Recherche du boson de Higgs du Modèle Standard dans le canal $H \rightarrow W^+W^- \rightarrow IvIv$ dans ATLAS

Olivier Arnaez Johannes Gutenberg Mainz Universität

Centre de Physique des Particules de Marseille

12 janvier 2012

Quelle année 2011 !

Depuis son démarrage en 2009, le LHC n'arrête pas de battre des records de luminosité, fournissant toujours plus de collisions aux expériences !

	Nominalement	Fin 2011	A partir d'avril 2012
E _{CM}	14 TeV	7 TeV	8 TeV ?
Luminosité instantanée	10 ³⁴ cm ⁻² s ⁻¹	~3.10 ³³ cm ⁻² s ⁻¹	[5-6].10 ³³ cm ⁻² s ⁻¹
Luminosité intégrée	100 fb ⁻¹ /an	(~500 pb ⁻¹ /semaine)	50 fb⁻¹/an ?
Ecart des collisions	25 ns	50 ns	50 ns a priori

Cependant...

- Le prix à payer est un fort taux « d'empilement »
- Cela pose problème en termes de :
 - Déclenchement
 - Reconstruction et séparation des objets
 - Résolutions (Etmiss)
 - Ressources informatiques
 - Adéquation de la simulation

Effet de l'empilement

- Grande occupation du détecteur
- Stratégie d'ATLAS en matière de déclenchement : privilégier les signatures inclusives à un lepton isolé (généralistes)

• Dépendance des efficacités de sélection :

Sommaire

- Le boson de Higgs
- Le détecteur ATLAS
- Le canal $H \rightarrow W^+W^- \rightarrow IvIv$
 - La sélection
 - Les régions de contrôle
 - Limites d'exclusion
- Autres analyses de recherche de Higgs Modèle Standard dans ATLAS et CMS
- Combinaisons de résultats
- Prochaines étapes

La recherche du boson de Higgs

- Élément manquant du Modèle Standard afin d'expliquer les masses des particules élémentaires
- Bénéficie d'une « grande » section efficace de production au LHC grâce à la forte présence de gluons
- Canal de recherche WW le plus efficace dans la région ~125-190 GeV

A Toroidal LHC ApparatuS

Higgs se désintégrant en WW $\rightarrow l\nu l\nu$

Présentation basée sur arXiv:1112.2577

 Présence de deux leptons de hautes énergies isolés et de charges opposées

 \rightarrow suppression d'une partie du fond multi-jets et W/Z+jets

- Grande énergie transverse manquante due aux neutrinos \rightarrow distinguo avec les processus Drell-Yan Z/ γ^*
- Spin 0 du Higgs → petit angle d'ouverture des leptons → topologie différente du continuum di-boson WW
- Canal privilégié grâce à son grand rapport d'embranchement et son état final clair
- Expérience de comptage effectuée sur le spectre de masse du Higgs entre 110 et 300 GeV avec des coupures dépendant de l'hypothèse de masse testée
- Résultats présentés ici pour une luminosité intégrée de 2.05 fb⁻¹

12 janvier 2012

Sélection (1) : les leptons

- Les événements doivent contenir deux leptons (coupures strictes) isolés de charge opposées (électrons ou muons)
 - Les électrons doivent avoir $p_{\tau} > 20 \text{ GeV}$;
 - Les muons doivent avoir $p_{\tau} > 15 \text{ GeV}$;
 - Au moins un lepton par événement doit avoir $p_{_{T}}$ > 25 GeV et déclenché l'acquisition des données.
- L'analyse applique un Z-veto et supprime les résonances à basses masses (Y en particulier) dans les canaux e-e et μ - μ en supprimant les régions $|m_{\mu} m_{\mu}| < 15 \text{ GeV}$ et $m_{\mu} < 15 \text{ GeV}$

Dans le canal e- μ , on applique également m₁ > 10 GeV.

