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Spectral problem and AdS/CFT correspondence

Spectral problem

I Starting point: N = 4 Super-Yang-Mills theory is a conformal field theory (CFT)

I It depends on two dimensionless parameters: the ’t Hooft coupling λ ≡ g2Y MNc and the
number of colors Nc

I Important observables: spectrum of scaling dimensions ∆ of (local) conformal operators O

AdS/CFT correspondence

(Planar) N = 4 SYM theory is equivalent to (free) type IIB superstring on AdS5 × S5

background

string tension ≡ 2g =
√
λ/2π string coupling ∼ 1/Nc

Dictionnary

Spectrum of (planar) scaling dimensions = spectrum of energies of (free) string

Provides us with a geometrically picture/understanding of the gauge dynamics
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Spectral problem and integrability

Main difficulty: How to confront the gauge and string theory?

I Gauge theory is tractable at weak coupling: λ≪ 1

I String theory is tractable at strong coupling: λ≫ 1

In most cases, to test the correspondence we need control on the weak/strong coupling
interpolation → need non-perturbative methods

Important recent progress: Discovery of integrable structures (in the planar limit)
[Minahan,Zarembo’02],[Beisert,Staudacher’03’05]

[Lipatov’98],[Braun,Derkachov,Korchemsky,Manashov’98],[Belitsky’99]
[Bena,Polchinski,Roiban’03],[Kazakov,Marshakov,Minahan,Zarembo’04]

[Gromov,Kazakov,Vieira’09],[Gromov,Kazakov,Kozak,Vieira’09],
[Bombardelli,Fioravanti,Tateo’09],[Arutyunov,Frolov’09]

→ Complete solution to spectral problem in the planar limit

Motivations:

I Solving the four-dimensional gauge theory (at least in the planar limit)

I Quantizing the string theory on the curved background

I Testing the AdS/CFT correspondence
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Probing the correspondence

Probe: consider (local) operators in the so-called sl(2) sector

O(0) = trDSZJ (0) + mixing

with

I Z a complex scalar field in the adjoint representation of the gauge group

I D ≡ nµDµ a light-cone covariant derivative n2 = 0

They carry spin S and twist (R-charge) J

Spectrum of scaling dimensions
∆ ≡ ∆S,J (λ)

from Bethe ansatz equations (for any coupling λ)
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Outline

Large spin limit

I The string theory point of view: excitations around long rotating GKP string

I The gauge theory perspective: excitations around large spin twist-two operator

I Interpolation via Bethe ansatz equations: all-loop dispersion relations

Small spin limit

I Exact formula for the slope of the (minimal) twist-J scaling dimension
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Large spin limit
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The GKP string

Folded string rotating in AdS3 ⊂ AdS5 with spin S [Gubser,Klebanov,Polyakov’02]

ω ω ω

S
3

S
3

S
3

(a) (b) (c)

I (a) Short string : S ∼ 0 −→ length ∼ S1/2 ∼ 0

I (c) Long string : S ∼ ∞ −→ length = 2 log S ≫ 1 + worldsheet homogeneous

Energy of long GKP string : (string tension) 2g =
√
λ/2π ≫ 1

E ≡ ∆ − S = 4g logS +O(log0 S) −→ 2Γcusp(g) logS + . . .
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Spectrum of excitations from string theory I

Quadratic fluctuations (relativistic spectrum) [Frolov,Tseytlin’02]

I 5 massless bosons for ⊥ fluctuations in S5

I 2 bosons with mass
√

2 for ⊥ fluctuations in AdS5/AdS3

I 1 boson with mass 2 for ⊥ fluctuation in AdS3

I 8 fermions with mass 1

Symmetries [Alday,Maldacena’07]

I All supersymmetries are broken (complicated background)

I SO(2) transverse symmetry

I SO(6) symmetry broken down spontaneously to SO(5) at the perturbative level
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Spectrum of excitations from string theory II

Higher-loop correction?... recently: one-loop correction [Giombi,Ricci,Roiban,Tseytlin’10]

E(p) =
q

p2 +m(g)2
»

1 − c
p2

g
+O(1/g2)

