Application of Muon Geotomography to Mineral Exploration

Zhiyi Liu on behalf of the AAPS Geotomography Team Advanced Applied Physics Solutions

Slide 1

Muon and Neutrino Radiography 2012 Clermont-Ferrand, France

April 19, 2012

- Introduction: Muon geotomography
- Forward Model and Inversion
- Proof of Principle
 - Survey design
 - Equipment
 - Surveying
- Data and Results
- Discussion and Summary

Slide 2 ৩৭.৫

- Introduction: Muon geotomography
- Forward Model and Inversion
- Proof of Principle
 - Survey design
 - Equipment
 - Surveying
- Data and Results
- Discussion and Summary

Slide 3 ৩৭.৫

- Introduction: Muon geotomography
- Forward Model and Inversion
- Proof of Principle
 - Survey design
 - Equipment
 - Surveying
- Data and Results
- Discussion and Summary

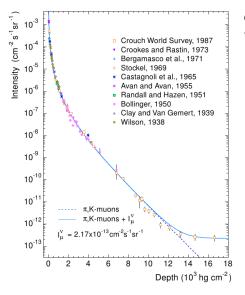
Slide 4

- Introduction: Muon geotomography
- Forward Model and Inversion
- Proof of Principle
 - Survey design
 - Equipment
 - Surveying
- Data and Results
- Discussion and Summary

Slide 5 ৩৭.৫

- Introduction: Muon geotomography
- Forward Model and Inversion
- Proof of Principle
 - Survey design
 - Equipment
 - Surveying
- Data and Results
- Discussion and Summary

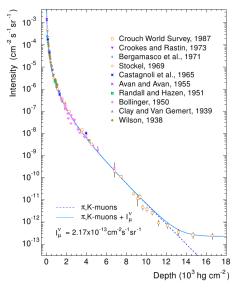
Slide 6 • १९९०


4 萬市

- Introduction: Muon geotomography
- Forward Model and Inversion
- Proof of Principle
 - Survey design
 - Equipment
 - Surveying
- Data and Results
- Discussion and Summary

Slide 7 ৩৭.৫

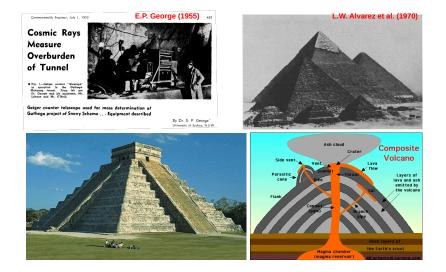
4 E b


Introduction: Muon Geotomography

Cosmic Muons at sea level and underground:

- Intensity is available and well known
- Example: PRD 58 054001. Vertical intensity vs. standard rock depth

Introduction: Muon Geotomography

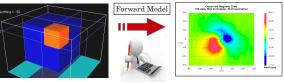

Cosmic Muons at sea level and underground:

- Intensity is available and well known
- Example: PRD 58 054001. Vertical intensity vs. standard rock depth

Muon penetration in rocks

- Energy loss: predominately by ionization. $\frac{dE}{dx} \sim 0.6 \text{ GeV/m in}$ standard rock
- Multiple scattering: very small for high energy muons
- Search for anomalous structures using muon attenuation

Introduction: history

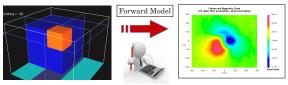


Slide 10

э

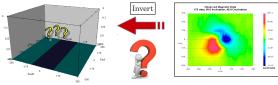
JQC.

Forward Model and Inversion

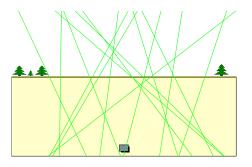


©UBC-GIF

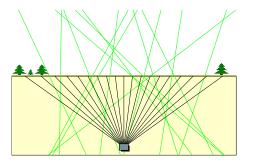
Forward model: predict observed data set given a model of rock density



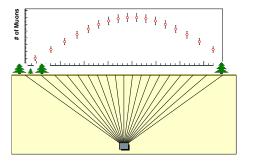
Forward Model and Inversion


©UBC-GIF

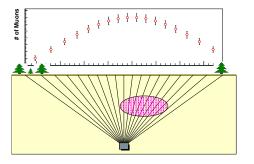
Forward model: predict observed data set given a model of rock density


©UBC-GIF

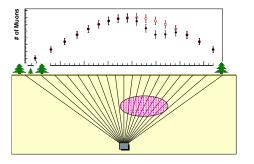
Inversion: solve 3D rock density distribution given observed data


