# Spinning Registration Reconstruction Quantization

a new reconstruction method for electron tomography

Dr. Maxime Moreaud project leader, research engineer maxime.moreaud@ifpen.fr







#### Electron tomography

- What is ?
  - Tomography using projections from TEM (Transmission Electron Microscopy)
- For what?
  - 3D reconstruction at nanometric scale
- For ?
  - These data help developing new catalysts improving understanding of the porous network















#### Electron tomography: how?

- Put object on a grid in specimen port
- e- pass through the object (parallel geometry)
- Tilt specimen port and acquisitions
- Do tomographic reconstruction

It sounds easy! But...







#### Electron tomography: issue 1

 Tilt of specimen port is limited to ± 70° Reconstruction with incomplete data (limited range of projections)









#### Electron tomography: issue 2

 Mechanical displacement of the specimen port



What we have

Projections not properly aligned with respect to a parallel geometric model of acquisition



What we need \*

<sup>\*</sup> from VD Tran et al., Optimization Methods for Robust Registration of Image Series in Electron Tomography, submitted to 21st International Conference on Pattern Recognition, November 11-15, 2012, Tsukuba Science City, JAPAN







#### **Outline**

#### Spinning Registration Reconstruction Quantization

- Context, electron tomography
- Catalysts supports : specific constraints
- SRRQ method
- Results
- Perspectives





#### 3D TEM, alumino silicate support

#### Catalysts support for refining

- We want to reconstruct an object with:
  - Limited numbers of known phases (two or three)
  - Constant phase, no texture
  - Sharp transitions between phases
- We don't want information about chemical or density of the phases
- We want information about morphology









#### To summarize ...

- We need a reconstruction method complying with :
  - Limited range of projection
  - Misaligned projection
  - Reconstruction of objects with two or three constant phases, and sharp transitions between phases

experimental data constraints

a priori constraints

Spinning Registration Reconstruction Quantization







#### **SRRQ** method

Spinning Registration Reconstruction Quantization

- Alternately and iteratively reconstruction of an object
  - Complying a priori constraints (1)
  - Which some projections complied registrated projections known experimentally



#### SRRQ scheme



<sup>\*</sup> KJ. Batenburg and J. Sijbers. DART: a fast heuristic algebraic reconstruction algorithm for discrete tomography. Proceedings of the IEEE International Conference on Image Processing (ICIP), San Antonio, Texas, USA, September, 2007.



#### SRRQ scheme



<sup>\*</sup> K. He et al., Guided image filtering, Proceedings of the 11th European conference on Computer vision: Part I, Springer-Verlag, Heraklion, Crete, Greece, 2010.

<sup>\*\*</sup> N. Otsu, Threshold selection method from gray-level histogram, IEEE Transactions on Systems, Man, and Cybernetics 9 1 (1979) 62–66.







Two binary datasets (256x256)





Obj. 2

- Limited range of simulated projections on ± 70° (141 proj.)
- White noise added on projections (±10%)
- Random misalignement of projections (±10%)





■ Limited range ± 70° of simulated projections (141 proj.)



13





- Limited range ± 70° of simulated projections (141 proj.)
- White noise added on projections (± 10 %)







- Limited range ± 70° of simulated projections (141 proj.)
- White noise added on projections (± 10 %)

Random misalignement of projections (±10%)









real











ite. 14





- Limited range ± 70° of simulated projections (141 proj.)
- White noise added on projections (± 10 %)
- Random misalignement of projections (±10%)

ite. 2

ite. 5

real





ite. 12

16

ite. 1





#### Perspectives

- Tests on 3D simulations (parallel geometry)
- Tests on real 2D TEM projections (3D reconstruction)
- For segmentation step, test method minimizing projection distance\*
- Integrate and use SRRQ with registration procedure from \*\*

<sup>\*</sup> KJ Batenburg and J Sidjers, Optimization thrshold selection for tomogram segmentation by projection distance minimization, IEEE Transactions on Medical Imaging (2009), Volume: 28, Issue: 5, Pages: 676-686

<sup>\*\*</sup> VD Tran et al., Optimization Methods for Robust Registration of Image Series in Electron Tomography, submitted to 21st International Conference on Pattern Recognition, November 11-15, 2012, Tsukuba Science City, JAPAN





#### Acknowledgment

- **E. Thiebault** (Centre de Recherche Astrophysique de Lyon, France <sup>1</sup>)
- **J.M. Becker** (Laboratoire Hubert Curien, France <sup>2</sup>)
- L. Denis<sup>2</sup>
- **C. Mennessier** (CPE Lyon, France)
- V.D. Tran (IFPEN)
- F. Momey <sup>1</sup>

For their contributing remarks and discussion on this work

## Spinning Registration Reconstruction Quantization a new reconstruction method for electron tomography

Dr. Maxime Moreaud maxime.moreaud@ifpen.fr

### Thank you for your attention

Innovating for energy



www.ifpenergiesnouvelles.com