Muon Radiography of Volcanoes- Round Table

- 16:30 Introduction to the round table Geophysical vs muon imaging techniques applied to volcanoes : advantages, limitations and perspectives
 Presenter(s): ZOLLO, Aldo (Univ Naples)
- **16:45** Seismic tomography vs muon radiography to image the structure of volcanoes **Presenter(s):** GOT, Jean-Luc *(ISTERRE)*

16:55

Geological and volcanological relevance/potential of muon radiography to investigate and to understand the shallow volcanic processes **Presenter(s):** LÉNAT, Jean-François (UMR 6524 CNRS "Magmas et Volcans")

17:05

Applications and perspectives of Muon radiography: the experience in Japan **Presenter(s):** TANAKA, Hiroyuki (University of Tokyo)

17:15 Applications and perspectives of Muon radiography: the experience in Italy **Presenter(s):** STROLIN, Paolo Emilio (Univ. Napoli and INFN)

17:25

Applications and perspectives of Muon radiography: the experience in France **Presenter(s)**: GIBERT, Dominique (Institut de Physique du Globe de Paris)

Introduction to the round table

Geophysical vs Muon imaging techniques applied to volcanoes : advantages, limitations and perspectives

Aldo Zollo

Direct and indirect methods

Direct method

Indirect method

Conduit Drilling in the Unzen (Japan) volcano (Nakada et al., 2005)

Based on	Geophysical Method
Propagation	Seismic, Ground Penetration Radar
Diffusion	Heat flow, seismic wave scattering
Potential	Electrical, Magnetic, Magnetotelluric, Gravity

Geologic section along the well

Cosmic-ray muon radiography

The principle: muon absorption different measurements along nearly horizontal paths through a solid body are used for the reconstruction of the densitv distribution in the interior of the object.

The figure summarizes the tradeoff between observation time and density contrast for features to be resolved to within one standard deviation with a detector with area of 4000 cm² located about 1 km from the target (Tanaka et al 2007).

The required observation time is inversely proportional to the area of the detector used.

Pixel resolution

Depends on :

- the muon detector
 size and distance
 from the target
- Size and shape of the density anomaly

Single muon detector

Multiple muon detector

Multiple muon detector

Volcanoes images from muography

the cross-sectional plane parallel to the detector plane including the crater floor of Mt Asama (Japan), (Tanaka et al, 2007).

Volcanoes images from muography

50		Muon Radiography	iuon
	Physical parameter measured	Cosmic-ray muon absorption rate through the matter	00
Ê .	Operative physical property	Density	95
1) 2,610 - 2,544 -	Typical source of anomaly	Rock density contrasts	
Ф 2,478 - М 0,440	Depth of Investigation	Upper part of volcanoes (the method is limited to horizontal ranges of 2–3 km)	d ie al.
2,346 - 2,280 - 0	Pixel resolution	Depends on observation time and size of the detector. For example using a detector of 4000 cm ² at 1 km distance from the target, with 2 months of observations, anomalous bodies (1-2% change in) can be determined with a vertical resolution of 30 m and a horizontal resolution of 60 m (Tanaka et al, 2007).	
2.20	Time for data acquisition	Depends on target size , from several weeks to few months	m
Average c the cross detector p	Useful for estimation of temporal changes	Yes, but for slow variation and long time windows	
ivit Asama	(Japan), (Tanaka Ci al, 2007).	<1.75 1.81 1.86 1.91 >1.96	

Average Density (g/cm3)

Seismic methods

Active and passive seismic data for 3D tomography of Campi Flegrei caldera in Southern Italy (Battaglia et al., 2008)

High Resolution Images of Valhall oil field by acoustic full waveform inversion (Etienne et al. 2012)

Acquisition Geometry

Imaging of the structure of Mt. Vesuvius (Southern Italy) by active seismic data (Zollo et al, 2002)

Initial model

Final model

800 1900 20po 2100 2200 2308

Seismic methods

Active and passive seismic data for 3D tomography of

Campi Fle		Seismic Methods	
2008)	Physical parameter measured	Amplitudes and traveltimes of seismic waves	ield by
	Operative physical property	Velocity of seismic waves and correlated elastic moduli and density	7
the provide (K	Typical source of anomaly	Lithology changes, Fracturing and fluid percolation, magma emplacements	on the set of the
-8 -4 Distance (km)	Depth of Investigation	All, depends on the acquisition layout	
Imaging of t by active se	Resolution	Depends on frequency and used method, 2 km for Battaglia model (from checkerboard test), < 100 m (spatial resolution) for the Valahall model	
	Time for data acquisition	From few hours to few weeks	
	Useful for estimation of temporal changes	Yes → 4D tomography	~
E mol			_

