NON-PARAMETRIC REGULARIZATION OF TOMOGRAPHIC PROBLEMS

Bernard Valette IRD-ISTerre
France

Inverse Problems: Notations

We try to identify structures that cannot be directly observed. Modelling of hidden physical systems $\Longrightarrow(\mathbb{M}, \mathbb{D}, \mathbf{g})$

- \mathbb{M} : the set of modelling parameters describing the hidden physical system
- \mathbb{D} : the set of observable parameters, or data, that are related to modelling parameters through \mathbf{g} :
- $\forall \mathbf{m} \in \mathbb{M}, \quad \mathbf{m} \longrightarrow \mathbf{d}=\mathbf{g}(\mathbf{m}) \in \mathbb{D}$

Forward problem : given \mathbf{m} and \mathbf{g}, compute $\mathbf{d}=\mathbf{g}(\mathbf{m})$
Inverse problem : given \mathbf{d} and \mathbf{g}, infer the manifold of models \mathbf{m} corresponding to data \mathbf{d}, up to measurement errors

Stochastic Approach of Inverse Problem

In this approach, at each step of knowledge, the information on parameters is quantified by a measure

At prior step, the measures represent :

- errors in physical measurements for data $\mathbf{d} \in \mathbb{D}$
- the information that can be a priori gathered on modelling parameters $\mathbf{m} \in \mathbb{M}$, independently of data

These measures are usually defined through probability density functions ($p d f$) for finite dimensionnal data or model space :

$$
\rho_{o b s}(.) \text { pdf of } \mathbf{d} \text { over } \mathbb{D} \text {, and } \rho_{\text {prior }}(.) \text { pdf of } \mathbf{m} \text { over } \mathbb{M}
$$

For instance, $P(A)=\int_{A} \rho_{o b s}(\mathbf{v}) d \mathbf{v}$ represents the probability that the true data vector \mathbf{d} belongs to the measurable set A in \mathbb{D}
\mathbf{m} and \mathbf{d} can be considered as independent random vectors, although there are not results of random experiments

Conditional Probability and Inverse Problem

$$
\mathbf{m} \in \mathbb{M} \quad \mathbf{d} \in \mathbb{D} \quad \mathbf{d}=\mathbf{g}(\mathbf{m}) \quad \mathbf{G}_{\mathbf{m}}
$$

- \mathbf{m} and \mathbf{d} are assumed to be independent random vectors with $p d f$ $\rho_{\text {prior }}(\mathbf{m})$, and $\rho_{o b s}(\mathbf{d})$
- $\mathbf{t}=\mathbf{d}-\mathbf{g}(\mathbf{m})$ a priori is a random vector; but in fact, in virtue of the physical theory : $\mathbf{t}=\mathbf{0}$
- we define : $\rho_{\text {post }}(\mathbf{m})=\rho(\mathbf{m} \mid \mathbf{t}=\mathbf{0})$

Consider $(\mathbf{d}, \mathbf{m}) \longrightarrow(\mathbf{t}=\mathbf{d}-\mathbf{g}(\mathbf{m}), \mathbf{m})$, the Jacobian of which is

$$
\left|\begin{array}{cc}
\mathbf{I}_{d} & -\mathbf{G}_{\mathbf{m}} \\
0 & \mathbf{I}_{d}
\end{array}\right|=1, \text { hence : } \rho(\mathbf{t}, \mathbf{m})=\rho_{o b s}(\mathbf{t}+\mathbf{g}(\mathbf{m})) \rho_{\text {prior }}(\mathbf{m})
$$

- and: $\quad \rho_{\text {post }}(\mathbf{m}) \propto \rho_{\text {prior }}(\mathbf{m}) \rho_{\text {obs }}(\mathbf{g}(\mathbf{m})) \propto \exp (-\mathrm{E}(\mathbf{m}))$

The Gaussian Linear Case

$$
\mathbf{d}: \mathbf{d}_{\text {obs }}, \mathbf{C}_{d} ; \quad \mathbf{m}: \mathbf{m}_{\text {prior }}, \mathbf{C}_{m} ; \mathbf{g} \equiv \mathbf{G}
$$

