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 Muons and neutrinos are 

both produced by the 
decay of charged mesons 
produced by CR 
interactions with 
atmospheric nuclei 

 The meson production 
spectrum has the same 
power law of the primary 
CRs; 
 

 Competition for π,K 
between decay and 
interaction 
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J.I. Illana, arXiv:1010.5084v1 
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 Different strategy to detect 
muons and νµ-induced µ 

 The muon flux through a 
horizontal area amounts to ∼ 
one particle/(cm2 minute): 
 
 

 Huge detectors for neutrinos 
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 Three techniques:  
1. direct measurements using 

magnetic spectrometers; 
2. measurements of muon 

cascades at shallow depth; 
3. measurement of the depth–

intensity curve deep 
underground (water, ice)  
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During the last 30 years the CR muon flux and energy spectrum 
has been studied in many experiments using different methods.  

 Relevant quantities that can be 
directly measured are: 

The absolute muon 
intensity; 

The muon momentum 
spectrum; 

The charge ratio.   



 The muon intensity varies (in different way as a function of Eµ)  with: 
Altitude:  Φ(h) ∼ exp(h/h0)     h0 is a characteristic length 
Geomagnetic latitude; effects are important for µ up to ∼5 GeV 
Solar activity. The 11 y cycle modulates CRs up to ∼20 GeV 
Zenith, azimuth angles 
Atmospheric conditions (Pressure, Temperature) 

 Eµ  < εµ = 1 GeV. µ decay and energy losses effects important 
 εµ < Eµ <επ,εK . Almost all mesons decay. The muon flux has the 

same power law of the parent mesons, and of the primary CRs.  
 Eµ≫επ,εK.HE region. 
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 Critical energy ε: the energy above which the interaction probability 
of secondary mesons is larger than that of decay;         

 επ= 115 GeV , εK = 850 GeV from the vertical direction 



 Low energy: at  1 GeV, 
dµ=γ τµ c= 6 km; the 
muon flux at large zenith 
angles is suppressed due 
to the thicker atmosphere 
Φ∝ cosnθ, n∼2÷3 

 The overall angular 
distribution of muons at 
the ground is ∼cos2θ , 
which is characteristic of 
muons with E ∼ 3 GeV 

 Intermediate energy: the 
muon flux is almost 
independent on θ up to 
cosθ ∼ 0.2; 
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 High energy (Eµ  ≫εK): flux 
dependence ∼1/cosθ  



 Experimental data: muon intensity at sea level as a function of θ 
for pµ>0.35 GeV/c at zenith> 45o at several geomagnetic 
latitude. 
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 Eµ≫επ,εK. The rate of mesons decay steepen one power of Eµ since 
the pion and kaon decay probability is suppressed.  

 The thickness of the atmosphere is not large enough for pions to 
decay. Mesons decay more easily in non-vertical directions.  

 Muons at large angles have a flatter energy spectrum. The energy 
dependence is then dNµ/dEµ = Eµ

-(γ+1)  and the zenith dependence 
is dNµ/dcosθ ∝(cosθ)-1. 
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 Two terms: continuum and 
stochastic processes 
 
 
 

 a(E)∼2 MeV g-1 cm2 
 In rough approximation: 
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 The muon intensity at sea level is measured through muon 
telescopes (limited solid angle, fixed Eµ

thr) or hodoscopes.  
 To compare different muon observations at low energies       

(< 20 GeV/c) it is very important to know the year and 
location where the measurements were made 

 Usually, the flux from the vertical direction is reported (units: 
m-2 s-1 sr-1) 
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[1] Bugaev E.V. et al., astro-ph/9803488v3, Phys.Rev.D58(1998)05401 
[7] H&T=Hebbeker T.,Timmermans C., Astropart. Phys., 18 (2002) 102 
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 Example of large 
magnetic spectrometers   

 
In most cases, the  
flux of single  muons    
is measured;  

 
 Results of L3+C for 
the vertical direction 

 
As a function of zenith 

 
 
 

p, 
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Observables  

Physical 
processes 

Relevant steps 
in MC 



Two approaches: 
 full Monte Carlo simulations 

(CORSIKA, FLUKA,…)    
 Best-fit shape of particular 

parametric formula to muon 
flux data at sea level 

Here, the deviations w.r.t. the 
Bugaev parameterization.  

