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Introduction: Muon Geotomography

Cosmic Muons at sea level and
underground:

Intensity is available and well known

Example: PRD 58 054001. Vertical
intensity vs. standard rock depth

Muon penetration in rocksMuon penetration in rocks

Energy loss: predominately by
ionization. dE

dx
∼0.6 GeV/m in

standard rock

Multiple scattering: very small for
high energy muons

Search for anomalous structures
using muon attenuation
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Introduction: history

E.P. George (1955) L.W. Alvarez et al. (1970)
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Forward Model and Inversion

Forward Model

c©UBC-GIF

Forward model: predict observed data set given a model of rock
density

Invert

c©UBC-GIF

Inversion: solve 3D rock density distribution given observed data
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Forward Model

Forward modelForward model

Given topological data and target
ore body

Calculate mass length
∫
ρdL (or

anomalous mass length
∫

∆ρdL)

Calculate muon flux at detector
level

Estimate muon counts (used for
uncertainty estimate)

Simulation samplesSimulation samples

Based on forward model, generate noise data

Used to design survey and perform NULL hypotheses tests
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Inversion: principle

Solving inversion problem is similar to most of geophysical survey
techniques

Essentially solve the equation below:

d = Am (1)

where d is observed data, A is sensitivity matrix (each element
represents the length of ray i in cell j) and m is the density
matrix to be determined.

Minimize the total objective function to solve the equation:

(d − Am)TD(d − Am)︸ ︷︷ ︸
data misfit

+ (m − m0)TP(m − m0)︸ ︷︷ ︸
model objective function

(2)

where D is weighting matrix and P is a parameter reflecting
structure
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Inversion: flow
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Field Survey: deposit and survey design
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Figure: Top view of anomalous mass length at Price 5 mine

The Price 5 deposit is located at the Myra Falls mine in
Strathcona Park, British Columbia, Canada

Massive sulfide ore body- average ore body density: 3.2 g/cm3;
host rock density: 2.7 g/cm3

Target object is suitable for proof-of-concept trial: shallow;
existing drifts; density map available (by diamond drilling, called
drill data)

Surrounded by 7 detector locations
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Field Survey: 3D drill data

Figure: 3D density contrast image of Price deposit (host rock: 2.7 g/cm3,
average density of deposit: 3.2 g/cm3)
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Field Survey: equipment

Dec 2009 – June 2010

July 2010 – April 2011

July 2010

July 2010
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Field Survey: in field

Location Start Duration Muons Rate
ID date (hours) (×106) (s−1)

C1 20-Jul 348 0.56 0.45

S7 04-Aug 357 0.19 0.15

S6 19-Aug 331 0.19 0.16

S8 02-Sep 334 0.15 0.12

S5 16-Sep 283 0.16 0.16

S4 01-Oct 312 0.24 0.21

S3 15-Oct 504 0.46 0.25

θ

φ

X

Z

Y
0

R
(x0, y0, z0)

θ

φ

0: detector location

X: mine east
Y: mine north
Z: sky
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Result: muon counts underground

(a) Measured extralength: anomalous 
mass length from experiment
(b) Significance: number of sigmas, 
<extralength>/s
(c) Expected extralength calculated 
from drill data

            Signal bins: large significance

            Noise bins: small significance

(a) (b)

(c)
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Results: derived mass and anomalous lengths

Figure: C1, no difference is expected

Use relation of muon
intensity to rock
depth to derive mass
length from measured
muon counts

Get anomalous mass
length by subtracting
topographic length

Either length is input
to inversion software
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Results: derived mass and anomalous lengths

Figure: S5, difference is expected

Use relation of muon
intensity to rock
depth to derive mass
length from measured
muon counts

Get anomalous mass
length by subtracting
topographic length

Either length is input
to inversion software
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Result: inversion of 3D density contrast

Figure: Inversion based on expected
anomalous mass lengths (drill data)

Figure: Inversion of experimental data
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Results: mean density in planes and correlation
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Result: discussion

AmbiguityAmbiguity
How to explain and understand difference between drill data and
inversion?

Inversion is a non-unique procedure

Also limited by relationship between detector locations and ore
body

Geophysicists pick up one good solution.

False positive test:False positive test:
Question: Is the inversion image obtained a result of random
geometry from data noise?
Synthetic data were generated with

no deposit added to the forward model and

same statistical uncertainty as experimental data

and inverted.
We confirmed that observation of the Price deposit was not
an accidental event.
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Summary and Conclusion

Successful field trial has been performed using muon tomography
at a Canadian mine

Inverted 3D density contrast image of the massive sulphide
deposit is similar to a model derived from drill data

Muon tomography may significantly reduce drilling costs to
locate high density contrast ore bodies and become a valuable
survey approach

AAPS is building more detectors with larger sensitive area

Survey accuracy is limited by muon count statistics and detector
locations
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