- $2 \mathrm{E}(\mathbf{m})=\left(\mathbf{C}_{d}^{-1}\left(\mathbf{G m}-\mathbf{d}_{\text {obs }}\right) \mid \mathbf{G m}-\mathbf{d}_{\text {obs }}\right)+\left(\mathbf{C}_{m}^{-1}\left(\mathbf{m}-\mathbf{m}_{\text {prior }}\right) \mid \mathbf{m}-\mathbf{m}_{\text {prior }}\right)$
\mathbf{G}^{*} adjoint of $\mathbf{G}: \quad \forall(\mathbf{v}, \mathbf{u}) \in \mathbb{M} \times \mathbb{D} \quad(\mathbf{G v} \mid \mathbf{u})_{\mathbb{D}}=\left(\mathbf{v} \mid \mathbf{G}^{*} \mathbf{u}\right)_{\mathbb{M}}$
- $2 \mathrm{E}(\mathbf{m})=\left(\left(\mathbf{C}_{m}^{-1}+\mathbf{G}^{*} \mathbf{C}_{d}^{-1} \mathbf{G}\right)\left(\mathbf{m}-\mathbf{m}_{\text {post }}\right) \mid \mathbf{m}-\mathbf{m}_{\text {post }}\right)$

$$
-\left(\left(\mathbf{C}_{m}^{-1}+\mathbf{G}^{*} \mathbf{C}_{d}^{-1} \mathbf{G}\right) \mathbf{m}_{\text {post }} \mid \mathbf{m}_{\text {post }}\right)+\left(\mathbf{C}_{m}^{-1} \mathbf{m}_{\text {prior }} \mid \mathbf{m}_{\text {prior }}\right)+\left(\mathbf{C}_{d}^{-1} \mathbf{d}_{o b s} \mid \mathbf{d}_{o b s}\right)
$$

with :

$$
\begin{aligned}
& \quad \mathbf{m}_{\text {post }}=\left(\mathbf{C}_{m}^{-1}+\mathbf{G}^{*} \mathbf{C}_{d}^{-1} \mathbf{G}\right)^{-1}\left(\mathbf{G}^{*} \mathbf{C}_{d}^{-1} \mathbf{d}_{\text {obs }}+\mathbf{C}_{m}^{-1} \mathbf{m}_{\text {prior }}\right) \\
& \text { Hence : } \quad \rho_{\text {post }}(\mathbf{m}) \propto \exp \left\{-\frac{1}{2}\left(\mathbf{C}^{-1}\left(\mathbf{m}-\mathbf{m}_{\text {post }}\right) \mid \mathbf{m}-\mathbf{m}_{\text {post }}\right)\right\}
\end{aligned}
$$

The posterior $p d f$ of \mathbf{m} is Gaussian with expectation $\mathbf{m}_{\text {post }}$ and covariance $\mathbf{C}=\left(\mathbf{C}_{m}^{-1}+\mathbf{G}^{*} \mathbf{C}_{d}^{-1} \mathbf{G}\right)^{-1}$

Gaussian Linear Case: Expressions of posterior Expectation and Covariance

$$
\mathbf{m}_{p o s t}=\mathbf{C}\left(\mathbf{G}^{*} \mathbf{C}_{d}^{-1} \mathbf{d}_{o b s}+\mathbf{C}_{m}^{-1} \mathbf{m}_{\text {prior }}\right), \quad \mathbf{C}=\left(\mathbf{C}_{m}^{-1}+\mathbf{G}^{*} \mathbf{C}_{d}^{-1} \mathbf{G}\right)^{-1}
$$

Making use of the two basic formulae :

- $\mathbf{C}_{m} \mathbf{G}^{*}\left(\mathbf{C}_{d}+\mathbf{G} \mathbf{C}_{m} \mathbf{G}^{*}\right)^{-1}=\left(\mathbf{C}_{m}^{-1}+\mathbf{G}^{*} \mathbf{C}_{d}^{-1} \mathbf{G}\right)^{-1} \mathbf{G}^{*} \mathbf{C}_{d}^{-1}$
- $\mathbf{C}_{m}-\mathbf{C}_{m} \mathbf{G}^{*}\left(\mathbf{C}_{d}+\mathbf{G} \mathbf{C}_{m} \mathbf{G}^{*}\right)^{-1} \mathbf{G C}_{m}=\left(\mathbf{C}_{m}^{-1}+\mathbf{G}^{*} \mathbf{C}_{d}^{-1} \mathbf{G}\right)^{-1}$
we obtain: $\quad \mathbf{m}_{\text {post }}=$