Forward model

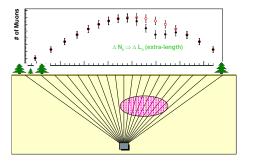
- Given topological data and target ore body
- Calculate mass length $\int \rho dL$ (or anomalous mass length $\int \Delta \rho dL$)
- Calculate muon flux at detector level
- Estimate muon counts (used for uncertainty estimate)


Forward model

- Given topological data and target ore body
- Calculate mass length $\int \rho dL$ (or anomalous mass length $\int \Delta \rho dL$)
- Calculate muon flux at detector level
- Estimate muon counts (used for uncertainty estimate)


Forward model

- Given topological data and target ore body
- Calculate mass length $\int \rho dL$ (or anomalous mass length $\int \Delta \rho dL$)
- Calculate muon flux at detector level
- Estimate muon counts (used for uncertainty estimate)


Forward model

- Given topological data and target ore body
- Calculate mass length $\int \rho dL$ (or anomalous mass length $\int \Delta \rho dL$)
- Calculate muon flux at detector level
- Estimate muon counts (used for uncertainty estimate)

Forward model

- Given topological data and target ore body
- Calculate mass length $\int \rho dL$ (or anomalous mass length $\int \Delta \rho dL$)
- Calculate muon flux at detector level
- Estimate muon counts (used for uncertainty estimate)

Forward model

- Given topological data and target ore body
- Calculate mass length $\int \rho dL$ (or anomalous mass length $\int \Delta \rho dL$)
- Calculate muon flux at detector level
- Estimate muon counts (used for uncertainty estimate)

Slide 18

Simulation samples

- Based on forward model, generate noise data
- Used to design survey and perform NULL hypotheses tests

Inversion: principle

- Solving inversion problem is similar to most of geophysical survey techniques
- Essentially solve the equation below:

$$\mathbf{d} = \mathbf{A}\mathbf{m} \tag{1}$$

where **d** is observed data, **A** is sensitivity matrix (each element represents the length of ray i in cell j) and **m** is the density matrix to be determined.

Minimize the total objective function to solve the equation:

$$\underbrace{(\mathbf{d} - \mathbf{A}\mathbf{m})^{\mathrm{T}}\mathbf{D}(\mathbf{d} - \mathbf{A}\mathbf{m})}_{\text{data misfit}} + \underbrace{(\mathbf{m} - \mathbf{m}_{\mathbf{0}})^{\mathrm{T}}\mathbf{P}(\mathbf{m} - \mathbf{m}_{\mathbf{0}})}_{\text{model objective function}}$$
(2)

where D is weighting matrix and P is a parameter reflecting structure

Inversion: principle

- Solving inversion problem is similar to most of geophysical survey techniques
- Essentially solve the equation below:

$$\mathbf{d} = \mathbf{A}\mathbf{m} \tag{1}$$

where **d** is observed data, **A** is sensitivity matrix (each element represents the length of ray i in cell j) and **m** is the density matrix to be determined.

Minimize the total objective function to solve the equation:

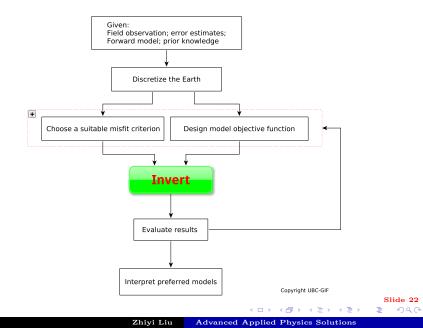
$$\underbrace{(\mathbf{d} - \mathbf{A}\mathbf{m})^{\mathrm{T}}\mathbf{D}(\mathbf{d} - \mathbf{A}\mathbf{m})}_{\text{data misfit}} + \underbrace{(\mathbf{m} - \mathbf{m}_{\mathbf{0}})^{\mathrm{T}}\mathbf{P}(\mathbf{m} - \mathbf{m}_{\mathbf{0}})}_{\text{model objective function}}$$
(2)

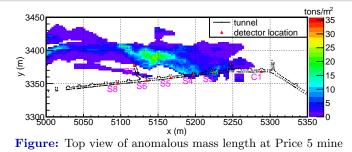
where D is weighting matrix and P is a parameter reflecting structure

Inversion: principle

- Solving inversion problem is similar to most of geophysical survey techniques
- Essentially solve the equation below:

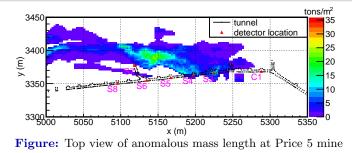
$$\mathbf{d} = \mathbf{A}\mathbf{m} \tag{1}$$

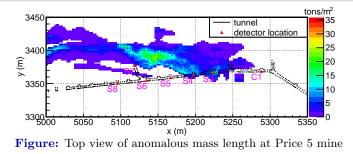

where **d** is observed data, **A** is sensitivity matrix (each element represents the length of ray i in cell j) and **m** is the density matrix to be determined.


