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Introduction: Muon Geotomography
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Introduction: Muon Geotomography
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Cosmic Muons at sea level and
underground:
@ Intensity is available and well known
@ Example: PRD 58 054001. Vertical
intensity vs. standard rock depth

Muon penetration in rocks
@ Energy loss: predominately by

ionization. 4 ~0.6 GeV/m in

standard rock

@ Multiple scattering: very small for
high energy muons

@ Search for anomalous structures
using muon attenuation
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Introduction: history

Commorwscth Engineer, July 1, 1955 E.P. George (1955) . L.W. Alvarez et al. (1970)
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Forward Model and Inversion
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Forward model: predict observed data set given a model of rock
density
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Forward Model and Inversion
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©UBC-GIF
Forward model: predict observed data set given a model of rock
density

Invert 17 ann TR B s

©UBC-GIF
Inversion: solve 3D rock density distribution given observed data
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Forward Model

Forward model

e Given topological data and target

2.4 Y ore body

e Calculate mass length [ pdL (or
anomalous mass length [ ApdL)

e Calculate muon flux at detector
level

o Estimate muon counts (used for
uncertainty estimate)
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Forward Model

Forward model
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Forward Model

Forward model

§*HH%§&;%%§
3 H e Given topological data and target
ore body

e Calculate mass length [ pdL (or
anomalous mass length [ ApdL)

# of Muons

».
.»,

e Calculate muon flux at detector
level

o Estimate muon counts (used for
uncertainty estimate)

Simulation samples
@ Based on forward model, generate noise data

@ Used to design survey and perform NULL hypotheses tests
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Inversion: principle

Solving inversion problem is similar to most of geophysical survey
techniques

Essentially solve the equation below:
d=Am (1)

where d is observed data, A is sensitivity matrix (each element
represents the length of ray i in cell j) and m is the density
matrix to be determined.

Minimize the total objective function to solve the equation:

(d—Am)TD(d — Am) + (m — mg)"P(m — my) (2)

data misfit model objective function

where D is weighting matrix and P is a parameter reflecting
structure
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Inversion: principle

@ Solving inversion problem is similar to most of geophysical survey
techniques

o Essentially solve the equation below:
d=Am (1)
where d is observed data, A is sensitivity matrix (each element

represents the length of ray i in cell j) and m is the density
matrix to be determined.

Minimize the total objective function to solve the equation:

(d—Am)TD(d — Am) + (m — mg)"P(m — my) (2)

data misfit model objective function

where D is weighting matrix and P is a parameter reflecting
structure
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Inversion: flow

Given:
Field observation; error estimates;
Forward model; prior knowledge

|

Discretize the Earth

| |
i v v

Choose a suitable misfit criterion Design model objective function <

| |
v

Invert

Evaluate results
[ oo |

Interpret preferred models

Copyright UBC-GIF
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Field Survey: deposit and survey design
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Figure: Top view of anomalous mass length at Price 5 mine

@ The Price 5 deposit is located at the Myra Falls mine in
Strathcona Park, British Columbia, Canada

e Massive sulfide ore body- average ore body density: 3.2 g/cm3;
host rock density: 2.7 g/cm?

@ Target object is suitable for proof-of-concept trial: shallow;
existing drifts; density map available (by diamond drilling, called
drill data)

@ Surrounded by 7 detector locations Slide 23
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Figure: Top view of anomalous mass length at Price 5 mine

@ The Price 5 deposit is located at the Myra Falls mine in
Strathcona Park, British Columbia, Canada

@ Massive sulfide ore body- average ore body density: 3.2 g/cm?;
host rock density: 2.7 g/cm?

@ Target object is suitable for proof-of-concept trial: shallow;

existing drifts; density map available (by diamond drilling, called
drill data)
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@ The Price 5 deposit is located at the Myra Falls mine in
Strathcona Park, British Columbia, Canada

@ Massive sulfide ore body- average ore body density: 3.2 g/cm?;
host rock density: 2.7 g/cm?

o Target object is suitable for proof-of-concept trial: shallow;
existing drifts; density map available (by diamond drilling, called
drill data)
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Field Survey: deposit and survey design

tons/m?
3450 tunnel 35
detector location 30

A\
.a\..-g t

F e SIS

33060 —B050 5100 5150 5200 5250 5300 5350 °
X (m)

Figure: Top view of anomalous mass length at Price 5 mine

@ The Price 5 deposit is located at the Myra Falls mine in
Strathcona Park, British Columbia, Canada

@ Massive sulfide ore body- average ore body density: 3.2 g/cm?;
host rock density: 2.7 g/cm?

@ Target object is suitable for proof-of-concept trial: shallow;
existing drifts; density map available (by diamond drilling, called

drill data)

@ Surrounded by 7 detector locations Slide 27
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Field Survey: 3D drill data

5023 South 5146

Figure: 3D density contrast image of Price deposit (host rock: 2.7 g/ cm?,
average density of deposit: 3.2 g/cm?) Slide 28
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July 2010

ield Survey: equipment
Dec 2009 — June 2010

July 2010

Zhiyi Liu

[m]
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Field Survey: in field

Location Start Duration | Muons | Rate
ID date (hours) | (x106) | (s71)
C1 20-Jul 348 0.56 0.45
S7 04-Aug 357 0.19 0.15
S6 19-Aug 331 0.19 0.16
S8 02-Sep 334 0.15 | 0.12
S5 16-Sep 283 0.16 0.16
S4 01-Oct 312 0.24 0.21
S3 15-Oct 504 0.46 0.25
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Field Survey: in field

Location Start Duration | Muons | Rate
ID date (hours) | (x106) | (s71)
C1 20-Jul 348 0.56 0.45
S7 04-Aug 357 0.19 0.15
S6 19-Aug 331 0.19 0.16
S8 02-Sep 334 0.15 | 0.12
S5 16-Sep 283 0.16 0.16
S4 01-Oct 312 0.24 0.21
S3 15-Oct 504 0.46 0.25
0: detector location 3]

X: mine east

Y: mine north

Z: sky
/w,
0
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Result: muon counts underground

£O

Measured extra-length in hg/cc at S5

Significance (no): Extralength /o,
S

I .