$$
\left(\mathbf{C}_{m}^{-1}+\mathbf{G}^{*} \mathbf{C}_{d}^{-1} \mathbf{G}\right)^{-1}\left\{\mathbf{G}^{*} \mathbf{C}_{d}^{-1} \mathbf{d}_{\text {obs }}+\left(\mathbf{C}_{m}^{-1}+\mathbf{G}^{*} \mathbf{C}_{d}^{-1} \mathbf{G}-\mathbf{G}^{*} \mathbf{C}_{d}^{-1} \mathbf{G}\right) \mathbf{m}_{\text {prior }}\right\}
$$

and :

$$
\cdot\left\{\begin{array}{l}
\mathbf{m}_{\text {post }}=\mathbf{m}_{\text {prior }}+\mathbf{C}_{m} \mathbf{G}^{*}\left(\mathbf{C}_{d}+\mathbf{G} \mathbf{C}_{m} \mathbf{G}^{*}\right)^{-1}\left(\mathbf{d}_{\text {obs }}-\mathbf{G m}_{\text {prior }}\right): \\
\mathbf{C}=\left(\mathbf{C}_{m}^{-1}+\mathbf{G}^{*} \mathbf{C}_{d}^{-1} \mathbf{G}\right)^{-1}=\mathbf{C}_{m}-\mathbf{C}_{m} \mathbf{G}^{*}\left(\mathbf{C}_{d}+\mathbf{G} \mathbf{C}_{m} \mathbf{G}^{*}\right)^{-1} \mathbf{G C}_{m}
\end{array}\right.
$$

The latter equality indicates the reduction in variance of the $p d f$ since :
$\forall \mathbf{v} \in \mathbf{M},(\mathbf{C v} \mid \mathbf{v})=\left(\mathbf{C}_{m} \mathbf{v} \mid \mathbf{v}\right)-\left(\left(\mathbf{C}_{d}+\mathbf{G C}_{m} \mathbf{G}^{*}\right)^{-1} \mathbf{G C}_{m} \mathbf{v} \mid \mathbf{G} \mathbf{C}_{m} \mathbf{v}\right) \leq\left(\mathbf{C}_{m} \mathbf{v} \mid \mathbf{v}\right)$

Estimation versus Stochastic Approach

- stochastic : a priori, \mathbf{d} and \mathbf{m} are Gaussian with expectations $\mathbf{d}_{o b s}$ and $\mathbf{m}_{\text {prior }}$, and covariances \mathbf{C}_{d} and \mathbf{C}_{m}. A posteriori, \mathbf{m} is Gaussian with expectation $\mathbf{m}_{\text {post }}$, and covariance $\mathbf{C}=\left(\mathbf{C}_{m}^{-1}+\mathbf{G}^{*} \mathbf{C}_{d}^{-1} \mathbf{G}\right)^{-1}$
- estimation : a priori, $\mathbf{d}_{\text {obs }}$ and $\mathbf{m}_{\text {prior }}$ are Gaussian estimators with expectations $\mathbf{d}=\mathbf{G m}$ and \mathbf{m} (unbiased), and covariances $\mathbf{C}_{d}, \mathbf{C}_{m}$. A posteriori, we search for the unbiased estimator $\mathbf{m}_{\text {post }}$ which depends lineary on the prior estimators : $\mathbf{m}_{\text {post }}=\mathbf{L m} \mathbf{m}_{\text {prior }}+\mathbf{K d}_{\text {obs }}$ and makes minimum $\mathcal{E}\left\|\mathbf{m}_{\text {post }}-\mathbf{m}\right\|^{2}=\operatorname{tr}\left\{\operatorname{Cov}\left(\mathbf{m}_{\text {post }}\right)\right\}(\mathrm{BLUE})$
unbiased $\Longrightarrow \mathbf{m}=\mathbf{L m}+\mathbf{K G m} \Longrightarrow \mathbf{L}=\mathbf{I}_{d}-\mathbf{K G}$
$\operatorname{Cov}\left(\mathbf{m}_{\text {post }}\right)=\left(\mathbf{I}_{d}-\mathbf{K G}\right) \mathbf{C}_{m}\left(\mathbf{I}_{d}-\mathbf{K G}\right)^{*}+\mathbf{K C}_{d} \mathbf{K}^{*}$
$\operatorname{tr}\left\{\mathbf{C o v}\left(\mathbf{m}_{\text {post }}\right)\right\}$ minimum $\Longrightarrow\left\{\begin{array}{l}\mathbf{K}=\mathbf{C}_{m} \mathbf{G}^{*}\left(\mathbf{C}_{d}+\mathbf{G} \mathbf{C}_{m} \mathbf{G}^{*}\right)^{-1} \\ \mathbf{C o v}\left(\mathbf{m}_{\text {post }}\right)=\mathbf{C}\end{array}\right.$ as for
the expectation and covariance in the stochastic approach