   [astro-ph/9803488v3] 
 Differences ±15-20% exist between 

data and parameterizations. 
 Disagreements between different 

experiments as large as 30% 
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 “Ground” magnetic spectrometers fail to measure pµ>1TeV/c 
 Power low energy spectrum of HE muons;  
 Underground detector  selection of HE muons at surface.  
 Muons at Gran Sasso (3000-12000 hg/cm2)   Eµ= 1.5-40 TeV at 

the sea level; 
 The muon flux at large depth depends on the sea-level muon 

spectrum and on the P(E,h) = muon survival probability  
 The “vertical” muon intensity, for a given direction θ and a 

corresponding rock slant depth h is expressed as: 
 
 

 ∆T=livetime; Ni is the number of detected events with multiplicity mi 
in the angular bin ∆Ωj; Aj and εi the geometrical and intrinsic 
acceptance of the detector. 

     Measured underground (Frejus, MACRO, LVD, SNO, Baksan) 
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 Muon intensity vs. 
standard rock thickness. 
The shaded area at large 
depths represents 
neutrino-induced muons 
of energy above 2 GeV. 

 Inset: water/ice 
 Different DIR functions. 

For instance: 
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“direct” measurement 
sea l. and shallow depths 

“indirect” 
measurement at 

large depths 

 The sea-level 
muon spectrum 
can be 
deconvoluted from 
IV

µ(h): 

µ

µ

dE
dN

[Baksan] V.N. Bakatanov et al., Sov. J. Nucl. 
Phys. 55 (1992) 1169. 
[MSU] G.T. Zatsepin et al., Izv. Ross. Akad. 
Nauk, Sez. Fiz. 58 (1994) 119. 
[LVD] M. Aglietta et al., 
Phys.Rev. D58 (1998) 092005 
[MACRO] M. Ambrosio et al., Phys. Rev D52 
(1995) 3793. 
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 Energy spectrum of 
muons at ground level 
near the vertical. 

 The curves are the 
calculations for the 
ATIC-2 primary CR 
spectrum and different 
hadronic models.  
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A. A. Kochanov et al., arXiv:0803.2943v2 
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72 m 

9 m 

MACRO@Gran Sasso 
Events underground = large 
fraction of multiple muon 
events   
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Data 
 

Light primary CR comp. 
Heavy primary CR comp. 
unfolded 

 Underground µ are originating 
mostly in kinematic regions  
(high rapidity and high √s) not 
completely covered by existing 
collider data; 

 The lateral distribution is 
primarily sensitive to the 
interaction model rather than 
primary CRs energy/composition   

 The separation D between 
muons is  
 

 P⊥ is the transverse momentum of π, 
K of energy Eπ,K;     
Hprod= production height  

 
 

prod
K HEPD )/( ,π

⊥≅

M. Ambrosio et al. (MACRO)  
•Phys.Rev.D56:1407-1417 (1997); 
•Phys.Rev.D56:1418-1436 (1997) 
•Phys.Rev.D60:032001 (1999)  



 If atmospheric temperature at depth h is changed by ∆T(h), the 
muon flux N(Emin,X,h) at observation level X changes by ∆N(Emin,X,h) 

 ∆N(Emin,X,h) depends on T (at constant atm. P) and can be positive 
or negative depending on Emin due to two competition effects: 

A.N. Dmitrieva et al., Astroparticle Physics 34 (2011) 401 

 
 Mesons: if  T increases  atmosphere 

expands  air density decreases and the 
probability of the interaction of K and π 
becomes smaller 

 Muons: if T increases  atmosphere expands 
 geometric path longer  higher number of 
muons decay 

The differential temperature coefficient WT 
 ∆N(Emin,X,h) ∝ WT ∆T(h)  
is negative for small Emin and positive for 
large Emin  



 The dependence of the critical energies  επ,K on temperature is 
the main source of the seasonal variation in HE muon rate 

 Superposition of the monthly variation (%) in the muon rate 
and the mean monthly variation in the effective temperature 
measured from the MACRO experiment  
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M. Ambrosio (MACRO) Astropart.Phys.7:109-124 (1997)  



 Experimental determination of the temperature coefficient αT 
compared with that expected from πµ as a function of depth.  
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(MINOS) P. Adamson, et al., 
Phys.Rev., 2010, D81,01200 
+ Borexino @ICRC 2011 

Used to estimate the π/K  
ratio in CR interactions   
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 Since the cosmic ray primaries are positively charged, there are 
more π+ than π- and kaons in the hadronic showers.  