Minimize the total objective function to solve the equation:

$$\underbrace{(\mathbf{d} - \mathbf{A}\mathbf{m})^{\mathrm{T}}\mathbf{D}(\mathbf{d} - \mathbf{A}\mathbf{m})}_{\text{data misfit}} + \underbrace{(\mathbf{m} - \mathbf{m}_{\mathbf{0}})^{\mathrm{T}}\mathbf{P}(\mathbf{m} - \mathbf{m}_{\mathbf{0}})}_{\text{model objective function}}$$
(2)

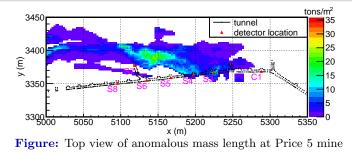
where D is weighting matrix and P is a parameter reflecting structure


Inversion: flow

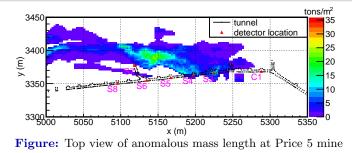


- The Price 5 deposit is located at the Myra Falls mine in Strathcona Park, British Columbia, Canada
- \bullet Massive sulfide ore body- average ore body density: 3.2 g/cm^3; host rock density: 2.7 g/cm^3
- Target object is suitable for proof-of-concept trial: shallow; existing drifts; density map available (by diamond drilling, called *drill data*)
- Surrounded by 7 detector locations

lide 23



- The Price 5 deposit is located at the Myra Falls mine in Strathcona Park, British Columbia, Canada
- \bullet Massive sulfide ore body- average ore body density: 3.2 g/cm^3; host rock density: 2.7 g/cm^3
- Target object is suitable for proof-of-concept trial: shallow; existing drifts; density map available (by diamond drilling, called *drill data*)
- Surrounded by 7 detector locations


- The Price 5 deposit is located at the Myra Falls mine in Strathcona Park, British Columbia, Canada
- \bullet Massive sulfide ore body- average ore body density: 3.2 g/cm^3; host rock density: 2.7 g/cm^3
- Target object is suitable for proof-of-concept trial: shallow; existing drifts; density map available (by diamond drilling, called *drill data*)
- Surrounded by 7 detector locations

de 25

- The Price 5 deposit is located at the Myra Falls mine in Strathcona Park, British Columbia, Canada
- Massive sulfide ore body- average ore body density: 3.2 g/cm³; host rock density: 2.7 g/cm³
- Target object is suitable for proof-of-concept trial: shallow; existing drifts; density map available (by diamond drilling, called *drill data*)
- Surrounded by 7 detector locations

de 26

- The Price 5 deposit is located at the Myra Falls mine in Strathcona Park, British Columbia, Canada
- \bullet Massive sulfide ore body- average ore body density: 3.2 g/cm^3; host rock density: 2.7 g/cm^3
- Target object is suitable for proof-of-concept trial: shallow; existing drifts; density map available (by diamond drilling, called *drill data*)
- Surrounded by 7 detector locations

Field Survey: 3D drill data

Figure: 3D density contrast image of Price deposit (host rock: 2.7 g/cm^3 ,average density of deposit: 3.2 g/cm^3)Slide 28

Field Survey: equipment

Zhiyi Liu Advanced Applied Physics Solutions

Slide 29

5900

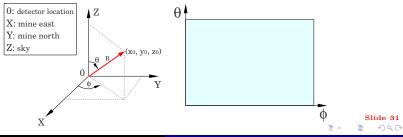
Field Survey: in field

Location	Start	Duration	Muons	Rate
ID	date	(hours)	$(\times 10^6)$	(s^{-1})
C1	20-Jul	348	0.56	0.45
S7	04-Aug	357	0.19	0.15
S6	19-Aug	331	0.19	0.16
S8	02-Sep	334	0.15	0.12
S5	16-Sep	283	0.16	0.16
S4	01-Oct	312	0.24	0.21
S3	15-Oct	504	0.46	0.25