Functional Regularization

- $\operatorname{dim} \mathbb{D}=n, \quad \mathbb{M}=\mathbf{L}^{2}(\mathbf{V}), \quad \mathbf{V} \subseteq \mathbb{R}^{d}, \quad d=2$ or 3
- We suppose, for the sake of simplicity, that \mathbb{M} corresponds to a single physical parameter $\mathrm{m}(\mathbf{r})$ distributed over \mathbf{V}
- data can be GPS, or InSAR displacements that we want to invert for the total displacement field over a source domain, as a fault system, or overpressures over a dike, by using an elastic propagator. They can also be travel time, attenuation or opacity over rays in a given domain.
- \mathbf{G} bounded $\Longrightarrow \quad \forall i \in\{1, \ldots, n\} \quad \mathrm{d}^{i}=(\mathbf{G m})^{i}=\int_{V} \mathrm{~h}^{i}(\mathbf{r}) \mathrm{m}(\mathbf{r}) \mathrm{d} V$ the n functions $\mathrm{h}^{i} \in \mathbf{L}^{2}(V)$ are kernels related to data
- $\mathbf{G}^{*} \mathbf{d}=\sum_{i=1}^{n} \mathrm{~d}^{i} \mathrm{~h}^{i}$

$$
(\mathbf{G m} \mid \mathbf{d})=\sum_{i=1}^{n} \mathrm{~d}_{i} \int_{V} \mathrm{~h}^{i}(\mathbf{r}) \mathrm{m}(\mathbf{r}) \mathrm{d} V=\left(\mathbf{m} \mid \sum_{i=1}^{n} \mathrm{~d}^{i} \mathrm{~h}^{i}\right)_{L^{2}}
$$

Gaussian Random Functions, Covariance Functions

- A random function is a set of random variables $m(\mathbf{r})$ depending on the position \mathbf{r} within a domain $\mathbf{V} \subseteq \mathbf{R}^{d}$. The random function is Gaussian if for any integer n and any positions $\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{n}$, the joint $p d f$ of the variables $\mathrm{m}\left(\mathbf{r}_{1}\right), \mathrm{m}\left(\mathbf{r}_{2}\right), \ldots, \mathrm{m}\left(\mathbf{r}_{n}\right)$ is Gaussian.
- the covariance function $C\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$ is the covariance of $m(\mathbf{r})$ and $m\left(\mathbf{r}^{\prime}\right)$ when \mathbf{r} and \mathbf{r} ' vary within \mathbf{V}.
- A covariance function is symmetric with respect to ($\mathbf{r}, \mathbf{r}^{\prime}$), and is characterized by the fact it is a positive definite function :
$\forall n \in \mathbf{N}, \forall\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{n}\right) \in \mathbf{V}^{n}, \forall\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in \mathbf{R}^{n} \sum_{i, j=1}^{n} C\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right) v_{i} v_{j} \geq 0$
- if C is a covariance function, $\mathrm{C}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \mathrm{f}(\mathbf{r}) \mathrm{f}\left(\mathbf{r}^{\prime}\right)$ is also a covariance function, as well as the restriction of C to any subdomain of \mathbf{V}
- we can only considered correlation function ranging in $(-1,1)$ over \mathbf{R}^{d}

Characterization of Covariance functions and Covariance Operators

- Covariance Function : $\left\{\begin{array}{l}C\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\sigma(\mathbf{r}) \sigma\left(\mathbf{r}^{\prime}\right) \phi\left(\mathbf{r}-\mathbf{r}^{\prime}\right), \phi(0)=1 \\ |\phi| \leq 1, \phi \in \mathbf{L}^{1}\left(\mathbb{R}^{d}\right) \text { even and continuous }\end{array}\right.$
- $\mathbf{C}: \forall f \in \mathbf{L}^{2}\left(\mathbf{R}^{d}\right), f \longrightarrow \mathbf{C}(f)(\mathbf{r})=\int_{\mathbf{R}^{d}} \phi\left(\mathbf{r}-\mathbf{r}^{\prime}\right) f\left(\mathbf{r}^{\prime}\right) \mathrm{d} V\left(\mathbf{r}^{\prime}\right) \in \mathbf{L}^{2}\left(\mathbb{R}^{d}\right)$ is bounded in $\mathbf{L}^{2}\left(\mathbb{R}^{d}\right)$
- ϕ definite positive $\Longleftrightarrow \mathbf{C} \geq 0$

$$
\forall f \in \mathbf{L}^{2}\left(\mathbb{R}^{q}\right) \quad(\mathbf{C} f \mid f)_{\mathbf{L}^{2}}=\int_{\mathbf{R}^{d} \times \mathbf{R}^{d}} \phi\left(\mathbf{r}-\mathbf{r}^{\prime}\right) f(\mathbf{r}) f\left(\mathbf{r}^{\prime}\right) \mathrm{d} V(\mathbf{r}) \mathrm{d} V\left(\mathbf{r}^{\prime}\right) \geq 0
$$