 At high energies, several competing processes can affect Rµ  . 
 As energy increases, the fraction of muons coming from kaon 

decays also increases 
  Strong interaction production channels lead to a K+/K− ratio 
higher than for π+/π- , Rµ is expected to rise with energy 
 

M. Sioli, TAUP 2011 



 Neutrino telescopes: new research frontiers in HE 
physics and astrophysics   
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 Muons represent the major 
background and a tool  to 
understand the NT systematics 

 Due to the detector 
configuration, most triggered 
events are muons in bundle; 

 Based on MACRO results, a 
parameterization of single and 
multi-µ in deep water was 
obtained -Y. Becherini et al., 
Astropart. Phys. 25 (2006) 1 

 Differential energy spectrum vs. 
depth, zenith angle, multiplicity 
and distance between muons 

 
Expected multiplicity distribution of muons (Eµ> 1 
GeV)  in bundles for a detector at the vertical depth 
of 3 km.w.e. and for 5 different zenith angles 



 Based on the MACRO 
experimental data (flux, 
multiplicity, distance 
between muon pairs, 
average energy) 
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Y. Becherini et al.,  
Astropart. Phys. 25 (2006) 1 
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Energy: m=2, θ=0o, 
5 distances 
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J.A. Aguilar et al. (ANTARES)  Astr. Phys. 34 (2010) 179 

 Water: reduced systematic w.r.t. rock due to the medium knowledge 
 But: an ANTARES storey is made of 3 Optical Modules which are 

looking downward, optimized to detect upgoing particles. 
  Cherenkov light from downward going muons is seen with the “tail” 

of the PMT angular acceptance (large systematic uncertainty) 



 Compilation of flux vs. zenith angle measured by underwater/ice 
neutrino  telescopes 

 Data compared with parametric formulas (APP 25 (2006) 1) at 
fixed depth  
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No oscillations 
Oscillations 
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J.I. Illana, arXiv:1010.5084v1 

Oscilla
tions !! 



 Generated in the same 
processes as neutrinos 

 Measured in ∼6 decades 
of muon momentum 
◦ sea level, underground  

 Disagreement between 
different experiments 
up to 30% due to 
systematics 

 Indirect methods for 
higher energies 

 Muon bundles 
underground 
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[IC40] Abbasi R. et al., 
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 Energetic spectrum of 
atmospheric νµ measured 
through the detection of 
upgoing muons 

 Background for cosmic ν 
searches 

 νe component to be 
accurately measured  
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 Fundamental for Earth 
Science purposes and 
muon imaging feasibility 
◦ characteristics of Φµ 
◦ attenuation by rock 
◦ detector geometry 

 “Prompt” component still 
undetected 
 



 Many thanks to the conference organizers for 
the invitation  

 Many thanks to the colleagues of the 
(MACRO), Opera and ANTARES collaborations 
in Bologna, and in particular to Stefano 
Cecchini 
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2m 
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L3+C BESS-TeV 

(real size w.r.t. L3) 



Vertical spectrum compared with 
different interaction models and 
primary fluxes 

P. Achard et al. (L3+C Coll) Physics Letters B 598 (2004) 15–32 

Vertical muon spectrum 
compared to previous direct 
measurements extrapolated to 
sea level. 



40 40 

L3+C  muon flux between 20 GeV -3 TeV for 
8 zenith directions 
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Average separation of underground muon 
pairs at Gran Sasso depth, as a function of 
P⊥ of the parent mesons 

Monte Carlo 
HEMAS 

Unfolded experimental decoherence 
distribution. Infinite-detector Monte Carlo 
expectation, computed with the HEMAS 
interaction and the MACRO-fit primary 
composition model 



 P(E,h) is the probability that a muon of energy E survives after 
a depth h (km.w.e.). Figure for E from 1 to 106 TeV 

 The curves become flatter with increasing E due to radiative 
energy loss and fluctuations 

 The “range” of the average energy loss is also indicated 
 Different computations for rocks/water/ice exists 
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Lipari, Stanev: Phys. Rev.D44(1991)3543 

h = 



 
 
 
 
 
 
 

 The effective temperature coefficient reflects the fraction of 
mesons that are sensitive to atmospheric temperature 
variations 
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 MINOS@Soudan mine: steel-
scintillator sampling calorimeter 
made out of alternating planes of 
magnetized steel and plastic 
scintillators 

OPERA@Gran Sasso:  The apparatus 
contains about 150000 bricks 
(photographic emulsion films 
interleaved with lead plates for tau-
leptons observation) for a total mass of 
1300 tons and it is complemented by 
electronic detectors (trackers and 
spectrometers) 
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Energy: m=1, θ=0o, 
4 depths 

Distance: m=2, θ=0o, 
4 depths 
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