0 3
(b) olrad]
(a) Measured extra-length: anomalous
mass length from experiment

(b) Significance: number of sigmas,
<extra-length>/s

(c) Expected extra-length calculated
from drill data

o Signal bins: large significance

i Noise bins: small significance
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Results: derived mass and anomalous lengths
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& = . .
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Figure: C1, no difference is expected Slide 33
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Results: derived mass and anomalous lengths

Length Difference [m]

-
o
-
o
s
Y
=

Topography uncertainty { 10 m)
Topography length
——+—— Derived length at S5

length + deposit extra-length

3 2 & I 3
¢ [rad]

A A

. B
¢ [rad]

Figure: S5, difference is expected

@ Use relation of muon
intensity to rock
depth to derive mass
length from measured
muon counts

@ Get anomalous mass
length by subtracting
topographic length

@ Either length is input
to inversion software
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Result: inversion of 3D density contrast

wie|s|n|r|s|]c| BB
B0

5151
South

Figure: Inve ed on expected
1alous mass lengths (drill data)
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Results: mean density in planes and correlation

[ Mean density in Planes xy | e L. o000 g
- Density; 0:012 glcc
— — Density: 0.018 g/cc
Density: 0.024 g/cc. Density: 0.027 g/cc.
E 3500 b cMot Data /¢ CM of Inverted Data 0.018
> E /\ CMofInvefted Datai(p>0) X/ CMof Inverted Data (p<0)
- —10.016
34501
s —0.014
3400 —0.012
3350 : —0.01
- ~10.008
3300}
- —0.006
3250 x 0.004
3200 0.002
L L1l Ll 1 0

4900 4950 5000 5050 5100 5150 5200 5250 5300 5350
x [m]

@ Mean density in xy, yz and xz planes
e Comparison between inversion of drill data (styled black lines)

and inversion of experimental data (coloured bins) Slide 36
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Results: mean density in planes and correlation

[ Mean density in Planes yz | o oo
— - — Density: 0.006 g/cc - Density: 0.008 g/cc
— — Density:0.010g/cc  —-- - Density: 0.011 glcc
Density: 0.013 g/cc Density: 0.014 g/cc.
E C 2L CM of Reference Data ¥ CMof Inverted Data 0.009
N 395Gf /\ CMafinverted Data (p>0) \/ CM of Inyerted Data (p<0) 0.008
sgocf —0.007
E —10.006
3850
E —0.005
3800
E —10.004
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3700 0.002
36501 E 0.001
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@ Mean density in xy, yz and xz planes
e Comparison between inversion of drill data (styled black lines)
and inversion of experimental data (coloured bins) Stide 87
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Results: mean density in planes and correlation

[ Mean density in Planes xz | e L. poney-00 e
- Densiiy; 0:005 glcc
— -~ Density: 0.009 g/cc
Density: 0.011 g/cc
E : Cp  CM of Reference Data 5% CMof Inverted Data 0.01
N 3950f /\ CMofInvefted Datai(p>0) X/ CMof Inverted Data (p<0)
3900° —0.008
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3800
- —0.004
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@ Mean density in xy, yz and xz planes
e Comparison between inversion of drill data (styled black lines)
and inversion of experimental data (coloured bins) Slide 38
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Results: mean density in planes and correlation

Inversion of Drill Data | Inversion of Experimental data | Difference
Extra-mass 14.5K tons 15.5K tons 1.0K tons
Pextra-mass 0.026 g/cm? 0.024 g/cm® 0.002 g/cm®
rom 5158.7 m 5124.6 m 34.1m
YoM 3384.9 m 3408.7 m -23.8 m
Z0M 3685.0 m 3705.1 m -20.1 m

@ Mean density in xy, yz and xz planes
e Comparison between inversion of drill data (styled black lines)
and inversion of experimental data (coloured bins)
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Result: discussion

Ambiguity
How to explain and understand difference between drill data and
inversion?
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Result: discussion

Ambiguity

How to explain and understand difference between drill data and
inversion?

@ Inversion is a non-unique procedure

@ Also limited by relationship between detector locations and ore
body

Geophysicists pick up one good solution.
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Ambiguity
How to explain and understand difference between drill data and
inversion?

@ Inversion is a non-unique procedure
@ Also limited by relationship between detector locations and ore
body

Geophysicists pick up one good solution.

False positive test:

Question: Is the inversion image obtained a result of random
geometry from data noise?
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Result: discussion

Ambiguity
How to explain and understand difference between drill data and
inversion?

@ Inversion is a non-unique procedure

@ Also limited by relationship between detector locations and ore
body

Geophysicists pick up one good solution.

False positive test:

Question: Is the inversion image obtained a result of random
geometry from data noise?

Synthetic data were generated with

@ no deposit added to the forward model and
@ same statistical uncertainty as experimental data

and inverted.
We confirmed that observation of the Price deposit was not

an accidental event.
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Summary and Conclusion

@ Successful field trial has been performed using muon tomography
at a Canadian mine

@ Inverted 3D density contrast image of the massive sulphide
deposit is similar to a model derived from drill data

@ Muon tomography may significantly reduce drilling costs to
locate high density contrast ore bodies and become a valuable
survey approach

@ AAPS is building more detectors with larger sensitive area

@ Survey accuracy is limited by muon count statistics and detector
locations
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