Zhiyi Liu Advanced Applied Physics Solutions

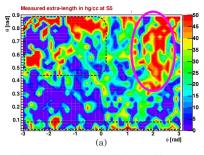
÷,

Slide 30

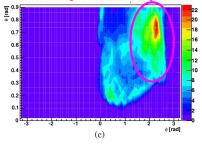

5900

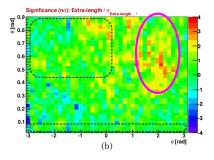
Э

문어 세 문어


Field Survey: in field

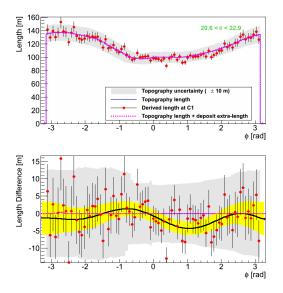
Location	Start	Duration	Muons	Rate
ID	date	(hours)	$(\times 10^{6})$	(s^{-1})
C1	20-Jul	348	0.56	0.45
S7	04-Aug	357	0.19	0.15
S6	19-Aug	331	0.19	0.16
S8	02-Sep	334	0.15	0.12
S5	16-Sep	283	0.16	0.16
S4	01-Oct	312	0.24	0.21
S3	15-Oct	504	0.46	0.25




Zhiyi Liu Advanced Applied Physics Solutions

Result: muon counts underground

Calculated extra-length from bounded drill data in hg/cc



(a) Measured extra-length: anomalous mass length from experiment
(b) Significance: number of sigmas,
<extra-length>/s
(c) Expected extra-length calculated from drill data

Signal bins: large significance Noise bins: small significance

Zhiyi Liu Advanced Applied Physics Solutions

Results: derived mass and anomalous lengths

- Use relation of muon intensity to rock depth to derive mass length from measured muon counts
- Get anomalous mass length by subtracting topographic length
- Either length is input to inversion software

Figure: C1, no difference is expected

Results: derived mass and anomalous lengths

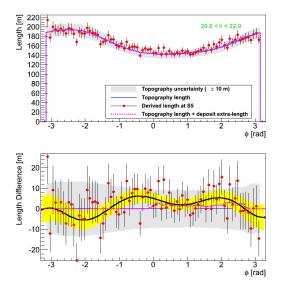


Figure: S5, difference is expected

- Use relation of muon intensity to rock depth to derive mass length from measured muon counts
- Get anomalous mass length by subtracting topographic length
- Either length is input to inversion software

Result: inversion of 3D density contrast

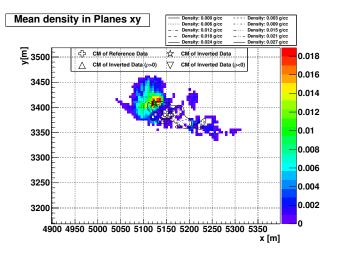
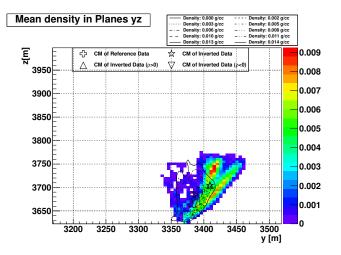
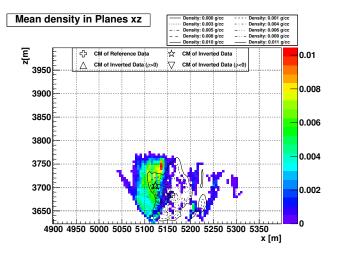

Figure: Inversion based on expected anomalous mass lengths (drill data)

Figure: Inversion of experimental data

Slide 35


B b

Results: mean density in planes and correlation


- Mean density in xy, yz and xz planes
- Comparison between inversion of drill data (styled black lines) and inversion of experimental data (coloured bins)

Results: mean density in planes and correlation

- Mean density in xy, yz and xz planes
- Comparison between inversion of drill data (styled black lines) and inversion of experimental data (coloured bins)

Results: mean density in planes and correlation

- Mean density in xy, yz and xz planes
- Comparison between inversion of drill data (styled black lines) and inversion of experimental data (coloured bins)