–

I Non relativistic correction controlled by single coefficient c

I Coefficient c depends on flavor of excitation... as correction to mass m(g)

I Spectrum undisturbed otherwise.... though presence of bound states
[Zarembo,Zieme’11]

Non-perturbatively? [Alday,Maldacena’07]

I Low energy effective dynamics: 2D O(6) non-linear sigma model

I Restoration of SO(6) symmetry −→ 6 scalars in O(6) vector multiplet with mass
(dimensional transmutation)

m ∼ e−πg
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Gauge theory picture

Vacuum

Long GKP string = large spin twist-two operator ∼ trZDSZ

Vacuum energy: Evacuum = ∆ − S = 2Γcusp(g) logS + . . .

Excitation

Insertion of operators in the background of covariant derivatives

One-particle state = length-three operator

trZDk1ΦDk2Z

with spin S ∼ k1 + k1 ≫ 1

Fundamental (lightest) excitations

Analogy with BMN operators

−→ a fundamental excitation Φ has twist = (∆ − S)tree-level = 1

Energy: ∆ − S = Evacuum + EΦ(p)

Mass: EΦ(p = 0) = twist +O(g2)
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Spectrum of excitations

Flavors of twist-one excitations

I 6 scalars Z

I 8 fermions Ψ

I 2 field strength components F = F+⊥ ∼ ∂+A⊥ −→ gauge field excitation

Bound states...

... of gauge fields: embedded as length = 1, high-twist operators

Dℓ−1
⊥ F+⊥ twist = ℓ

with ℓ = 1, 2, 3, . . .
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Spectrum of masses

Weak couplingMasses Strong coupling

Scalar

Gauge field

Fermion

?

1

1

1

2

∼ e
−πg

1

√
2

2

‘?’ = D−, F+−, or two-fermion state ?

Interpolation?
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Spectral problem

Large spin operators with J − 2 insertions:

O = trZDk1Φ . . . DkJ−2ΦDkJ−1Z

Elementary excitations: (twist-1 partons)

Φ = Z (scalars), Ψ (fermions) , F+⊥ (gauge fields)

Mixing problem → Spectrum of scaling dimensions at large spin S ∼
P

i ki ≫ 1 ?

Solution:

Eeigenstate = ∆ − S = Etwist-two +
X

i∈excitations

Ei(pi) + . . .
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Spectrum of high-spin operators

Illustration:

One-loop spectrum of anomalous dimensions of twist-3 operators O = trZDk1ZDk2Z
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12

δ∆

S

Goal: parameterize anomalous dimensions trajectories close to the minimal one...

δ∆ − δ∆twist-two = E(p) p ∼ 1/ logS

... and extract the dispersion relation (here for a scalar Z)
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Tool : Integrability

Kinematics

Operators
O{km} = trDk1Z...DkJZ

I trZ...Z...Z → vacuum state of the spin chain

I trZ...DZ...Z → one-particle state of the spin chain (magnon)

Quantum numbers

I Twist J → spin chain length

I Lorentz spin S = k1 + ...+ kJ → number of excitations (magnons) over the vacuum

Z
Z Z

ZZ

Z

Z Z

Z

Spin Chain (Ferromagnetic) Vacuum Two−Magnon State

Z Z

Z Z

DZ Z

Z DZ
Z
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Tool : Integrability

Kinematics

Operators
O{km} = trDk1Z...DkJZ

I trZ...Z...Z → vacuum state of the spin chain

I trZ...DZ...Z → one-particle state of the spin chain (magnon)

Quantum numbers

I Twist J → spin chain length

I Lorentz spin S = k1 + ...+ kJ → number of excitations (magnons) over the vacuum

Dynamics

Callan-Symanzik equation

µ
∂

∂µ
O{km} = −δD · O{km}

I Dilatation operator δD → Hamiltonian of the spin chain

I Spectrum of anomalous dimensions δ∆ → spectrum of energies of the spin chain
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One-loop example

Mapping with sl (2) integrable Heisenberg spin chains
[Lipatov’97],[Braun,Belitsky,Derkachov,Korchemsky,Manashov’98]

[Minahan,Zarembo’02],[Beisert,Staudacher’03]