Ambient Seismic Noise

3-D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations (Brenguier et al. 2007)

Measurements of temporal changes of Piton de la Fournaise volcano using seismic noise cross-correlations (Brenguier et al. 2011)

Ambient Seismic Noise

3-D surface wave tomography of the Piton de la

Fourna	Seismic Ambient Noise Tomography and Interferometric Methods		
(Breng	Physical parameter measured	Amplitudes and traveltimes of seismic ambient noise	
38 36 34	Operative physical property	Velocity of seismic waves and seismic velocity changes	Piton
32 Vs=1.4 km/s	Typical source of anomaly	Structures or velocity layers contrasts	loise
42 Z=0.7 km 40 38 36	Depth of Investigation	Few km (for the acquisition geometry used for Piton de la Fournaise), depends on frequency and stations distances	- - - -
34 32 Vs=2.1 km/s	Pixel resolution (minimum)	Of the order of few km (spatial resolution)	- 0.2 mm)
174 176 11 42 Z=-0.5 km 40 38 36	Time for data acquisition	several months for the tomographyc images (18 months of noise data for the Piton de La Fournaise model). For interferometry: small velocity changes (0.1%) with a time resolution as small as one day	550
34 32 Vs=2.5 km/s 174 176 1	Useful for estimation of temporal changes	Yes	:000
km 42 40 36 36	-0.5 -1.1 174 176 173 180 182 km		

32 Vs=2.6 km/s

0

Vs perturbation (%)

-5

5

Gravity Method

3D Gravity Inversion at Mt. Vesuvius (Southern Italy) (Berrino et. al, 2008)

Shallow structure of the Somma–Vesuvius volcano from 3D inversion of gravity data (Cella et al. 2007)

Gravity Method

3D Gra		Gravity method	
(South	Physical parameter measured	Spatial variations in the amplitude of the gravity field of the Earth (the vertical attraction of anomalous masses).	cano 2007)
	Operative physical property	Rock density	South Naples
2=1500 m C C C C C C C C C C C C C C C C C C C	Typical source of anomaly	Rock density contrast	e basement
	Depth of Investigation	All, depends on the profile length or 2D gravity survey surface area	m ³
	Pixel resolution	Depends on the density of stations, of the order of km (spatial resolution); tradeoff between shape and density amplitude of anomalous body	
	Time for data acquisition	Depends on the investigated area, from some days to weeks.	
2=4000	Useful for estimation of temporal changes	Yes, but difficult (and costly) to perform	

Electromagnetic methods

3D inversion of large-scale magnetotelluric data of the Yellowstone conductive mantle plume (Zhdanov et al., 2011)

2D image of Usu volcano, (Hokkaido, Japan) using magnetotelluric soundings (Matsushima et al.,

2D image of Stromboli volcano (Italy) by geoelectrical prospecting (Finizola et al., 2006)

Electromagnetic methods

2D image of Usu volcano, (Hokkaido, Japan) using

3D inversi	Electi	romagnetic Methods	, et al.,
plume (Zh	Physical parameter measured	Variations of electrical and magnetic fields	Late Toys
	Operative physical property	Rock conductivity and resistivity	a transform
	Typical source of anomaly	Lateral and vertical changes in conductivity and resistivity	
	Depth of Investigation	Depends on frequency, of electro-magnetic signals : from 0 m (geoelectrical) down to hundreds of kilometers for MT	
tion to the second seco	Pixel resolution	Depends on the frequency and acquisition layout, spatial resolution of about 100 m on top of Usu model by MT, < 50 m for geoelectrical image of Stromboli. Mostly controlled by presence of fluids and magma	taly) by 2006)
	Time for data acquisition	From few hours (for Acoustic MT) to days (geoelctrical and MT measurements) to weeks or more for very deep, very long-period MT measurements	A CARACTER AND A CARA
Y, km	Useful for estimation of temporal changes	Yes	

"Muography": advantages, limits and potential future developments

Strong points

- high resolution images of low-amplitude gravity contrasts occurring in the shallow part of strato-volcanoes. Complementary and competitive with standard geophysical methods
- the method can be remotely operated whilst standard geophysical methods require to be operated on site. This can be difficult due to field conditions, or dangerous due to the volcanic activity.
- It can reach extremely high resolutions, depending on the azimuthal coverage of detectors and shape of the anomaly

Weak points

- The method is limited to near-surface depths and strongly depends on the nature of the local topography (the detector must be placed on a slope pointing toward a topographically prominent feature of interest, and there will only be results for the volume located above the detector);
- the method is limited to horizontal ranges of 2–3 km (which limits the potential targets and pixel resolution)
- Not feasible to detect and track rapid density changes within volcanoes (hours to days). Poor depth penetration and resolution.