Sélection (2) : E₋ manquante

- De façon à réduire les fonds n'ayant pas pas de neutrino dans l'état final (DY/Z, ZZ, di-jets), on requiert une grande énergie transverse manquante
 - E_{-} miss > 40 GeV pour e-e et μ - μ
 - E_{-} miss > 25 GeV pour e- μ
- En fait, on utilise une projection (E_{T} miss_{ra}) de l'énergie transverse manquante :
 - $E_{T}miss_{rel} = E_{T}miss_{rel} si \Delta \phi > \pi/2$

 660 ± 50

 300 ± 200

 $E_{T}miss_{rol} = E_{T}miss_{rol}.sin(\Delta \phi) si \Delta \phi > \pi/2$

Avec $\Delta \phi = \min(\Delta \phi(E_{\tau}miss, I), \Delta \phi(E_{\tau}miss, jet))$

pour réduire l'impact de mauvaises mesures de l'énergie des particules sur l'énergie transverse manguante

12 janvier 2012

Olivier Arnaez - Recherche du boson de Higgs en paires WW

 2700 ± 300

 310 ± 40

 28 ± 4

4051

 4000 ± 500

Sélection (3) : Séparation en nombre de jets

- La composition du fond et les modes de production du Higgs (ggF, VBF, VH) étant différents, il est plus efficace de procéder à une optimisation des coupures de sélection en fonction du nombre de jets
- À cause de l'empilement, nous utilisons seulement les jets avec $E_{\perp} > 25$ GeV et $|\eta| < 4.5$
- Ici, seules les analyses avec 0 et 1-jet sont présentées
 - Plus grande sensibilité dans le canal 0-jet (fond principal de WW)
 - Canal à 1 jet également sensible mais fond important de top

Sélection (4) : Coupures analyse-dependent

- Dans l'analyse 0-jet, un fond principal est le DY/Z qui peut être rejeté par une coupure en impulsion transverse $p_{\tau}(II) > 30 \text{ GeV}$
- Dans l'analyse 1-jet, le fond dominant après la présélection est le fond de top :
 - on rejette les événements pour lesquels le jet est *b-tagged* (significance des paramètres d'impact des traces et coupures topologiques sur les vertex secondaires à base de réseau neuronal)
 - on requiert aussi que $|p_{\tau}tot| < 30$ GeV avec $p_{\tau}tot$ la somme vectorielle des impulsions des leptons, du jet et du vecteur d'énergie transverse manquante
 - enfin, on coupe la région correspondant au pic Z $\rightarrow \tau\tau$: $|M_{\tau\tau} M_{z}| < 25 \text{ GeV}$ en utilisant pour M_T l'approximation colinéaire

Sélection (5) : Coupures topologiques

- La présence du fond de continuum QCD WW et du top peut être contrôlée en appliquant des coupures sur :
 - la masse invariante m
 - $m_{_{\rm H}} < 170 \; {\rm GeV}, \qquad m_{_{\rm I}} < \; 50 \; {\rm GeV}$
 - $170 < m_{_{\rm H}} < 220 \text{ GeV}, \quad m_{_{\rm H}} < 65 \text{ GeV}$
 - 220 GeV < $m_{_{\rm H}}$, 50 < $m_{_{\rm H}}$ < 180 GeV
 - l'angle azimuthal entre les leptons (exploitant la corrélation de spin dans les désintégrations du boson de Higgs)
 - $\begin{array}{ll} & m_{_{\rm H}} < 170 \; {\rm GeV}, & \Delta \phi_{_{\rm I}} < 1.3 \\ & 170 < m_{_{\rm H}} < 220 \; {\rm GeV}, & \Delta \phi_{_{\rm I}} < 1.8 \end{array}$
 - la masse transverse : $0.75m_{H} < m_{T} < m_{H}$ avec $m_{T}^{2} = m_{v}^{2} + 2(e_{v}|\mathbf{p}_{T,i}| \mathbf{p}_{T,v}\cdot\mathbf{p}_{T,i})$ et $e_{v}^{2} = \mathbf{p}_{T,v}\cdot\mathbf{p}_{T,v} + m_{v}^{2}$

(v=visible, i=invisible)

Sélection (5) : Coupures topologiques

- La présence du fond de continuum QCD WW et du top peut être contrôlée en appliquant des coupures sur :
 - la masse invariante m
 - $m_{_{\rm H}} < 170 \; {\rm GeV}, \qquad m_{_{\rm H}} < \; 50 \; {\rm GeV}$
 - $170 < m_{_{\rm H}} < 220 \text{ GeV}, \quad m_{_{\rm H}} < 65 \text{ GeV}$
 - 220 GeV < $m_{_{\rm H}}$, 50 < $m_{_{\rm H}}$ < 180 GeV
 - l'angle azimuthal entre les leptons (exploitant la corrélation de spin dans les désintégrations du boson de Higgs)
 - $\begin{array}{ll} & m_{_{\rm H}} < 170 \; {\rm GeV}, & \Delta \phi_{_{\rm I}} < 1.3 \\ & 170 < m_{_{\rm H}} < 220 \; {\rm GeV}, & \Delta \phi_{_{\rm I}} < 1.8 \end{array}$
 - la masse transverse : $0.75m_{_{H}} < m_{_{T}} < m_{_{H}}$ avec $m_{_{T}}^2 = m_{_{v}}^2 + 2(e_v|\mathbf{p}_{_{T,i}}| \mathbf{p}_{_{T,v}}\cdot\mathbf{p}_{_{T,i}})$ et $e_v^2 = \mathbf{p}_{_{T,v}}\cdot\mathbf{p}_{_{T,v}} + m_v^2$

