

Arbor & Shower Fractal Dimension

- advanced shower reconstruction at a highly granular calorimeter

Manqi RUAN

Laboratoire Leprince-Ringuet (LLR) Ecole polytechnique 91128, Palaiseau

30/01/2012

Seminar @ CPPM, email: Manqi.Ruan@llr.in2p3.fr

Part I: Physics @ LC & Highly Granular Calorimeter

Physics @ LC

Klaus Moenig: Physics potential of LC

A LC is needed besides the LHC in any case

30/01/2012

- CLIC: Compact Linear Collider, center-of-mass energy: 0.5 3 TeV. Warm technology (Room temperature & gradient ~ 100MV/m, small bunch spacing).
- ILC: International Linear Collider, center-of-mass energy: 0.5 1.0 TeV. Cold technology (2K & low gradient ~ 31.5 MV/m, large bunch spacing)
- CLIC & ILC: very different accelerators with similar detectors.

Jet resolution & PFA

R

Multifermions + Boson(s)

e+e-H, e+e-Z

Particle Flow Algorithm:

Final states in e+e- interaction up to 1 TeV c.m.s

Measure jets as collections of particles, in the best suited subdetectors

Multi bosons

7H

If perfectly reconstructed:

Di-jet mass for WWvv & ZZvv @ 500GeV

J-C. Brient - IWLC 2010

$$\sigma^2$$
 jet = σ^2 ch. + $\sigma^2 \gamma$ + $\sigma^2 h^0$ gives about $(0.14)^2 E_{jet}$

Resolution & Confusion

The worst enemy: confusion

PFA Oriented LC detectors

 PFA: less confusion ~ good separation: Granularity > Energy Resolution for the Calorimetry...

- PFA Oriented detector (both have ILC/CLIC Versions):
 - ILD (International Large Detector, mostly European + Asia): TPC + Silicon inner detectors tracking with B = 3.5T/4T
 - SiD (Silicon Detector, mostly in US): Silicon tracking with B = 5T

CALICE: PFA Oriented Calorimeter

2 GRPC Digital HCAL with 1 * 1 cm² cell: S_iDHCAL @ EU et al and DHCAL @ US 8

30/01/2012

HCAL: Gas Vs Scintillator

Scintillator:

3*3*0.3 cm³ cell size and analogy readout

- High granularity (1*1*0.12 cm³ or smaller)
- RPC: high efficiency, homogeneous, robust...
- Low cost: digital or Semi-digital (channel coded in 1 or 2 bits) readout...

Gas:

- Free of direct neutron hits

CALICO SDHCAL Prototype @ EU

DRUID, RunNum = 21382, EventNum = 15

DRUID, RunNum = 21382, EventNum = 47

30/01/2012

10k channels

~500k channels! ¹¹

DHCAL Prototype @ US

Cubic meter prototype with 40+ layer: 480k channels!

Seminar @ CPPM

Part II: Shower Reconstruction at an Imaging Calorimetry

DRUID, RunNum = 0, EventNum = 7

DRUID, RunNum = 0, EventNum = 8

Arbor: shower ~ tree

- Start from Mirco structures: Full usage on high granular information
- Original idea from Henri Videau, in hadronic shower reconstruction @ ALEPH

Reconstruction of branches

- Arbor: Promising branch tagging, with lots of potential applications
 - In situ Calibration/Stability monitoring
 - Kink & Pre interaction tagging
 - Track Cluster linking
 - Calo Tracks Measurement:
 - Energy Estimation ~ Leakage correction
 - EM/Had hits tagging

- Momentum reconstruction with Fit (J. Sniff, Princeton/LLR)
 - Using Pratt fit method + error calculation
 - ~10% resolution on MIP track in the barrel & leakage correction using 1 cm² DHCAL cells

Arbor: pion reconstruction

Merging Branches together : Reconstruction of Shower @ Calo

Calorimeter for ILC

Arbor: Separation

DRUID, RunNum = 0, EventNum = 21

Heavy EM Jet: MCParticle + SimuCaloHits

Arbor: Separation

DRUID, RunNum = 0, EventNum = 21

MCParticle + Arbor

Ultimate goal of Arbor: High-precision PFA with high granular calorimetry...