- ϕ definite positive $\Longleftrightarrow \mathcal{F}(\phi) \geq 0$ (Bochner, Khintchine)

$$
\mathbf{C}(f)=\phi * f, \quad(\mathbf{C} f \mid f)_{\mathbf{L}^{2}}=(\phi * f \mid f)_{\mathbf{L}^{2}}=\mathcal{F}(\phi) \mathcal{F}(f) \overline{\mathcal{F}(f)}=\mathcal{F}(\phi)|\mathcal{F}(f)|^{2}
$$

Exemple of Homogeneous Covariance Functions

$$
\mathrm{C}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\phi\left(\frac{\mathbf{r}-\mathbf{r}^{\prime}}{\xi}\right) \quad \xi: \text { correlation length }
$$

- dimension $d=1$

$$
\begin{gathered}
\phi(r)=e^{-|r|}, \quad \hat{\phi}(k) \propto \frac{2}{1+k^{2}} \\
\phi(r)=(1+|r|) e^{-|r|}, \quad \hat{\phi}(k) \propto \frac{4}{\left(1+k^{2}\right)^{2}} \\
\phi(r)=2^{1-\nu} / \Gamma(\nu) r^{\nu} \mathrm{K}_{\nu}(r), \quad \hat{\phi}(k) \propto \frac{2}{\left(1+k^{2}\right)^{\nu+1 / 2}} \\
\phi(r)=\left(\cos (r / \sqrt{2})+\sin (|r| / \sqrt{2}) e^{-|r| / \sqrt{2}}, \quad \hat{\phi}(k) \propto \frac{2 \sqrt{2}}{\left(1+k^{4}\right)}\right. \\
\phi(r)=e^{-r^{2}}, \quad \hat{\phi}(k) \propto \sqrt{\pi} e^{-k^{2} / 4} \\
\phi(r)=\frac{1}{c h(r)}, \quad \hat{\phi}(k) \propto \frac{1 / 2}{c h(k \pi / 2)}
\end{gathered}
$$

- $d \geq 1: \quad \phi(\mathbf{r})=\prod_{i=1}^{d} \phi_{i}\left(r_{i}\right)$

Homogeneous Isotropic Covariance Functions

$$
\mathrm{C}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\phi\left(\frac{\mathbf{r}-\mathbf{r}^{\prime}}{\xi}\right)=\psi\left(\left\|\frac{\mathbf{r}-\mathbf{r}^{\prime}}{\xi}\right\|\right) \quad \xi: \text { correlation length }
$$

- $d \leq 3: \phi(\mathbf{r})=\psi\left(\|\mathbf{r}\|_{d}\right): \psi$ continuous, even, $r^{2} \psi \in \mathbf{L}^{1}(\mathbb{R}), \mathcal{F}(\psi)(\mathrm{k})$ decreasing for $\mathrm{k} \geq 0$
- $d=\infty($ for any $d): \psi(r)=\int_{0}^{\infty} \exp \left(-s r^{2}\right) \mu(\mathrm{d} s) \quad$ where μ is a finite positive measure (Schoenberg, 1938)
- Can be generalized to $\|\left(\mathbf{r} \|^{2}=(\boldsymbol{\Sigma} \mathbf{r} \mid \mathbf{r})\right.$

A posteriori Expectation

- formula of the finite dimensional case generalize into :

$$
\mathrm{m}_{\text {post }}-\mathrm{m}_{\text {prior }}=\mathbf{G}^{\bullet}\left(\mathbf{C}_{d}+\mathbf{G G} \mathbf{G}^{\bullet}\right)^{-1}\left(\mathbf{d}_{\text {obs }}-\mathbf{G m}_{\text {prior }}\right)
$$

where $\mathbf{G}^{\bullet}\left(=\mathbf{C}_{m} \mathbf{G}^{*}\right)$ denotes the adjoint of $\mathrm{G}: \mathbf{R}\left(\mathbf{C}_{m}^{1 / 2}\right) \rightarrow \mathbb{D}$ and $\mathbf{R}\left(\mathbf{C}_{m}^{1 / 2}\right)$ is a RKHS when endowed with $\left(\mathbf{C}_{m}^{-1 / 2} . \mid \mathbf{C}_{m}^{-1 / 2}.\right)$