(v=visible, i=invisible)

000000

000000

Olivier Arnaez - Recherche du boson de Higgs en paires WW

3

 $\Delta \phi_{\mu}$ [rad]

Régions de contrôle (1)

• Les fonds dominants sont contrôlés sur les données :

Régions de contrôle (2)

En outre, le fond Drell-Yan prédit par le Monte Carlo est corrigé des imperfections dans le modélage des queues d'énergie transverse manquante (région supérieure à 40 GeV) à partir de la région du pic du Z. Eriss [GeV]

$$A_{
m MC}^{
m corr} = A_{
m MC} rac{B_{
m data}}{D_{
m data}} rac{D_{
m MC}}{B_{
m MC}}$$

Les facteurs de corrections sont entre 0.8 et 0.9, indiquant que le fond dans la région du signal est inférieur à celui prédit par le MC d'environ 15%.

Les estimations dans les autres régions de contrôle sont en bon accord avec les prédictions du Monte Carlo :

Control Regions	Signal	WW	$W+\mathrm{jets}$	$Z/\gamma^* + {\rm jets}$	$t\bar{t}$	tW/tb/tqb	$WZ/ZZ/W\gamma$	Total Bkg.	Observed
WW 0-jet $(m_H < 220 \text{ GeV})$	1.7 ± 0.4	223 ± 30	20 ± 15	6 ± 8	25 ± 10	15 ± 4	8 ± 3	296 ± 36	296
WW 0-jet $(m_H \ge 220 \text{ GeV})$	10 ± 2	173 ± 23	24 ± 12	13 ± 19	15 ± 6	8 ± 3	3.3 ± 0.6	236 ± 33	258
WW 1-jet $(m_H < 220 \text{ GeV})$	1.0 ± 0.3	76 ± 13	5 ± 3	5 ± 5	56 ± 14	23 ± 5	5.3 ± 1.4	171 ± 21	184
WW 1-jet $(m_H \ge 220 \text{ GeV})$	5.8 ± 1.5	51 ± 9	3.9 ± 1.8	10 ± 10	35 ± 9	18 ± 4	2.8 ± 0.6	120 ± 17	129
$t\bar{t}$ 1-jet	0.9 ± 0.3	3.9 ± 1.0	-	1 ± 17	184 ± 64	80 ± 19	0.2 ± 0.9	270 ± 69	249

Résultats

• Nombre d'événements après chaque coupure dans les données la simulation :

$H+0\mathchar`-jet$ Channel	Signal	WW	W + jets	$Z/\gamma^* + \text{jets}$	$t\bar{t}$	tW/tb/tqb	$WZ/ZZ/W\gamma$	Total Bkg.	Observed
Jet Veto	99 ± 21	524 ± 52	84 ± 41	174 ± 169	42 ± 14	32 ± 8	15 ± 4	872 ± 182	920
$p_{\rm T}^{\ell\ell} > 30 { m ~GeV}$	95 ± 20	467 ± 45	69 ± 34	30 ± 12	39 ± 14	29 ± 8	13 ± 4	648 ± 60	700
$m_{\ell\ell} < 50 \mathrm{GeV}$	68 ± 15	118 ± 15	21 ± 8	13 ± 8	7 ± 4	5.8 ± 1.8	1.9 ± 0.6	166 ± 19	199
$\Delta \phi_{\ell\ell} < 1.3$	58 ± 13	91 ± 12	12 ± 5	9 ± 6	6 ± 3	5.8 ± 1.8	1.7 ± 0.6	125 ± 15	149
$0.75 m_H < m_{\rm T} < m_H$	40 ± 9	52 ± 7	5 ± 2	2 ± 4	2.4 ± 1.6	1.5 ± 1.0	1.1 ± 0.5	63 ± 9	81
H + 1-jet Channel	Signal	WW	W + jets	$Z/\gamma^* + {\rm jets}$	$t\bar{t}$	tW/tb/tqb	$WZ/ZZ/W\gamma$	Total Bkg.	Observed
1 jet	50 ± 9	193 ± 20	38 ± 21	74 ± 65	473 ± 124	174 ± 26	14 ± 2	967 ± 145	952
<i>b</i> -jet veto	48 ± 9	188 ± 19	35 ± 19	73 ± 61	174 ± 49	66 ± 11	14 ± 2	549 ± 83	564
$ \mathbf{p}_{\mathrm{T}}^{\mathrm{tot}} < 30 \mathrm{GeV}$	39 ± 7	154 ± 16	18 ± 9	38 ± 32	106 ± 30	50 ± 9	9.7 ± 1.5	376 ± 48	405
$Z \to \tau \tau$ veto	39 ± 7	150 ± 17	18 ± 8	34 ± 23	102 ± 23	48 ± 8	9 ± 2	361 ± 38	388
$m_{\ell\ell} < 50 { m ~GeV}$	26 ± 6	33 ± 5	3.3 ± 1.4	8 ± 7	20 ± 7	11 ± 3	1.8 ± 0.5	77 ± 12	90
$\Delta \phi_{\ell\ell} < 1.3$	23 ± 5	25 ± 4	2.1 ± 1.0	4 ± 6	17 ± 6	9 ± 3	1.5 ± 0.4	60 ± 10	72
$0.75 m_H < m_{\rm T} < m_H$	14 ± 3	12 ± 3	0.9 ± 0.4	1.3 ± 1.9	8 ± 2	4.0 ± 1.6	0.7 ± 0.3	28 ± 4	29