Kinematics : spin-chain Hilbert space H = V ⊗J
s

I scalar : conformal spin s = 1/2

I fermion : conformal spin s = 1

I gauge field : conformal spin s = 3/2

Dynamics : δD = Hamiltonian of XXXs sl(2) Heisenberg spin chain

I System with J degrees of freedom... and J commuting conserved charges

Liouville definition of a completely integrable system

I The complete family of conserved charges can be diagonalized simultaneously with δD by
means of the algebraic Bethe ansatz
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Bethe ansatz solution

Solution to mixing problem (here for scalar)

I Bethe ansatz equations
 

uk + i
2

uk − i
2

!J

=

S
Y

j ̸=k

uk − uj − i

uk − uj + i

I S magnons ↔ S rapidities uk

I One-loop scaling dimension

∆ = J + S + 2g2
S
X

k=1

1

u2
k + 1/4

+O(g4)
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Large spin limit

Continuum limit of the Bethe ansatz equations [Korchemsky’95],[Belitsky,Gorsky,Korchemsky’06]
[Freyhult,Rej,Staudacher’07]

I Continuous distribution of Bethe roots described by density ρ(u)

I Bethe ansatz equations turn into integral equation for ρ(u)

2πρ(u) =
4J

1 + 4u2
−

J−2
X

l=1

2

(u− ûl)2 + 1
+ 2

Z

dv
ρ(v)

(u− v)2 + 1

I What are the ûl’s?... they are the holes’ rapidities

Particle/hole transformation : trading dynamics of magnons D on spin chain of Z’s for
dynamics of Z’s through the background of D’s

One hole ↔ one Z insertion
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Dispersion relation

Solve integral equation for given set of holes rapidities and compute energy

→ vacuum energy + energy of excitation carrying hole rapidity

Vacuum energy: (twist-two scaling dimension) [Korchemsky’89],[Korchemsky,Marchesini’92]

Evacuum = ∆ − S
˛

˛

twist-two
= 2Γcusp(g) logS +O(log0 S)

with Γcusp(g) = 4g2 +O(g4)

Dispersion relation: (for a hole with rapidity u) [Korchemsky’95], [Belitsky,Gorsky,Korchemsky’06]

I Energy

E(u) = ∆ − S
˛

˛

above vacuum
= 1 + 2g2 (ψ(s+ iu) + ψ(s− iu) − 2ψ(1)) +O(g4)

I Momentum? Look at quantity conjugated to length ‘2 log S’ in effective equations

p(u) = 2u+O(g2)
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Masses

Direct application to computation of the mass = E(p = 0)

General formula:
ms = 1 + 4g2(ψ(s) − ψ(1)) +O(g4)

Elementary (twist-1) excitations:

mscalar = 1 − 8g2 log 2 +O(g4) < 1

mfermion = 1 − 0 · g2 +O(g4) = 1

mgauge-field = 1 + 8g2(1 − log 2) +O(g4) > 1

In qualitative agreement with smooth interpolation with string theory!
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Higher-loop integrability in a nutshell

I BMN vacuum = trZJ with energy ≡ ∆ − J = 0

I Fundamental excitations: BMN mass ≡ ∆ − J = 1, e.g., insertion of a derivative D

I Symmetries: (centrally extended) SU(2|2) × SU(2|2) [Beisert’06]

I Factorizable scattering → Asymptotic Bethe Ansatz (ABA) equations
[Staudacher’04],[Beisert,Staudacher’05]

e−ipkJ =
S
Y

j ̸=k

S(pk, pj)

with S(pk, pj) the two-by-two scattering S-matrix

I Scaling dimension:

∆ − J =
S
X

k=1

E(pk)

I Dispersion relation: [Beisert,Dippel,Staudacher’05]

E(p) =

r

1 + 16g2 sin2
“p

2

”
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Asymptotic Bethe Ansatz equations for (planar) dilatation operator (all loops)

I Proposal for the sl(2) sector [Beisert,Staudacher’05],[Beisert’05]

