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Notations

In parallel geometry, 2D tomography aims at reconstructing the density
function f(x) from its line integrals, (the Radon transform RT) :

p(w, s) = /m dt F(swh + tw)

A projection is the 1D function p(w, ) for a fixed angular position w. All
the projections form a sinogram.

Figure 1: The function
is integrated along lines
of direction

w = (cos(p),sin(¢))* at
a distance s of the
origin.
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Filter Back Projection reconstruction

If p(w,s) is the RT of f(x) then :
f(x)= / dé pr(w,x - wh) with w = (cos ¢, sin ¢)* (1)
0
where
po(w,s) = / ds'p(w, s')r(s — ') and the FET of r is #(0) = o] (2)
R

Step described by (1) is called the backprojection whereas (2) is the
filtering step. The filter r is called the ramp-filter.
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The backprojection step

Figure 2: Backprojecting at
position x consists in
integrating all the values
p(w, s) for which x had
contributed.

R. Clackdoyle , L. Desbat Region of Interest




Classical tomography
FBP reconstruction and the non locality of the ramp filter
The ROI reconstruction problem

Non locality of the ramp filter

In the Fourier domain, the ramp filter can also be written :
?(o) = osign(o) which corresponds, in the direct domain, to the
derivation of the Hilbert transform (HT)

9, .
pr(w,s) = apH(w,s) with

pu(w,s) = Ads’p(w,s’)h(s — s') where h(s) = 1 (3)

s

Thus, as the HT is not local (if values of p(w,s) are missing for some s,
there is no s for which py(w, s) can been calculated), so is it for the
ramp filter. Indeed the ramp filter support is infinite.

“ Figure 3: The ramp filter in the direct
space with Fourier regularization.
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Incomplete data

In various situations, only part of the sinogram can be measured.
@ The object of interest can be too wide respect to the detector size:
data are said "truncated"”.
@ In electron tomography, the source detector system is fixed while the
object is tilting. Due to the mechanic, the tilt angle is typically
£70°: the problem is said "limited angle” and has no solution.

i Figure 4: Two cases of incomplete
nm data: complete sinogram (left),

i truncated sinogram (middle), limited
o angle sinogram (right).
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Until 2002, it was believed that due to the non locality of the filter step,
no region could be exactly recovered in any case of incomplete data.
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Which ROI?

Since 2002, methods have been proposed to solve the incomplete data
problem. The aim is to exactly reconstruct the biggest possible ROI.
Which ROI can we expected to be reconstructible?

Let Q be the support of f(x) and region A, the region of Q for which all
the line integrals have been measured. Region B = Q\ A.

Region B can not been recovered because of the

limited-angle problem. The reconstructible ROl belongs to A
(but is not necessary fully A).

Figure 5: Region A is where all the line
integrals have been measured :
ROI C A.
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Classical tomography
and f the ramp filter

The ROI reconstruction proble

Two different approaches, that are not equivalent, have been developed:
@ The Virtual Fan-Beam (VBP) method
@ The Differentiated Backprojection (DBP) method
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© Virtual Fan-Beam method
@ Fan-Beam geometry
@ parallel/fan-beam Hilbert equality
@ Fan-Beam method
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Virtual Fan-Beam method

The Fan-Beam geometry

Let us note g(vy,w) the fan-beam data defined by :
glva,w) = / dt f(vy + tw) with w = (cos ¢, sin ¢)*
0

where v, is the vertex, taken outside the convex hull of the function f(x).
Example: for a circular trajectory of radius r, vy = r(cos ¢, sin ¢)*.

Figure 6: The
fan-beam geometry.
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Virtual Fan-Beam method

The parallel /fan-beam Hilbert projection equality

As for the parallel geometry (it was (3)) we define the Hilbert transform
for the fan-beam geometry :

27

gu(va,w) = ; d¢' g(va,w')h(sin(¢ — ¢")) with still h(s) = %

The parallel /fan-beam Hilbert equality is :

1

pr(w,s) = gu(va,w) for s = vy -w
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Virtual Fan-Beam method

Figure 7: The parallel /fan-beam Hilbert equality :
pr(w,s) = gru(va,w) for s = vy - w
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el /fan-beam Hilbert equality

Beam method

The Virtual Fan Beam method (VBP)

Re ne bel that
0 85 ’

The VBP method is based on using in the above equation, the Hilbert
equality (4) when py(w, s) can not be calculated whereas gy(va,w) can
be calculated.
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Virtual Fan-Beam method parallel /fan
Fan-Beam method

VEB example

Let the support of the density function f be ellipse-shaped with axis size
a and b, and assume that all line-integrals for lines that cross the circle of
radius r with b < r < a, have been measured : some projections are
truncated (others are not).

Not measured
Data=line-integrals
crossing the circle

The density function f )
Figure 8: VFB
example: truncated

projection

Truncated projection
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VEB example

Let the support of the density function f be ellipse-shaped with axis size
a and b, and assume that all line-integrals for lines that cross the circle of
radius r with b < r < a, have been measured : some projections are

truncated (others are not).