Distributions utilisées pour l'expérience de comptage :

12 janvier 2012

Olivier Arnaez - Recherche du boson de Higgs en paires WW

17/38

Limites d'exclusion (1)

• Une fonction de vraisemblance permet de calculer la significance du signal ainsi que les limites sur la production du boson de Higgs et de produire des figures

synthétiques telles

- Cette fonction est basée sur le produit des probabilités Poisonniennes du nombre d'événements dans la région de signal et les régions de contrôle (WW 0 et 1-jet et top 1-jet) et ce, pour chaque canal de désintégration (e-e, μ-μ, e-μ) et nombre de jets dans l'état final (0 ou 1 jet)
- Les normalisations des sections efficaces de production du fond WW et du top peuvent varier indépendamment dans les régions de contrôle ; les autres composantes sont normalisées en utilisant des paramètres de nuisance de forme gaussienne qui incluent les incertitutes systématiques.

12 janvier 2012

Systématiques (1)

- On considère -8/+12% et ±8% dus à l'échelle QCD et 1% et 4% dus aux PDF comme incertitudes théoriques sur les sections efficaces de production dans les modes gg → H et respectivement qq → qqH. De plus 10% et 20% d'incertitudes sont ajoutées sur les sections efficaces exclusives dans les bins 0-jet et 1-jet.
- En outre les sources de systématiques suivantes sont variées afin d'observer l'effet sur les nombres d'événements attendus :

Source of Uncertainty	Treatment in the analysis
Jet Energy Resolution (JER)	~ 14%, see Ref. [69]
Jet Energy Scale (JES)	Takes into account close-by jets effect, jet flavor composition uncertainty
	and event pile-up uncertainty in addition to global JES uncertainty
	Global JES < 10% for $p_{\rm T}$ > 15 GeV and $ \eta $ < 4.5, see Ref. [70]
	Pile-up uncertainty 2-5% for $ \eta < 2.1$ and 3-7% for 2.1 < $ \eta < 4.5$
	These are summed in quadrature before application.
Electron Selection Efficiency	Separate systematics for electron identification,
	reconstruction and isolation, added in quadrature
	Total uncertainty of 2-5% depending on η and E_T
Electron Energy Scale	Uncertainty smaller than 1%, depending on η and E_T
Electron Energy Resolution	Energy varied within its uncertainty, 0.6% of the energy at most
Muon Selection Efficiency	0.3-1% as a function of η and $p_{\rm T}$
Muon Momentum Scale	η dependent scale offset in $p_{\rm T}$, up to ~ 0.13%
Muon Momentum Resolution	$p_{\rm T}$ and η dependent resolution smearing functions, $\leq 5\%$
b-tagging Efficiency	$p_{\rm T}$ dependent scale factor uncertainties, 5.6-15%, see Ref. [68]
b-tagging Mis-tag Rate	up to 21% as a function of $p_{\rm T}$, see Ref. [68]
Missing Transverse Energy	13.2% uncertainty on topological cluster energy
	Electron and muon $p_{\rm T}$ changes from smearing propagated to MET
	Effect of out-of-time pileup: MET smeared by 5 GeV in 1/3 of MC events
Luminosity	3.7% [25]