 

x+
k

x−k

!J

=
S
Y

j ̸=k

x−k − x+
j

x+
k − x−j

1 − g2/x+
k x

−
j

1 − g2/x−k x
+
j

exp (2iθ(uk, uj))

with the deformed spectral parameter uk ± i/2 = x±k + g2/x±k [Beisert,Dippel,Staudacher’05]

and with the dressing phase θ(uk, uj)
`

= O
`

g6
´´

[Beisert,Eden,Staudacher’06]
[Beisert,Hernández,López’06]

I All-loop ‘asymptotic’ scaling dimension

∆ = J + S + 2g2
S
X

j=1

"

i

x+
j

−
i

x−j

#
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All-loop analysis

First step: Classify large-spin solutions of ABA equations [BB’10]

I fundamental excitations

I isotopic roots implementing symmetries

I bound states

Some help: existing results from spectroscopy of large-spin scaling dimensions
[Beisert,Bianchi,Morales,Samtleben’04],[Freyhult,Rej,Zieme’09]

Second step: Derive linear integral equation (schematically)

ρ+ K ⋆ ρ = I

with

I ρ = large-spin density of roots (the unknown)

I K = kernel (known)

I I = inhomogeneous term (known)

Generalization of the Beisert-Eden-Staudacher equation for the cusp anomalous dimension

Third and last step: Apply methodology developed for solving this type of problem and
compute the energy (dispersion relation)

Benjamin Basso Interpolating between Gauge and String Theory



. . . . . .

All-loop cusp anomalous dimension from BES equation

Weak coupling expansion g ≪ 1 [Beisert,Eden,Staudacher’06]

Γcusp(g) = 4g2 −
4π2

3
g4 +

44π4

45
g6 −

„

292π6

315
+ 32ζ23

«

+O(g10)

Strong coupling expansion g ≫ 1 [Kotikov,Lipatov’06],[Benna,Benvenuti,Klebanov,Scardicchio’07],
[Alday,Arutyunov,Benna,Eden,Klebanov’07],[Kostov,Serban,Volin’07],[Beccaria,DeAngelis,Forini’07]

[BB,Korchemsky,Kostanski’07],[Kostov,Serban,Volin’08],[BB,Korchemsky’08’09]
[Casteill,Kristjansen’07],[Belitsky’07],[Gromov’08]

Γcusp(g) = 2g −
3 log 2

2π
−

K

8π2g
+O(1/g2)

In agreement with direct gauge/string theory calculations at weak/strong coupling
[Kotikov,Lipatov,Onishchenko,Velizhanin’04],

[Bern,Czakon,Dixon,Kosower,Smirnov’06],[Cachazo,Spradlin,Volovich’06]
[Gubser,Klebanov,Polyakov’02],[Frolov,Tseytlin’02],[Roiban,Tseytlin’07]

Remark: At intermediate coupling we can analyze the interpolation numerically
[Benna,Benvenuti,Klebanov,Scardicchio’06]
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All-loop dispersion relation

Example for scalar [BB’10]

E(u) = 1 +

Z ∞

0

dt

t

et/2 cos (ut) − J0(2gt)

et −1
γ(−2gt)

p(u) = 2u−
Z ∞

0

dt

t

et/2 sin (ut)

et −1
γ(2gt)

The function γ(t) solves the BES equation, known explicitely at both weak/strong coupling
[Kotikov,Lipatov’06],[Benna,Benvenuti,Klebanov,Scardicchio’07],

[Alday,Arutyunov,Benna,Eden,Klebanov’07],[Kostov,Serban,Volin’07],[Beccaria,DeAngelis,Forini’07]
[BB,Korchemsky,Kostanski’07],[Kostov,Serban,Volin’08],[BB,Korchemsky’08’09]

Benjamin Basso Interpolating between Gauge and String Theory



. . . . . .

