g., S(T) = Tikhonov’s curvature, or entropy.
Eq. 6 is precisely p(T|D) that we compute in FBU. This is more obvious, if I
rewrite p(T) in the form

p(T) = e−α S(T). (7)

So, the classical estimator, which maximizes eq. 6, is the like solving Bayes’s
equation, but giving only the T which maximizes p(T|D).
p(T) is the natural host of regularizing assumptions, which can make p(T|D)
narrower, which is what reduces the variance of the classical estimator. [More in

backup]
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 For FBU that role is played by the Prior
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Figure 13: The 1-dimensional marginal distributions of p(T|D) in the example of Sec. 6.4. The
yellow distribution is Pt(Tt|D). The red cross marker shows the actual truth spectrum content
in each bin (T̂t). The black circle marker shows the observed data in each bin (Dt). The blue
dashed line and the blue square marker show the unfolded spectrum contents [U �

t , U
�
t ] and Ut. The

green dotted line shows the range in Tt that is included in the sampled hyper-box (after volume
reduction).
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Examples of other unfolding schemes

• IDS: iterative dynamically stabilized, B. Malaescu, arxiv:
0907.3791 [phys.data-an]
‣ used in ATLAS paper http://arxiv.org/abs/1112.6297

•Binning free Iterative Deconvolution, Lindemann, Zech, 
Nucl.Instr. Meth A 354 (1995) 516-521 

• Satellite Method, see G. Bohm and G. Zech, Introduction to 
Statistics and Data Analysis for Physicists, Verlag Deutsches 
Elektronen-Synchrotron (2010), available at  http://www-
library.desy.de/elbook.html

• SPlot, M Pivk, F. Le Diberder, arXiv:physics/0402083v
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by no means exhaustive (more in Nucl. Instr. Meth for instance)
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2 cents on optimization/choice of technique

•Choices  strongly analysis-dependent

40

G. Cowan  CERN Academic Training 2012 / Statistics for HEP / Lecture 4 34 

ML solution again 
From the standpoint of testing a theory or estimating its parameters,  
the ML solution, despite catastrophically large errors, is equivalent 
to using the uncorrected data (same information content). 

There is no bias (at least from unfolding), so use 

The estimators of ! should have close to optimal properties: 
zero bias, minimum variance. 

The corresponding estimators from any unfolded solution cannot 
in general match this. 

Crucial point is to use full covariance, not just diagonal errors. 

•Always consider/produce/report un-regularized solution
‣ no bias form unfolding. Powerful to test a theory using full 

covariance matrix

‣ consider SVD decomposition diagnostic & condition 
number for response matrix, also in the light of syst 
uncertainties

•Carefully consider the possible impact of the regularization on 
your analysis 
‣ Can I afford to suppress bumps/large curvature? 

• If  regularizing a discrete estimator, choose bins using full stat 
and systematic uncertainty andfully propagate in analysis on 
simulated data (your best prediction)
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2 cents on  systematic uncertainties 

• Include syst in your analysis: vary all elements in LKL according 
to their dependence on syst 
‣ response matrix, bkg

•Possible inclusion of syst: use pseudoexpriments with given 
priors/hypothesis for distribution or resulting from ancillary 
measurement: take into account correlations induced by 
unfolding
‣ for instance hybrid bayesian: marginalize max of lkl with pseudo exp

•Crucial to devise tests for stability and bias
‣ stress unfolding response with distorted shapes / varying parameter 

of interest in simulated events: unfold folded test distributions to 
check for bias, compare with overall expected syst+stat uncertainty 
or use χ2  with model
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Additional references
•G Cowan, Lecture 4, CERN academic lectures, available at 

http://indico.cern.ch/conferenceDisplay.py?confId=173729

• V Blobel, in CSC84, CERN-85-09

•PHYSTAT 2011 proceedings available at
‣ Agenda :http://indico.cern.ch/conferenceDisplay.py?confId=107747
‣ File: http://cdsweb.cern.ch/record/1306523/files/CERN-2011-006.pdf

• G. Bohm and G. Zech, Introduction to Statistics and Data Analysis 
for Physicists, Verlag Deutsches Elektronen-Synchrotron (2010), 
available at  http://www-library.desy.de/elbook.html.

42

•  The Unfolding Framework project at
    https://www.wiki.terascale.de/index.php/Unfolding_Framework_Project 

• RooUnfold  by T. Adye

Tools and repositories
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