Systématiques (2)

• Effet sur les facteurs d'extrapolation :

Limites d'exclusion (2)

• Limites d'exclusion dans les canaux 0 et 1-jet :

Résultat

- Limites d'exclusion à gauche et probabilité de l'hypothèse "fond seul" à droite dans l'analyse H \rightarrow W⁺W⁻ \rightarrow lvlv avec L=2.05 fb-1
- Aucun excès significatif est observé, la déviation la plus grande par rapport au fond attendu étant de 1.9σ.
- En l'absence de signal on s'attend à pouvoir exclure l'intervalle de masse du Higgs [134, 200] GeV à 95% de degré de confiance. L'intervalle effectivement exclu est [145, 206] GeV
- Cette mesure à elle seule permet donc d'exclure à 95% de degré de confiance une large part de l'intervalle qui était encore autorisé en-dessous de 300 GeV

12 janvier 2012

Quid des autres analyses de recherche du boson de Higgs du Modèle Standard au LHC ?

Basé sur les résultats présentés lors du CERN seminar du 13/12/2011 https://indico.cern.ch/conferenceDisplay.py?confId=164890

12 janvier 2012

Les différentes analyses

- Même si H → W⁺W⁻ → lvlv est un canal privilégié dans la région [125, 190] GeV, il ne peut couvrir l'ensemble du spectre en masse non-exclu à ce jour
- D'autres canaux et méthodes de recherche (recherche de pic par exemple) viennent compléter le panel à notre disposition au LHC

Les analyses dans ATLAS

• Mise à jour récente (13/12/2011) de deux analyses clefs dans la région [110,130] GeV

Channel	m _H range (GeV)	Int. lumi fb ⁻¹	Main backgrounds KSnapshot	Number of signal events after cuts	S/B after cuts	Expected σ/σ _{sm} sensitivity
Н→ үү	110-150	4.9 cer	YY, Yj, jj	~70	~0.02	1.6-2
$H \rightarrow \tau \tau \rightarrow +v$	110-140	1.1	Z→ тт, top	~0.8	~0.02	30-60
$H \rightarrow \tau \tau \rightarrow I \tau_{had}$	100-150	1.1	Z→ тт	~10	~5 10 ⁻³	10-25
W/ZH → bbl(l)	110-130	1.1	W/Z+jets, top	~6	~5 10 ⁻³	15-25
H →WW ^(*) → lvlv	110-300	2.1	WW, top, Z+jet	~20 (130 GeV)	~0.3	0.3-8
$H \rightarrow ZZ^{(\star)} \rightarrow 4I$	110-600	e ^{24.8}	ZZ*, top, Zbb	~2.5 (130 GeV)	~1.5	0.7-10
$H \rightarrow ZZ \rightarrow vv$	200-600	2.1	ZZ, top, Z+jets	~20 (400 GeV)	~0.3	0.8-4
$H \rightarrow ZZ \rightarrow II qq$	200-600	2.1	Z+jets, top	2-20 (400 GeV)	0.05-0.5	2-6
$H \rightarrow WW \rightarrow I v q q$	240-600	1.1	W+jets,top,jets	~45 (400 GeV)	10-3	5-10

12 janvier 2012

Les analyses dans CMS

• Mise à jour récente (13/12/2011) de la plupart des analyses :

Channel	m_H range	Lumi	sub-	m_H reso-
Channel	(GeV/c^2)	(fb^{-1})	channels	lution
$H \to \gamma \gamma$	110 - 150	4.7	4	1–3%
$H \to \tau \tau$	110 - 145	4.6	9	20%
$H \rightarrow bb$	110 - 135	4.7	5	10%
$H \to WW \to \ell \nu \ell \nu$	110 - 600	4.6	5	20%
$H \rightarrow ZZ \rightarrow 4\ell$	110 - 600	4.7	3	1-2%
$H \rightarrow ZZ \rightarrow 2\ell 2\tau$	190 - 600	4.7	8	10-15%
$H \rightarrow ZZ \rightarrow 2\ell 2\nu$	250 - 600	4.6	2	7%
$H \rightarrow ZZ \rightarrow 2\ell 2q$	$\left\{ \begin{array}{c} 130 - 164 \\ 200 - 600 \end{array} \right.$	4.6	6	3%

L'analyse H \rightarrow W⁺W⁻ \rightarrow lvlv dans CMS (1)