Shower particle: to interact or not

shower ~ self similar (Mandelbrot Set)

Measure shower Fractal Dimension (FD) at high granularity calorimeters

- Count Number of hits at different scale (define RNx = N1mm/Nxmm)
- Varying scale by grouping neighbouring cells

Shower: Self Similar

- Characteristic constant based on energy/PID:
 - $D = < InRN_a/In(a) > + 1$
 - Global parameter based on local density
 - Cell Sizes: 2 10, 20, 30, 50, 60, 90, 120, 150mm.
 - Samples: Particles shot directly to GRPC DHCAL with only B Field
- Be observed within
 - Low scale: minimal interaction energy & sensor layer thickness (1.2mm)
 - High scale: full containment ~ 1 hit per layer

Potential tool for PID

FD together with other info (Nhits): Clear separation at different scales

Remark: Energy dependent Cuts, easier for charged particles

1mm	e+	u	h
e+	998	0	2
u	1	994	5
h	15	14	971

10mm	e+	u	h
e+	1000	0	0
u	0	995	5
h	17	14	969

30mm	e+	u	h
e+	1000	0	0
u	0	996	4
h	18	11	971

Calorimeter for ILC

FD @ different size

Extreme Cases: Pion

- Pion: MIP, Pion decay;
- EM interaction (pi + N = P + pi0); partially identified by interaction point tagging 30/01/2012 Seminar @ CPPM 24

Muon radiation & String noise (electrons trapped in gas layer)...

σ/M: Large cell better at low energy & Smaller cell at high energy.
Linearity: Better at 2 – 5 mm, stronger saturation effects at larger cell...
Naively: 5mm seems a nice choice...

Seminar @ CPPM

FD for Energy Estimation

For example: Compensation based on the correlation of NH_30mm & FD1mm:

E = a * NH_30 + b * FD ~ 30%/sqrt(E)! But...

- Correlation coefficient depending on Energy: b ~ 0.0266*E. To measure cluster energy of charged particle (with track info): to improve track-cluster linking...
- Energy independent (LO) estimator: E = a' * NH_x/(1 FD*b')

Hand put Energy Estimator with FD: NH10/(1-0.65*FD10) Energy resolution improved at high energy: ~ saturation effect correction Linearity improved: closed to 5mm Cell

Summary

- DHCAL with extremely high granularity: Valid @ Simulation and TB data
- Huge reconstruction potential at high granularity calorimeter...
 - Arbor:
 - MIP tagging with lots of potential application:
 - Energy Estimation,
 - Leakage correction
 - ...
 - Future PFA Framework: Better separation, pattern recognition
 - Fractal Dimension:
 - Promising PID
 - Track-clustering matching & energy estimation
 - Not fully investigated...
 - Your dreamed but never realised algorithms

Thank you!

Wish you a happy & fruitful Dragon's Year!

Spare Slides

Reconstruction Software

- Goal: develop & optimize the reconstruction chain for ILD with SDHCAL
- Status & Plans:
 - Detailed simulation and Digitization with experimental input
 - PandoraPFA (Currently Best PFA for the LC) adapted & to be optimized

- Huge potential to improve
 - Shower Clustering & Reconstruction: Arbor
 - PID & Energy Estimation: impaction from Shower Fractal Dimension
- Druid (event display): heavily employed in algorithm development

Noise cleaning

String Noise: Typical in gaseous detector: charged particle tripped In the gas layer (display of 1mm hits Information)

Roughly improve 5% - 10% on Energy Resolution by Cleaning 30/01/2012 Seminar @ CPPM

Interaction based double counting

(Evt 867) Simulation level

Near the Calo

Reconstruction level:

15PFOs Leading PFO (59GeV cluster) identified as 100GeV pion. Others contribute to double counted 32GeV...

To be improved by fitting the PFO position & direction... if coming from same spatial point (besides IP) & Vertex Reconstruction in Tracker...

PFO (PandoraPFANewPFOs) clusted Calo Hit, EventNr = 867 HitEnergy=13292.655 keV PosX = -2004.303 mm, PosY = -652.792 mm, PosZ = -491.392 mm PFOPDG = 211, PFOCharge = 1.000000, PFOEnergy = 100.337669 ClusterEnergy = 58.707069

Evt 646: Interaction Inside TPC (1/3 of the radius)

Confused tracker: 3 LDCTrack found

6PFOs: 2 leading PFO assigned with tracks + cluster, with energy 110GeV (40GeV cluster) and 148GeV (55GeV cluster)

Totally reconstructed energy: 264GeV

Judgement on trk quality? Flag on those kind of evts Rely more on cluster info?

30/01/2012

DRUID, RunNum = 0, EventNum = 7

DRUID, RunNum = 0, EventNum = 8

Part II: Shower Reconstruction at an Imagine Calorimetry