Strong coupling regimes (scalar)

I Non-perturbative regime: E ∼ p ∼ m

E =
p

p2 +m2

»

1 − c(g)p2 +O(m4,m2p2, p4)

–

Mass is exponentially small [Fioravanti,Grinza,Rossi’08],[BB,Korchemsky’08]]

m = k g1/4 e−πg (1 +O(1/g))

Expression for constant k agrees with string theory prediction
[Alday,Maldacena’07],[BB,Korchemsky’08]]

I Perturbative regime: E ∼ p ∼ 1

E = p

»

1 − c
p2

g
+O(1/g2)

–

I Other regimes: Near-flat space E ∼ p ∼ g1/4 and Giant hole E ∼ p ∼ g
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Comparison with string theory

Perturbative regime: E ∼ p ∼ 1

E =
q

p2 +m2(g)

»

1 − c
p2

g
+O(1/g2)

–

Agreement with string theory computations for most of the excitations...
[Giombi,Ricci,Roiban,Tseytlin’10]

I gauge field: m(g) =
√

2 − 1/(4
√

2g) +O(1/g2) c = 1
8

I fermion: m(g) = 1 c = 1
4

... except for scalar

I scalar: m(g) = O(1/g∞) OK!... but

cABA =
Γ( 1

4
)4

8(12)5/4π2
̸=

7

24π
= cstring

Recent explanation was proposed in [Zarembo,Zieme’11]
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Some applications I

Application to computation of subleading large-spin corrections to twist-two scaling
dimensions [BB,Belitsky’11]

I Twist-two scaling dimension = vacuum energy for a string with length R ∼ 2 logS ≫ 1

I → Vacuum energy receives finite-size corrections due to exchange of virtual excitations

(a) (b) (c) (d) 

The finite-size corrections (c) are qualitatively different from those (d) that contribute to the
leading (bulk) energy ∆ − S ∼ 2Γcusp(g) logS

It leads to an interesting (but intricate) interpolation between gauge and string theory which
can be analyzed by means of integrability
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Some applications II

Application to computation of scattering amplitudes in the near-collinear limit
[Alday,Gaiotto,Maldacena,Sever,Vieira’10-11]

=

Bottom line: scattering amplitudes = light-like (cusped) Wilson loops, related to GKP string
[Alday,Maldacena’07],[Drummond,Korchemsky,Sokatchev’07],

[Drummond,Henn,Korchemsky,Sokatchev’07],[Brandhuber,Heslop,Travaglini’07]
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Small spin limit

Benjamin Basso Interpolating between Gauge and String Theory



. . . . . .

Small spin expansion

I Consider minimal scaling dimension ∆ of operators

O ∼ trDSZJ + mixing

I ∆ is defined for physical operators (integer spin)

∆ ≡ ∆J (S)

as a function of spin S, twist (R-charge) J , and ’t Hooft coupling λ

I Perform analytical continuation in the spin S and expand around S = 0 (BPS point)

∆ = J + αJ (λ)S +O(S2)

I The slope αJ (λ) is a function of J and λ only, computable at weak and strong coupling

Interpolation?
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Illustration
I Consider twist-two operator (J = 2)

O = trDSZ2 + mixing

I Its scaling dimension is given up to one loop as

∆twist-two = 2 + S +
λ

2π2
(ψ(S + 1) − ψ(1)) +O(λ2)

with ψ the logarithmic derivative of Euler Gamma function

æ

æ

æ

æ

æ

2 4 6 8

5

10

15

20

I Straigthforward expansion at small spin yields [Kotikov,Lipatov,Onishchenko,Velizhanin]

αJ=2(λ) =
d∆twist-two

dS

˛

˛

˛

˛

S=0

= 1 +
λ

12
−

λ2

576
+

λ3

17280
+O(λ4)
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Proposal

Exact slope in planar N = 4 SYM theory [BB’11]

αJ (λ) =

√
λ

J

I′J (
√
λ)

IJ (
√
λ)

= 1 +

√
λ

J

IJ+1(
√
λ)

IJ (
√
λ)

Expressed in terms of the modified Bessel’s function IJ (x) (and its derivative
I′J (x) ≡ dIJ (x)/dx)

Proposal: Formula is correct for any twist J and ’t Hooft coupling λ
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Immediate checks

I Weak coupling expansion

αJ (λ) = 1 +
λ

2J(J + 1)
−

λ2

8J(J + 1)2(J + 2)
+O(λ3)

OK with previous twist-two expression for J = 2!