- Analyse très similaire à celle d'ATLAS
- Mais :

Exclusion : attendue : [129,236] GeV observée : [132,238] GeV

- Coupures en général plus strictes
- Différentes compositions du fond (moins de top, W et Z/DY) pour un total équivalent ?! Allons devoir attendre leur papier pour mieux comprendre...
- Utilise une analyse multivariée (Boosted Decision Tree) pour gagner en significance

- L'analyse de CMS bénéficie grandement du plus grand échantillon de données (~5 fb⁻¹ contre ~2 fb⁻¹ pour ATLAS)
- La méthode multivariée apporte numériquement peu de rejet (~2-3 GeV) sur la borne inférieure mais c'est dans une région de masse plus qu'intéressante !

L'analyse H \rightarrow ZZ* \rightarrow 4

- Analyse sensible sur un grand intervalle de masse
- N'est pas une simple expérience de comptage : présence d'un pic !!
- Peu de fond (ZZ, ttbar), S/B ~ 1
- Acceptance "faible", O(15%)
 - Dans ATLAS, gros travail sur l'acceptance des leptons (GSF, réoptimisation des coupures, meilleur étalonnage...)

L'analyse H \rightarrow ZZ* \rightarrow 4l dans ATLAS

Ensemble du spectre :

Observés : $24 \ 4\mu + 30 \ 2e2\mu + 17 \ 4e = 71$ Attendus pour le fond : 62 ± 9

12 janvier 2012

Olivier Arnaez - Recherche du boson de Higgs en paires WW

3 évts avec mH<140 GeV : 4µ : 124.6 GeV

2µ2e : 123.6 GeV

L'analyse H \rightarrow ZZ* \rightarrow 4I (CMS)

• CMS a des coupures plus lâches :

• Exclusion :

observée : [134, 158] U [180, 305] U [340, 460] GeV attendue : [130,160] U [182, 420] GeV

12 janvier 2012

L'analyse H $\rightarrow \gamma \gamma$

- Excellent sensibilité à basse masse
- Présence d'un pic étroit au-dessus d'un fond irréductible important de QCD diphoton (en principe "lisse")
- Nécessite un bon rejet des fonds γ jet j et une bonne résolution en énergie et sur la position du vertex
- Séparation en catégories (région centrale/à l'avant, convertis/non-convertis,...)
- Contrôle des fonds à partir de la méthode des matrices

L'analyse H $\rightarrow \gamma\gamma$ dans ATLAS

Events / 1 GeV

800

70

60

500

diphoton sampl Data 2011

Background model

SM Higgs boson m = 120 GeV (MC)

√s = 7 TeV, Ldt = 4.9 fb⁻

- ATLAS utilise des photons isolés avec $E_{T}(\gamma_{1}, \gamma_{2}) > (40, 25) \text{ GeV}$
- Séparation également en régions de la direction de la paire γγ
- 400 20000 Events S/B ~ 0.02 18000 Data-driven estimations 300 Ajustement avec yy expected 16000 yj expected 200 une exponentielle 14000 ii expected ATLAS Preliminary 12000 DY expected 100 Exclusion : 10000 ATLAS Preliminary 8000 [114, 115] GeV 100 Data - Bkg model 50 6000 [135, 136] GeV Ldt=4.9 fb⁻¹ 4000 2000 110 120 130 140 150 160 m,, [GeV] γγ DY γİ Déviation max. Observed CL_s limit പ് 95% CL limit on σ/σ_{SN} _ Observed p Data 2011, √s = 7 TeV Expected CL_limit $H \rightarrow \gamma \gamma$ à m_u \sim 126 GeV ATLAS Preliminary ± 1σ SM H $\rightarrow \gamma \gamma$ expected p Ldt = 4.9 fb⁻¹ Data 2011, √s = 7 TeV $\pm 2\sigma$ 2.8σ $Ldt = 4.9 \text{ fb}^{-1}$ 10 LEE 10^{-2} 1.5σ 10^{-3} ATLAS Preliminary 115 120 125 130 135 140 145 130 115 120 125 150 110 135 140 145 m_µ [GeV] m_H [GeV]

12 janvier 2012

L'analyse H $\rightarrow \gamma\gamma$ dans CMS

 CMS utilise des photons dont les seuils en énergie dépendent de l'hypothèse de masse (pT₁ > m_y/3, pT₂ > m_y/4)

Combinaison des canaux

- En général, pour chaque hypothèse de masse du boson de Higgs, plusieurs canaux de recherche sont exploités
- Possibilité de combiner ces différents canaux afin d'extraire des limites d'exclusion :

