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Spectral problem and AdS/CFT correspondence

Spectral problem
» Starting point: N = 4 Super-Yang-Mills theory is a conformal field theory (CFT)

» It depends on two dimensionless parameters: the 't Hooft coupling A = g%/MNC and the
number of colors N,

» Important observables: spectrum of scaling dimensions A of (local) conformal operators O

AdS/CFT correspondence

(Planar) N = 4 SYM theory is equivalent to (free) type IIB superstring on AdSs x S°
background

string tension = 2g = VA/27 string coupling ~ 1/N¢
Dictionnary

Spectrum of (planar) scaling dimensions = spectrum of energies of (free) string

Provides us with a geometrically picture/understanding of the gauge dynamics
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Spectral problem and integrability

Main difficulty: How to confront the gauge and string theory?

> Gauge theory is tractable at weak coupling: A < 1
> String theory is tractable at strong coupling: A > 1

In most cases, to test the correspondence we need control on the weak/strong coupling
interpolation — need non-perturbative methods

Important recent progress: Discovery of integrable structures (in the planar limit)
[Minahan,Zarembo’02], [Beisert,Staudacher’03’05]
[Lipatov’98],[Braun, Derkachov,Korchemsky,Manashov’98],[Belitsky’99]
[Bena,Polchinski,Roiban’03],[Kazakov,Marshakov,Minahan,Zarembo’04]
[Gromov,Kazakov, Vieira’09],[Gromov,Kazakov,Kozak, Vieira’09],
[Bombardelli,Fioravanti,Tateo’09],[Arutyunov,Frolov’09]

— Complete solution to spectral problem in the planar limit

Motivations:
> Solving the four-dimensional gauge theory (at least in the planar limit)
» Quantizing the string theory on the curved background
» Testing the AdS/CFT correspondence
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Probing the correspondence

Probe: consider (local) operators in the so-called s[(2) sector
0O(0) = tr D% Z”(0) + mixing

with

» Z a complex scalar field in the adjoint representation of the gauge group
» D =n*D,, a light-cone covariant derivative n? =0

They carry spin S and twist (R-charge) J

Spectrum of scaling dimensions

A= As,,](A)

from Bethe ansatz equations (for any coupling \)
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Outline

Large spin limit

» The string theory point of view: excitations around long rotating GKP string
» The gauge theory perspective: excitations around large spin twist-two operator

> Interpolation via Bethe ansatz equations: all-loop dispersion relations

Small spin limit

» Exact formula for the slope of the (minimal) twist-J scaling dimension
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Large spin limit




The GKP string

Folded string rotating in AdS3 C AdS5 with spin S [Gubser,Klebanov,Polyakov’02]

S 5 5
[

(@ (b) (©)

» (a) Short string : S ~ 0 — length ~ S1/2 ~ 0
> (c) Long string : S ~ oo — length = 2log S > 1 + worldsheet homogeneous
Energy of long GKP string : (string tension) 29 = VA/27 > 1

E=A—S=4glogS + O(logO S) — 2T cusp(g) log S+ ...
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Spectrum of excitations from string theory I

Quadratic fluctuations (relativistic spectrum) [Frolov, Tseytlin’02]

> 5 massless bosons for L fluctuations in S°
> 2 bosons with mass v/2 for L fluctuations in AdSs/AdSs
» 1 boson with mass 2 for L fluctuation in AdSs

» 8 fermions with mass 1

Symmetries [Alday,Maldacena’07]

> All supersymmetries are broken (complicated background)
> SO(2) transverse symmetry

> SO(6) symmetry broken down spontaneously to SO(5) at the perturbative level
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Spectrum of excitations from string theory I1

Higher-loop correction?... recently: one-loop correction [Giombi,Ricei,Roiban, Tseytlin’10]

2
E) = \/p? + m(g)? [1 ~eZ v ou/s?)

» Non relativistic correction controlled by single coefficient ¢
> Coefficient ¢ depends on flavor of excitation... as correction to mass m(g)

» Spectrum undisturbed otherwise.... though presence of bound states

[Zarembo,Zieme’11]
Non-perturbatively? [Alday,Maldacena’07]
> Low energy effective dynamics: 2D O(6) non-linear sigma model

> Restoration of SO(6) symmetry — 6 scalars in O(6) vector multiplet with mass

(dimensional transmutation)

m~e "9
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Gauge theory picture

Vacuum
Long GKP string = large spin twist-two operator ~ tr ZD%Z

Vacuum energy: Evacuum = A — S = 2Lcusp(g) log S + . ..

Excitation
Insertion of operators in the background of covariant derivatives
One-particle state = length-three operator
trZD*M oD*2 7
with spin S ~ k1 +k1 > 1
Fundamental (lightest) excitations

Analogy with BMN operators

— a fundamental excitation ® has twist = (A — 5)tree-level = 1

Energy: A—-S= Evacuum + E’l’ (P)
Mass: Eg(p = 0) = twist +O(g?)
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Spectrum of excitations

Flavors of twist-one excitations

» 6 scalars Z
» 8 fermions ¥

> 2 field strength components F' = F, | ~ 04A; — gauge field excitation

Bound states...