- it yields :

$$
\mathrm{m}_{\text {post }}(\mathbf{r})-\mathrm{m}_{\text {prior }}(\mathbf{r})=\sigma(\mathbf{r}) \sum_{i=1}^{n} v_{i} \int_{\mathbf{V}} \phi\left(\left(\mathbf{r}-\mathbf{r}^{\prime}\right) / \xi\right) \sigma\left(\mathbf{r}^{\prime}\right) \mathrm{h}^{i}\left(\mathbf{r}^{\prime}\right) \mathrm{d} V^{\prime}
$$

where $\left(\mathrm{v}_{i}\right)_{i=1, n}$ verifies: $\sum_{j=1}^{n} \mathrm{M}^{i j} v_{j}=\mathrm{d}_{o b s}^{i}-\int_{\mathbf{V}} \mathrm{h}^{i}(\mathbf{r}) \mathrm{m}_{\text {prior }}(\mathbf{r}) \mathrm{d} V$

$$
\text { with : } \quad \mathrm{M}^{i j}=\mathbf{C}_{d}^{i j}+\int_{\mathbf{V} \times \mathbf{V}} \sigma(\mathbf{r}) \mathrm{h}^{i}(\mathbf{r}) \phi\left(\left(\mathbf{r}-\mathbf{r}^{\prime}\right) / \xi\right) \sigma\left(\mathbf{r}^{\prime}\right) \mathrm{h}^{j}\left(\mathbf{r}^{\prime}\right) \mathrm{d} V \mathrm{~d} V^{\prime}
$$

Resolution Analysis

$$
\begin{gathered}
\left(\mathrm{m}_{\text {post }}-\mathrm{m}_{\text {prior }}\right)(\mathbf{r})=\underbrace{\int_{\mathbf{V}} \mathrm{R}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\left(\mathrm{m}-\mathrm{m}_{\text {prior }}\right)\left(\mathbf{r}^{\prime}\right) \mathrm{d} V^{\prime}}_{\mathbf{R}=\mathbf{G C}_{m} \mathbf{M}^{-1} \mathbf{G}=\mathbf{K G}}-\overbrace{\sigma(\mathbf{r}) \sum_{i=1}^{n} \mathrm{~s}^{i}(\mathbf{r})\left(\mathrm{d}^{i}-\mathrm{d}_{o b s}^{i}\right)}^{n o i s e: \mathbf{K}\left(\mathbf{d}-\mathbf{d}_{\mathbf{o b s}}\right)} \\
\text { with }: \quad \mathrm{R}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\sigma(\mathbf{r}) \sum_{i=1}^{n} \mathrm{~s}^{i}(\mathbf{r}) \mathrm{h}^{i}\left(\mathbf{r}^{\prime}\right)
\end{gathered}
$$

$R\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$ centred near $\mathbf{r}=\mathbf{r}^{\prime}$, with few negative lobes. Thinking of it as density :

- width : $w(\mathbf{r})=\left(\frac{\int_{\mathrm{V}} \mathrm{R}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\left\|\mathbf{r}-\mathbf{r}^{\prime}\right\|^{2} \mathrm{~d} V^{\prime}}{\int_{\mathrm{V}} \mathrm{R}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \mathrm{d} V^{\prime}}\right)^{1 / 2}$
- averaging index : $I(\mathbf{r})=\int_{\mathbf{V}} \mathrm{R}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \mathrm{d} V^{\prime}=\sigma(\mathbf{r}) \sum_{i=1}^{n} \mathrm{~s}^{i}(\mathbf{r}) \int_{\mathbf{V}} \mathrm{h}^{i}\left(\mathbf{r}^{\prime}\right) \mathrm{d} V^{\prime}$ low index \Longrightarrow poor inference

A priori Information and Regularization

- $\mathbf{C}_{\mathbf{0}}$: physical covariance operator $\left\{\begin{array}{l}\xi_{0}: \text { reference physical length } \\ \sigma_{p h y s}(\mathbf{r})\end{array}\right.$

How to specify \mathbf{C}_{m} ?