I At large J (and for any λ)

αJ (λ) = 1 +
λ

2J2
+O(1/J2)

Correct BMN limit!
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Numerical interpolation

Plot of the slope αJ (λ) as a function of the coupling
√
λ

2 4 6 8

1.5

2.0

2.5

3.0

3.5

for J = 2 (blue) to J = 5 (green)
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Strong coupling expansion
Let us reformulate the proposal as

∆2 = J2 + βJ (λ)S +O(S2)

where

βJ (λ) ≡ 2JαJ (λ) = 2
√
λ
I′J (λ)

IJ (λ)

Motivation: remember the flat-space string theory result

∆2 = J2 + 2
√
λS

Here we find that at strong coupling
√
λ (i.e., large string tension)

βJ (λ) = 2
√
λ− 1 +

J2 − 1/4
√
λ

+
J2 − 1/4

λ
+O(1/λ3/2)

I Correct flat-space limit!

I Correct one-loop correction! [Gromov,Serban,Shenderovitch,Volin’11],
[Roiban,Tseytlin’11],[Vallilo,Mazzucato’11]

Further check: consider the semiclassical string regime where J ≡ J/
√
λ is fixed, then

βJ (λ) = 2
√
λ
p

1 + J 2 −
1

1 + J 2
+O(1/

√
λ)

Comment: it is in perfect agreement with classical and one-loop string prediction
[Frolov,Tseytlin’02],[Gromov,Valatka’11]
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Physical application I

Apply the formula

∆2 = J2 + βJ (λ)S + γJ (λ)S2 + δJ (λ)S3 +O(S4)

to physical operators (i.e., for finite spin) at strong coupling

Assumption: coefficients of higher spin powers are suppressed by higher powers of 1/
√
λ, e.g.,

βJ (λ) = O(
√
λ) , γJ (λ) = O(1) , δJ (λ) = O(1/

√
λ) , · · ·

Further assumption: coefficients of small spin expansion can be directly matched against those
predicted by the semiclassical string computation

Comments:

I Non-trivial claim since the semiclassical analysis produces an expansion at small
semiclassical spin S ≡ S/

√
λ (possible order of limit issue)

I So far these assumptions have been found to be in good agreement with exact (numerical)
predictions from Y-system [Gromov,Serban,Shenderovitch,Volin’11],[Gromov,Valatka’11]
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Physical application II

Under the battery of assumptions

∆2 = J2 + βJ (λ)S + γJ (λ)S2 + δJ (λ)S3 + . . .

applies to physical operators (i.e., for finite spin) at strong coupling, with (up to two loops)

I βJ (λ) = 2
√
λ− 1 + (J2 − 1/4)/

√
λ

I γJ (λ) = 3/2 − b/
√
λ

I δJ (λ) = −3/(8
√
λ)

Missing piece for two-loop prediction: the one-loop semiclassical coefficient b was unknown...

... up to recent work of [Gromov,Valatka’11] who found that

b =
3

8
− 3ζ3

Complete two-loop prediction for minimal scaling dimension at strong coupling... observed to
be in good agreement with Y-system (numerical) result

In particular: For the Konishi scaling dimension, i.e., for S = J = 2, ones find [Gromov,Valatka’11]

∆ = 2λ1/4 +
2

λ1/4
+

1/2 − 3ζ3

λ3/4
+O(1/λ5/2)

Benjamin Basso Interpolating between Gauge and String Theory



. . . . . .

Some interesting features

The expression from the slope hints that

I Weak coupling expansion is convergent

Radius of convergency is finite and fixed by the first non-trivial zero of Bessel’s function
IJ (

√
λ)

I Strong coupling expansion is asymptotic and non-Borel summable

Strong coupling series determines the exact expression up to exponentially small
contributions ∼ exp (−2

√
λ) only

Similar to the situation for the cusp anomalous dimension (as predicted from the BES
equation) [Beisert,Eden,Staudacher’06],[Basso,Korchemsky,Kotanski’07]
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Summary and outlook

Examples of interpolation between gauge and string theory based on integrability

I Solution to spectrum of excitations over the GKP string at any coupling

I Exact representation for dispersion relations

I Interpolation of finite size corrections to twist-two scaling dimension

I Formula for the slope of minimal scaling dimension

Extensions

I Scattering amplitudes

I Spectrum of short strings
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