. of gauge fields: embedded as length = 1, high-twist operators
DT'FL . twist=1¢

with £=1,2,3,...
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Spectrum of masses

Masses Weak coupling Strong coupling
Scalar 1 ~ e T8
Fermion 1 1
Gauge field 1 \/5
? 2 2
“r = D_ F,_, or two-fermion state ?
Interpolation?
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Spectral problem

Large spin operators with J — 2 insertions:
O=trzD*¢.. DF-2¢DFI-17
Elementary excitations: (twist-1 partons)
® = Z (scalars), U (fermions), F, (gauge fields)
Mixing problem — Spectrum of scaling dimensions at large spin S ~ >, k; > 1 ?
Solution:

Eeigenstate =A-S= Etwist—two + Z Ez(pz) + ...

i€excitations
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Spectrum of high-spin operators

IMustration:

One-loop spectrum of anomalous dimensions of twist-3 operators @ = tr ZD*1 ZD*2 7

0A

R 0 % r 5 S
Goal: parameterize anomalous dimensions trajectories close to the minimal one...
OA — 0 Agwist-two = E(p) p~1/log$

. and extract the dispersion relation (here for a scalar Z)
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Tool : Integrability

Kinematics
Operators

Oy} =tr DM Z. DM 7

> tr Z...Z...Z — vacuum state of the spin chain
> trZ...DZ...Z — one-particle state of the spin chain (magnon)
Quantum numbers

» Twist J — spin chain length

> Lorentz spin S = k1 + ... + kj — number of excitations (magnons) over the vacuum




e —
Tool : Integrability

Kinematics
Operators
Oy, =tr DM Z. DM 7
> trZ...Z...Z — vacuum state of the spin chain
> trZ...DZ...Z — one-particle state of the spin chain (magnon)

Quantum numbers
» Twist J — spin chain length

> Lorentz spin S = k1 + ... + kj — number of excitations (magnons) over the vacuum

Dynamics
Callan-Symanzik equation

o]
—O0 =-6D-0O
'u‘au {km} {km}

» Dilatation operator D — Hamiltonian of the spin chain

» Spectrum of anomalous dimensions d A — spectrum of energies of the spin chain
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One-loop example

Mapping with s[(2) integrable Heisenberg spin chains
[Lipatov’97],[Braun,Belitsky,Derkachov,Korchemsky,Manashov’98]
[Minahan,Zarembo’02],[Beisert,Staudacher’03]

Kinematics : spin-chain Hilbert space H = ves

> scalar : conformal spin s = 1/2
» fermion : conformal spin s =1

> gauge field : conformal spin s = 3/2

Dynamics : 6D = Hamiltonian of XXX, s[(2) Heisenberg spin chain
> System with J degrees of freedom... and J commuting conserved charges
Liouwville definition of a completely integrable system

> The complete family of conserved charges can be diagonalized simultaneously with §D by
means of the algebraic Bethe ansatz
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Bethe ansatz solution

Solution to mixing problem (here for scalar)

uk+.
ugp —

» S magnons « S rapidities ug

» Bethe ansatz equations

)J Su U; —1
Y ) i

j?&kuk—u]-—i-i

[SIENISIES

> One-loop scaling dimension

s 1 .
2
— uk+1/4

A=J+5+24 O(g™)
k
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Large spin limit

Continuum limit of the Bethe ansatz equations [Korchemsky’95], [Belitsky, Gorsky, Korchemsky’06]
[Freyhult,Rej,Staudacher’07]

> Continuous distribution of Bethe roots described by density p(u)

> Bethe ansatz equations turn into integral equation for p(u)

J—2
4J 2 p(v)
2 = — - — = 42 dv—"
mp(u) 1+ 4u? ZZZI (u—a)2 + 1 + / v (u—v)2+1

» What are the 4;’s?... they are the holes’ rapidities

Particle/hole transformation : trading dynamics of magnons D on spin chain of Z’s for
dynamics of Z’s through the background of D’s

One hole <« one Z insertion
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Dispersion relation

Solve integral equation for given set of holes rapidities and compute energy

— vacuum energy + energy of excitation carrying hole rapidity

Vacuum energy: (twist-two scaling dimension) [Korchemsky’89],[Korchemsky,Marchesini’92]
Evacuum =A-— S|twist—tw0 = 211CUSP (g) lOg S + O(IOgO S)

with Tcusp(g) = 492 + O(g%)

Dispersion relation: (for a hole with rapidity u) [Korchemsky’95], [Belitsky,Gorsky,Korchemsky’06]