- 1: $\left(\mathrm{m}_{\text {post }}-\mathrm{m}_{\text {prior }}\right)(\mathbf{r})=\int_{\mathbf{V}} \underbrace{\sigma(\mathbf{r}) \phi\left(\left(\mathbf{r}-\mathbf{r}^{\prime}\right) / \xi\right) \sigma\left(\mathbf{r}^{\prime}\right)}_{\text {regularization }} \overbrace{\left\{\sum_{i=1}^{n} v_{i} \mathrm{~h}^{i}\left(\mathbf{r}^{\prime}\right)\right\}}^{\text {data influence }} \mathrm{d} V^{\prime}$
- $2: \mathbf{C}_{m}(f)(\mathbf{r}) \underset{\xi \rightarrow 0}{\sim} \xi^{d} \sigma^{2}(\mathbf{r}) f(\mathbf{r})$
\Longrightarrow put $\sigma(r)=w(r, \xi) \sigma_{\text {phys }}(r)$ with:
- $w(\mathbf{r}) \int_{\mathbf{V}} \phi\left(\left(\mathbf{r}-\mathbf{r}^{\prime}\right) / \xi\right) w\left(\mathbf{r}^{\prime}\right) \mathrm{d} V^{\prime}=\xi_{0}^{d} \int_{\mathbf{R}^{d}} \phi(\mathbf{r}) \mathrm{d} V$
$w=1$ for $\xi \sim \xi_{0}$ in order to recover $\sigma=\sigma_{\text {phys }}$

Regularization and scaling

$$
\sigma(r)=w(r) \sigma_{p h y s}(r)
$$

- implicit equation : $w(\mathbf{r})=\xi_{0}^{d} \int_{\mathbb{R}^{d}} \phi(\mathbf{r}) \mathrm{d} V / \int_{\mathbf{V}} \phi\left(\left(\mathbf{r}-\mathbf{r}^{\prime}\right) / \xi\right) w\left(\mathbf{r}^{\prime}\right) \mathrm{d} V^{\prime}$

$$
\begin{aligned}
& \sigma^{2}(\mathbf{r}) \simeq \frac{\xi_{0}^{d}|\mathbf{V}| \int_{\mathbf{R}^{d}} \phi(\mathbf{r}) \mathrm{d} V}{\int_{\mathbf{V} \times \mathbf{V}} \phi\left(\left(\mathbf{r}-\mathbf{r}^{\prime}\right) / \xi\right) \mathrm{d} V \mathrm{~d} V^{\prime}} \sigma_{\text {phys }}^{2}(\mathbf{r}) \quad \text { exept at boundaries } \\
& \sigma^{2}(\mathbf{r}) \underset{\xi \rightarrow 0}{\sim}\left(\frac{\xi_{0}}{\xi}\right)^{d} \sigma_{\text {phys }}^{2}(\mathbf{r}), \quad \sigma^{2}(\mathbf{r}) \underset{\xi \rightarrow \infty}{\sim} \frac{\xi_{0}^{d}}{|\mathbf{V}|} \sigma_{\text {phys }}^{2}(\mathbf{r}) \int_{\mathbb{R}^{d}} \phi(\mathbf{r}) \mathrm{d} V
\end{aligned}
$$

where : $|\mathbf{V}|=\int_{\mathbf{V}} \mathrm{d} V$

- Aside the a priori physical standard deviation, we make constant the variances of parameter averaged over \mathbf{V}, whatever ξ is

The 2006 Guerrero slow slip event, Radiguet et al., Geophys. J. Int. 2011

How to choose ξ ? L-curve (left) and averaging index (right, b)!

(b)

Radiguet et al., Geophys. J. Int. 2011, see Vergely et al. A\& A. 2010 for an example in astrophysics

Exemple of Linear Tomography in 2-d

$$
\begin{gathered}
\mathrm{d}^{i}=\int_{S_{i}} \mathrm{n}(\mathbf{r}) \mathrm{d} s(\mathbf{r}) \quad i=1, \ldots, n=107 \\
\mathrm{n}_{\text {post }}(\mathbf{r})-\mathrm{n}_{\text {prior }}(\mathbf{r})=\sigma(\mathbf{r}) \sum_{i=1}^{n} v_{i} \int_{\mathbf{S}_{\mathbf{i}}} \phi\left(\left(\mathbf{r}-\mathbf{r}^{\prime}\right) / \xi\right) \sigma\left(\mathbf{r}^{\prime}\right) \mathrm{d} s^{\prime}
\end{gathered}
$$

where $\left(\mathrm{v}_{i}\right)_{i=1, n}$ verifies:

$$
\sum_{j=1}^{n} \mathrm{M}^{i j} v_{j}=\mathrm{d}_{o b s}^{i}-\int_{\mathbf{S}_{\mathbf{i}}} \mathrm{h}^{i}(\mathbf{r}) \mathrm{n}_{\text {prior }}(\mathbf{r}) \mathrm{d} s
$$

with : $\quad \mathrm{M}^{i j}=\mathbf{C}_{d}^{i j}+\int_{\mathbf{S}_{\mathbf{i}} \times \mathbf{S}_{\mathbf{j}}} \sigma(\mathbf{r}) \phi\left(\left(\mathbf{r}-\mathbf{r}^{\prime}\right) / \xi\right) \sigma\left(\mathbf{r}^{\prime}\right) \mathrm{d} s \mathrm{~d} s^{\prime}$

$$
\text { and }: \quad \phi(\mathbf{r})=\exp (-\|\mathbf{r}\|), \quad \sigma(\mathbf{r})=\left(\frac{\xi_{0}}{\xi}\right)^{d / 2} \sigma_{0}
$$

7 sources, 17 receptors, 107 rays
 $$
\sigma d=0.01 \mathrm{~s}, \quad \xi 0=50 \mathrm{~m}
$$

Damping versus Smoothing

Damping versus Smoothing Comparison to true model

'L-Curve' and true model

Damping versus Smoothing d=1

$\mathrm{xi}=0.5 \mathrm{~km}$, sigma $_{0}=0.15$

$x i=0.5 \mathrm{~km}$, sigma $_{0}=1$

$x \mathrm{i}=0.5 \mathrm{~km}$, sigma $_{0}=5$

$x i=2.5 \mathrm{~km}$, sigma $_{0}=0.15$

$x i=2.5 \mathrm{~km}$, sigma $_{0}=1$

$x i=2.5 \mathrm{~km}$, sigma $_{0}=5$

$x i=4 k m$, sigma $_{0}=0.15$

$$
x i=4 k m, \text { sigma }_{0}=1
$$

$x i=4 k m$, sigma $_{0}=5$

$\mathrm{xi}=7.5 \mathrm{~km}$, sigma $_{0}=0.05$

$x i=7.5 \mathrm{~km}$, sigma $_{0}=0.15$

$\mathrm{xi}=7.5 \mathrm{~km}$, sigma $_{0}=1$

$x i=7.5 \mathrm{~km}$, sigma $_{0}=5$

$x i=20 \mathrm{~km}$, sigma $_{0}=0.05$

$\mathrm{xi}=20 \mathrm{~km}$, sigma $\mathrm{O}_{0}=0.15$

$$
x i=20 \mathrm{~km}, \text { sigma }_{0}=1
$$

$x i=20 \mathrm{~km}$, sigma $_{0}=5$

$\mathrm{d}=1$

$x i=0.5 \mathrm{~km}$, sigma $_{0}=0.05$

$$
\mathrm{xi}=0.5 \mathrm{~km}, \text { sigma }_{0}=0.15
$$

$$
\mathrm{xi}=0.5 \mathrm{~km}, \text { sigma }_{0}=1
$$

$\mathrm{xi}=2.5 \mathrm{~km}$, sigma $_{0}=0.05$

$x i=2.5 \mathrm{~km}$, sigma $_{0}=0.15$

$\mathrm{xi}=2.5 \mathrm{~km}$, sigma $_{0}=1$

$\mathrm{xi}=2.5 \mathrm{~km}$, sigma $_{0}=5$

$\mathrm{xi}=4 \mathrm{~km}$, sigma $_{0}=0.05$

$$
x \mathrm{i}=4 \mathrm{~km}, \text { sigma }_{0}=0.15
$$

$x i=4 \mathrm{~km}$, sigma $_{0}=1$

$x i=7.5 \mathrm{~km}$, sigma $_{0}=0.05$

$x \mathrm{i}=7.5 \mathrm{~km}$, sigma $_{0}=0.15$

$\mathrm{xi}=7.5 \mathrm{~km}$, sigma $_{0}=1$

$\mathrm{xi}=20 \mathrm{~km}$, sigma $_{0}=0.05$

$x i=20 \mathrm{~km}$, sigma $_{0}=0.15$

$x i=20 \mathrm{~km}$, sigma $_{0}=1$

$x i=20 \mathrm{~km}$, sigma $_{0}=5$

Averaging Index

$x i=5 \mathrm{~km}$

Stochastic Approach provides efficient tools to regularize under-constrained tomographic problems

Thank You