Non-truncated
projection

Data=line-integrals
crossing the circle

The density funetion f Figure 9: VFB
example: not
truncated
projection

C. Mennessier , R. Clackdoyle , L. Desbat Region of Interest Tomography



. try
Virtual Fan-Beam method - m geometry =
parallel /fan-beam Hilbert equality
Fan-Beam method

VEB example

For some ¢ angles,
@ py(w,s) can be calculated from the parallel projections p(w, s),
@ py(w,s) can only be calculated using a virtual fan-beam projections
g(vx,w) and the Hilbert equality py(w,s) = gu(va,w)

Notmeasured — \ \ X

Used the virutal fan-beam

instead of p (,s)
for computing the Hilbert
transform

Figure 10: VFB
example: when the
parallel projection is
truncated, use a
virtual fan-beam

| \ b
N Truncated
NV T projection /'
g v
. o~
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Virtual Fan-Beam method i :
Hilbert equality

Fan-Beam method

VEB example

Algorithm:

For all the ¢ angles, compute py(w, s) using
if (the parallel projection p(w,s) is not truncated)
equation (3) based on p(w, s)
else
the parallel-Hilbert equality (4) based on a virtual-fan beam g(vy,w)
end
end

For all the ¢ angles compute
pr(w7 5) = %PH(UL S)

end

Compute f(x) by backprojecting p,(w, s)
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© Differentiated Backprojection method
@ |nversion of a 1D truncated Hilbert Transform

o Differentiated Backprojection and Hilbert transform
@ The DBP method
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Differentiated Backprojection method

Hilbert transform and its inversion

Let k(t) be a 1D function with support / (i.e. k(t) =0 for t & ). Its
Hilbert transform (HT)

Hk(t) = /%dt’k(t')h(t — t') with h(t) = L

t

has infinite support. However even if Hk(t) is only known for t € [L, R] D
I, k(t) can be recovered using

_ i o ST DR )
k(t) = - DR_D (/R dt’' \/(t' — L)(R t)w(t—t’) C)

where C is a constant.
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Inversion of a 1D truncated Hilbert Transform
Diffe e and Hilbert tr

Differentiated Backprojection method The D

Hilbert transform and its inversion

K(t)

t Inversionis
possible

Known part of
 HKk(t)

t

Figure 11: The 1D function k(t) of finite support / can be recovered from its
HT if known on a support including /.
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1D truncated Hilbert Transform

Differentiated Backprojection method )?f(TkPVOJECt‘on et [l et

Hilbert transform of a 2D function

Let f(x) be a 2D function. We define Hyf(x) the HT along lines of
direction w:

Hyf(x) = /%dtf(x— tw)h(t) (5)

For instance, if ¢ = 0, noting x = (x1, x2) then Hof (x1, x2) is the 1D HT
on horizontal lines:

Hof(Xl,XQ) = / dt f(X1 — t,XQ)h(t)
Rid
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Hilbert Transform

Differentiated Backprojection method m i) (Rl et

Differentiated Backprojection

Let define the Differentiated Backprojection (DBP) :

1 (ot 9
)= [ 4o geplons = x-wh (©)

NB : remark the integral bounding limits.
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Inver of a 1D trur 1 Hilbert Transform
Differentiated Backprojection and Hilbert transform
The DBP method

Differentiated Backprojection method

DBP and HT

It can be shown that
If p(o,s) is the parallel Radon transform of f, then

by(x) = 2Hyf(x) (7)

with b, defined in equation (6) and H, defined in equation

(5)-
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Differentiated Backprojection method The DBP method

DBP example

Again assume that the support of f is ellipse-shaped and that truncated
data had been measured, as previously. Then if we choose ¢ = /2,
Hzjof (x1, %) = [ dt f(x1, % — t)h(t) can be calculated by
backprojecting %p(w, s) from 7 /2 to 37 /2. The density function is
recovered by inverting the truncated HT along the vertical lines.

Forany point x of that line,
the derivtive of p(w,s) can

be backprojected X3 Data=line-integrals
L /////// crossing the circle
\—\/‘ T Figure 12: The DBP
N .
ComputeH,[zf(xl X3) V \( The d nsity function f can be applled on the
/ K v\ vertical lines that lie
S 5 inside the orange
\\ < y region.
N—| [~
S
\_//
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Results and conclusion

VFB simulation
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Figure 13: Truncated  Figure 14: FBP Figure 15: VFB
sinogram reconstruction reconstruction
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Results and conclusion

VFB simulation
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Figure 16: Truncated sinogram
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Figure 17: DBP reconstruction along
vertical lines
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Results and conclusion

VFB versus DBP

Data:lines that cross Data:lines that cross Data:lines that cross
the circle the dashed lines the circle

Which ROl can be reconstruct?
Which method?

Figure 18: Three different situations of incomplete data.
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Results and conclusion

VFB versus DBP

VFB or DBP VFB DBP

Data:lines that cross Data:lines that cross Data:lines that cross
the circle the dashed lines the circle

Figure 19: The two approaches are not equivalent. Even for case 1,
reconstructions are not the same from noisy data.
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Results and conclusion

Conclusion

We have presented the Virtual Fan-Beam and the Differentiated
Backprojection methods, to solve some truncation problems.

Some ROI problems remain open like " which minimum data to measure
in order to handle the interior problem?”. Completing the theory of ROI
reconstruction in 2D and 3D, is a future challenge.
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