Muography: advantages, limits and potential future developments

Next generation Muon observing systems:

- Multiple observations from networks of muon detectors for high (pixel) resolution 3D volcano images;
- Reduction of time required to obtain density measurements with reduced statistical and systematic errors → Important for 4D images, measurements of temporal variations and for near-real-time monitoring applications;
- **Borehole** muon detectors, installed at few km depth within the Earth: advanced technologies, not yet available(?)
- Muon detectors **on the seafloor** (difficult process due to density changes in water, the muon tracking process is made more difficult)
- Applications to other geophysical structures/phenomena: will it have the capability to monitor **active fault zones** within the crust?

Bibliography

Battaglia, J., A. Zollo, J. Virieux and D. Dello Iacono, Merging active and passive data sets in traveltime tomography: The case study of Campi Flegrei caldera (Southern Italy), Geophysical Prospecting, 56, 4, 555-573, 2008

Berrino G. and A. G. Camacho (2008), 3D Gravity Inversion by Growing Bodies and Shaping Layers at Mt. Vesuvius (Southern Italy). Pure appl. geophys. 165 (2008) 1095–1115, DOI 10.1007/s00024-008-0348-2

Cella F.; Fedi M.; Florio G.; Grimaldi M. and Rapolla A. (2007). Shallow structure of the Somma–Vesuvius volcano from 3D inversion of gravity data. Journal of Volcanology and Geothermal Research, 161, 303–317

Brenguier F, Shapiro NM, Campillo M, et al. (2007), 3-D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations GEOPHYSICAL RESEARCH LETTERS, 34, 2, L02305

Brenguier F., Clarke D., Aoki Y., N.M. Shapiro, M. Campillo, V. Ferrazzini (2011), Monitoring volcanoes using seismic noise correlations, C. R. Geoscience 343 (2011) 633–638, doi:10.1016/j.crte.2010.12.010

Etienne, V., G. Hu, S. Operto, J. Virieux, O.I. Barkved, J. Kommedal (2012), Three-dimensional acoustic full waveform inversion: algorithm and application to Valhall 74th EAGE Conference & Exhibition incorporating SPE EUROPEC 2012

Finizola, A., A. Revil, E. Rizzo, S. Piscitelli, T. Ricci, J. Morin, B. Angeletti, L. Mocochain, and F. Sortino (2006), Hydrogeological insights at Stromboli volcano (Italy) from geoelectrical, temperature, and CO₂ soil degassing investigations, Geophys. Res. Lett., 33, L17304, doi:10.1029/2006GL026842

Matsushima N.,H. Oshima, Y. Ogawa, Takakura S., Satoh H.,Utsugi M. and Nishida Y. (2001). Magma prospecting in Usu volcano, Hokkaido, Japan, using magnetotelluric soundings, Journal of Volcanology and Geothermal Research

Nakada S., Kozo Uto, Sumio Sakuma, John C. Eichelberger and Hiroshi Shimizu (2005), Scientific Results of Conduit Drilling in the Unzen Scientific Drilling Project (USDP), Scientific Drilling, doi:10.22 04/iodp.sd.1.03.2005

Okubo S. and H. K. M. Tanaka (2012), Imaging the density profile of a volcano interior with cosmic-ray muon radiography combined with classical gravimetry, Meas. Sci. Technol. 23 (2012), doi:10.1088/0957-0233/23/4/042001

Tanaka H K M et al 2007 High resolution imaging in the inhomogeneous crust with cosmic ray muon radiography: the density structure below the volcanic crater floor of Mt Asama, Japan Earth Planet. Sci. Lett. 263 104–13

Tanaka, H. K. M., T. Uchida, M. Tanaka, H. Shinohara, and H. Taira (2009), Cosmic-ray muon imaging of magma in a conduit: Degassing process of Satsuma-Iwojima Volcano, Japan, Geophys. Res. Lett., 36, L01304, doi:10.1029/2008GL036451.

Zhdanov, M. S., R. B. Smith, A. Gribenko, M. Cuma, and M. Green (2011), Three-dimensional inversion of large-scale EarthScope magnetotelluric data based on the integral equation method: Geoelectrical imaging of the Yellowstone conductive mantle plume, Geophys. Res. Lett., 38, L08307, doi:10.1029/2011GL046953.

Zollo,A., L. D'Auria, R. De Matteis, A. Herrero, J. Virieux and P. Gasparini (2002), Bayesian estimation of 2-D P-velocity models from active seismic arrival time data: imaging of the shallow structure of Mt Vesuvius (Southern Italy), Geophys. J. Int. 151, 566–58