Combinaison ATLAS

95% CL Limit on σ/σ_{SM}

ATLAS Preliminary

- Observed

---- Expected ±1 σ

+2 σ

- ATLAS étend la zone d'exclusion du boson de Higgs
- A basse masse, seule la région [115.5, 131] GeV est encore autorisée (à 95% de degré de confiance)
- Indication (2.2 σ après LEE dans [110,146 GeV]) pour un signal à m_H ~ 126 GeV compatible à 1 σ

130 135 140

110 115

120 125

145 150

M_L [GeV]

 10^{-7}

100

200

300

400

500

600

M_н [GeV]

2σ

3σ

 4σ

5σ

2011 Data

 $Ldt = 1.0-4.9 \text{ fb}^{-1}$

√s = 7 TeV

Combinaison CMS

- CMS étend la zone d'exclusion jusqu'à 127 GeV à 95% de degré de confiance laissant peu de place à un Higgs Modèle Standard compatible avec les autres paramètres électrofaibles
- Modeste excès d'événements à 124 GeV, 1.9σ après prise en compte du LEE

Conclusion

- L'année 2011 a été très fructueuse en matière de recherche de Higgs !
- La zone d'exclusion a été largement étendue, spécialement à basse masse, laissant peu de place pour un boson de Higgs vérifiant les propriétés du Modèle Standard
- Léger excès dans la région [124, 126] GeV pouvant très bien être une simple fluctuation du fond comme une première indication sur données de la masse du Higgs...
- Dans le futur proche, les collaborations ATLAS et CMS vont publier des papiers sur chacune des analyses contribuant dans cette région ainsi que des combinaisons ATLAS/CMS pour Moriond (aucune combinaison LHC n'est prévue avant Moriond)
- Les collaborations travaillent d'ores et déjà au maintien (et l'amélioration !) des performances dans un contexte de grande luminosité instantanée tel que celui que nous aurons à partir d'avril 2012
- Les ~5 fb⁻¹ enregistrés en mai-juin devraient permettre de clore un chapitre de la physique des particules et peut-être d'en ouvrir un nouveau !

Matière additionnelle

Formes de gerbes EM

Cuts used

- Acceptance of the precision region (η <2.47)
- Leakage in the HAD CAL
- Width of the shower in different samplings
- 2nd largest energy deposit in the strips
- # of track's hits (>1 in pixels, >9 in Si), ratio of highthreshold TRT hits
- Track-matching ($\Delta\eta$ <0.005, $\Delta\phi$ <0.02, E/p)
- Transverse impact parameter (< 1 mm)

• Isolation

Le calorimètre électromagnétique

Calorimètre EM au plomb/LAr divisé en 3 compartiments longitudinaux + pré-échantilloneur en amont

Compartiment	Granularité Δη x Δφ	Longueur de radiation
Pré-échantilloneur	0.025 x 0.1	
Avant	0.003 x 0.1	4.3 X ₀
Milieu	0.025 x 0.025	16 X ₀ ~22X
Arrière	0.05 x 0.025	2 X ₀

- Résolution en énergie : $\frac{\sigma(E)}{E} = \frac{0.3 \, GeV}{E} \oplus \frac{10\%}{\sqrt{E}} \oplus 0.7\%$ Linéarité meilleure que 1%
- Résolution angulaire : $\sigma(\Phi) \sim 10^{-3}$ rad $\sigma(\eta) \sim 5.10^{-4}$ rad

Higgs

ATL-PHYS-PUB-2011-001

12 janvier 2012

Higgs (3)

	~	
Process	Generator	cross-section σ (pb) (× BR)
Inclusive $W \to \ell v$	ALPGEN	10.5×10^3 [57, 58]
Inclusive $Z/\gamma^* \to \ell\ell \ (M_{\ell\ell} > 40 \text{ GeV})$	ALPGEN	10.7×10^2 [58, 59]
Inclusive $Z/\gamma^* \rightarrow \ell \ell \ (10 < M_{\ell \ell} < 40 \text{ GeV})$	ALPGEN	3.9×10^3 [59]
$t\bar{t}$	MC@NLO	164.6
Single top t-channel	AcerMC	64.2 [60, 61]
Single top Wt	AcerMC	15.6 [60, 61]
Single top s-channel	MC@NLO	4.6 [60, 61]
WZ	MC@NLO	18.0
ZZ	MC@NLO	5.6
$qq/qg \rightarrow WW \rightarrow \ell \nu \ell \nu (\ell = e, \mu, \tau)$	MC@NLO	4.7
$gg \to WW \to \ell \nu \ell \nu (\ell = e, \mu, \tau)$	gg2WW	0.14
$\gamma W \rightarrow \ell \nu (\ell = e, \mu, \tau)$	MADGRAPH	135.4
$b\bar{b}$ (2- ℓ filter, $p_{\rm T} > 10$ GeV)	PYTHIA	4270