	Inversion of Drill Data	Inversion of Experimental data	Difference
Extra-mass	$14.5 \mathrm{K} \mathrm{tons}$	$15.5 \mathrm{K} \mathrm{tons}$	1.0K tons
$\bar{\rho}_{\text{extra-mass}}$	$0.026 \mathrm{~g/cm^3}$	$0.024 \mathrm{~g/cm^3}$	$0.002 \mathrm{~g/cm^3}$
$x_{\rm CM}$	$5158.7 { m m}$	5124.6 m	$34.1 \mathrm{m}$
$y_{\rm CM}$	$3384.9 { m m}$	$3408.7~\mathrm{m}$	-23.8 m
$z_{\rm CM}$	$3685.0 {\rm m}$	3705.1 m	-20.1 m

- Mean density in xy, yz and xz planes
- Comparison between inversion of drill data (styled black lines) and inversion of experimental data (coloured bins)

Ambiguity

How to explain and understand difference between drill data and inversion?

Ambiguity

How to explain and understand difference between drill data and inversion?

- Inversion is a non-unique procedure
- Also limited by relationship between detector locations and ore body

Geophysicists pick up one good solution.

Ambiguity

How to explain and understand difference between drill data and inversion?

- Inversion is a non-unique procedure
- Also limited by relationship between detector locations and ore body

Geophysicists pick up one good solution.

False positive test:

Question: Is the inversion image obtained a result of random geometry from data noise?

Ambiguity

How to explain and understand difference between drill data and inversion?

- Inversion is a non-unique procedure
- Also limited by relationship between detector locations and ore body

Geophysicists pick up one good solution.

False positive test:

Question: Is the inversion image obtained a result of random geometry from data noise?

Synthetic data were generated with

- no deposit added to the forward model and
- same statistical uncertainty as experimental data

and inverted.

We confirmed that observation of the Price deposit was not an accidental event.

- Successful field trial has been performed using muon tomography at a Canadian mine
- Inverted 3D density contrast image of the massive sulphide deposit is similar to a model derived from drill data
- Muon tomography may significantly reduce drilling costs to locate high density contrast ore bodies and become a valuable survey approach
- AAPS is building more detectors with larger sensitive area
- Survey accuracy is limited by muon count statistics and detector locations

- Successful field trial has been performed using muon tomography at a Canadian mine
- Inverted 3D density contrast image of the massive sulphide deposit is similar to a model derived from drill data
- Muon tomography may significantly reduce drilling costs to locate high density contrast ore bodies and become a valuable survey approach
- AAPS is building more detectors with larger sensitive area
- Survey accuracy is limited by muon count statistics and detector locations

- Successful field trial has been performed using muon tomography at a Canadian mine
- Inverted 3D density contrast image of the massive sulphide deposit is similar to a model derived from drill data
- Muon tomography may significantly reduce drilling costs to locate high density contrast ore bodies and become a valuable survey approach
- AAPS is building more detectors with larger sensitive area
- Survey accuracy is limited by muon count statistics and detector locations

- Successful field trial has been performed using muon tomography at a Canadian mine
- Inverted 3D density contrast image of the massive sulphide deposit is similar to a model derived from drill data
- Muon tomography may significantly reduce drilling costs to locate high density contrast ore bodies and become a valuable survey approach
- AAPS is building more detectors with larger sensitive area
- Survey accuracy is limited by muon count statistics and detector locations

- Successful field trial has been performed using muon tomography at a Canadian mine
- Inverted 3D density contrast image of the massive sulphide deposit is similar to a model derived from drill data
- Muon tomography may significantly reduce drilling costs to locate high density contrast ore bodies and become a valuable survey approach
- AAPS is building more detectors with larger sensitive area
- Survey accuracy is limited by muon count statistics and detector locations

- Successful field trial has been performed using muon tomography at a Canadian mine
- Inverted 3D density contrast image of the massive sulphide deposit is similar to a model derived from drill data
- Muon tomography may significantly reduce drilling costs to locate high density contrast ore bodies and become a valuable survey approach
- AAPS is building more detectors with larger sensitive area
- Survey accuracy is limited by muon count statistics and detector locations

Collaborations

AAPS	Doug Bryman, Zhiyi Liu,
	James Bueno, Richard Hydomako
GSC^1	M. Pilkington
$UBC-GIF^2$	D. Oldenberg, K. Davis and V.
	Kaminski
Nyrstar	R. Sawyer

¹Geological Survey of Canada ²University of BC-Geophysical Inversion Facility <□><⊕><⊕><€>><€>>€ € <<<>>><€</p>

Coworkers

Zhiyi Liu Advanced Applied Physics Solutions

<回> < E> < E>

590

æ