ATLAS Higgs boson signal simulation:

- POWHEG Monte Carlo + PYTHIA for showering and hadronization for ggH and qqH
- PYTHIA for WH/ZH
- Cross section normalization to NNLO calculations (for gg, VBF and VH processes)
- Reweighting of Higgs boson pT spectrum in gg process (De Florian et al, arXiv:1109.2109)
- Uncertainties according to the recommendations of the LHC Higgs cross-section group

12 janvier 2012

Limites d'exclusion (3)

A likelihood function is constructed that contains a signal region and two control regions for three lepton channels and two jet bins:

$$\mathcal{L}(\mu,\theta) = \prod_{\ell=ee,\mu\mu,e\mu} \prod_{j=0,1} Poisson(N_{\ell j}^{SR}|\mu s_{\ell j} + \alpha_{\ell,j}^{WW}\dot{b}_{e\mu,j}^{WW} + \delta_{j}^{1}\alpha_{\ell,j}^{top}\dot{b}_{e\mu,j}^{top} + \sum_{k} b_{\ell jk})$$

$$Poisson(N_{\ell j}^{WW}|\mu s_{\ell j} + \beta_{\ell,j}^{WW}\dot{b}_{e\mu,j}^{WW} + \delta_{j}^{1}\beta_{\ell,j}^{top}\dot{b}_{e\mu,j}^{top} + \sum_{k} b_{\ell jk})$$

$$Poisson(N_{\ell j}^{top}|\mu s_{\ell j} + \delta_{j}^{1}\dot{b}_{e\mu,j}^{top} + \sum_{k} b_{\ell jk})$$

$$\prod_{\theta} Gaussian(\theta|0, 1)$$

$$(3)$$

Here, μ is the normalized signal strength, the ratio of the cross-section over the SM Higgs boson cross-section, θ represents the full suite of nuisance parameters which are constrained by a Gaussian probability density function (PDF), N represents the number of observed events in each jet and lepton channel region, s represents the expected number of signal events and b the expected number of background events given a particular set of values for the nuisance parameters. The expected number of events in each channel is multiplied by a log-normal response term for each systematic uncertainty that applies to the channel, i.e., $s_{\ell j}$ is the product of the luminosity, cross-section, acceptance, and the product of log-normal functions of each of the systematic uncertainties for the decay channel ℓ and jet multiplicity j.

Additional \dot{b} parameters are introduced without a constraint to normalize the expected number of events in the signal region using the control region. A set of extrapolation factors α (and β), obtained from MC simulation, describe the theoretical knowledge on the ratio of the number of expected events in the signal (or main control) region to the control region.

Profile likelihood : $q_{\mu} = -2 \ln \frac{\mathcal{L}(\mu, \ddot{\theta}_{\mu})}{\mathcal{L}(\hat{\mu}, \hat{\theta})} \stackrel{\hat{\mu}}{\text{and}} \hat{\theta}$ refer to the global maximum of the likelihood and $\hat{\theta}_{\mu}$ corresponds to the conditional maximum likelihood of θ given μ and the data. The constraint $0 \le \hat{\mu} \le \mu$ is applied; the lower bound since the signal is positive and the upper bound to guarantee a one-sided limit.

$$p_{\mu} = P(q_{\mu} \ge q_{\mu}^{obs} \mid \text{signal+background}) = \int_{q_{\mu}^{obs}}^{\infty} f(q_{\mu} \mid \mu, \hat{\theta}_{\mu}^{obs}) dq_{\mu}, \quad p_{0} = P(q_{\mu} \ge q_{\mu}^{obs} \mid \text{background-only}) = \int_{q_{\mu}^{obs}}^{\infty} f(q_{\mu} \mid 0, \hat{\theta}_{0}^{obs}) dq_{\mu}, \quad CLs(\mu) = \frac{p_{\mu}}{p_{0}}$$

For CLs= α the Confidence Level is defined as $(1 - \alpha)$. The observed limit at 95% Confidence Level is set by an iterative procedure on μ .

Limites d'exclusion (4)

12 janvier 2012