» Energy

E(u)=A— S| =1+ 2¢% (Y(s + iu) + (s — iu) — 2¢(1)) + O(g?)

above vacuum

» Momentum? Look at quantity conjugated to length ‘2log S’ in effective equations

p(u) = 2u+ 0(g?)
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Masses

Direct application to computation of the mass = E(p = 0)

General formula:

ms =1+ 4g°((s) — ¥(1)) + O(g*)

Elementary (twist-1) excitations:

Mgcalar =1- 8.(]2 10g2 + 0(94) <1
Mfermion =1 70'g2 +O(g4) =1
Mgauge-field = 1+ 892(1 - IOg 2) + 0(94) >1

In qualitative agreement with smooth interpolation with string theory!
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Higher-loop integrability in a nutshell

» BMN vacuum = tr Z/ with energy = A —J =0
» Fundamental excitations: BMN mass = A — J = 1, e.g., insertion of a derivative D
> Symmetries: (centrally extended) SU(2|2) x SU(2|2) [Beisert’06]

» Factorizable scattering — Asymptotic Bethe Ansatz (ABA) equations
[Staudacher’04], [Beisert,Staudacher’05]

s
em k) =TT S(pr.pj)
ik
with S(pk,p;) the two-by-two scattering S-matrix

» Scaling dimension:

» Dispersion relation: [Beisert,Dippel,Staudacher’05]

E(p) = W
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Asymptotic Bethe Ansatz equations for (planar) dilatation operator (all loops)

> Proposal for the s[(2) sector [Beisert,Staudacher’05],[Beisert’05]

+\ 7/ S o ot 1 02 )t
(;%) @, —a] 1—g%/z) @

= - — oxp (210 (ug, u;))
T T
i T~y 1—g?/x ]

[Beisert,Dippel,Staudacher’05]

with the deformed spectral parameter uy + /2 = acf + gQ/xf

and with the dressing phase 0(ug,u;) (: o (96)) [Beisert,Eden,Staudacher’06]
[Beisert,Hernédndez,Lépez’ 06]

> All-loop ‘asymptotic’ scaling dimension
S li

— | x] x>

Jj=1L1"J J
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All-loop analysis

First step: Classify large-spin solutions of ABA equations [BB’10]

> fundamental excitations
> isotopic roots implementing symmetries

» bound states

Some help: existing results from spectroscopy of large-spin scaling dimensions
[Beisert,Bianchi,Morales,Samtleben’04],[Freyhult,Rej, Zieme’09]

Second step: Derive linear integral equation (schematically)
p+Kxp=1
with
> p = large-spin density of roots (the unknown)

> KC = kernel (known)

» 7 = inhomogeneous term (known)

Generalization of the Beisert-Eden-Staudacher equation for the cusp anomalous dimension

Third and last step: Apply methodology developed for solving this type of problem and
compute the energy (dispersion relation)
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All-loop cusp anomalous dimension from BES equation

‘Weak coupling expansion g < 1 [Beisert,Eden,Staudacher’06]

2

4474 29276
Peusp(9) = 49 5 _ (

4n? "
g g 315

322 O 10
3 15 + Cs)JF (g™

Strong coupling expansion g > 1 [Kotikov,Lipatov’06],[Benna,Benvenuti,Klebanov,Scardicchio’07],
[Alday,Arutyunov,Benna,Eden,Klebanov’07],[Kostov,Serban,Volin’07],[Beccaria,DeAngelis, Forini’07]
[BB,Korchemsky,Kostanski’07],[Kostov,Serban,Volin’08],[BB,Korchemsky’08’09]

[Casteill, Kristjansen’07],[Belitsky’07],[Gromov’08]

3log 2 K

0(1/¢?
o 8ﬂ2g+ (1/9%)

Peusp(9) = 29 —

In agreement with direct gauge/string theory calculations at weak/strong coupling
[Kotikov,Lipatov,Onishchenko, Velizhanin’04],
[Bern,Czakon,Dixon,Kosower,Smirnov’06],[Cachazo,Spradlin, Volovich’06]
[Gubser,Klebanov,Polyakov’02],[Frolov,Tseytlin’02],[Roiban,Tseytlin’07]

Remark: At intermediate coupling we can analyze the interpolation numerically
[Benna,Benvenuti,Klebanov,Scardicchio’ 06]
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All-loop dispersion relation

Example for scalar [BB’10]

[e%) t/2 _
R A e
0

et —1
% dt et/2 sin (ut)
p(u) =2u — /0 Tﬁ‘/@gt)

The function ~(t) solves the BES equation, known explicitely at both weak/strong coupling
[Kotikov,Lipatov’06],[Benna,Benvenuti,Klebanov,Scardicchio’07],
[Alday,Arutyunov,Benna,Eden,Klebanov’07],[Kostov,Serban,Volin’07],[Beccaria,DeAngelis,Forini’07]
[BB,Korchemsky,Kostanski’07],[Kostov,Serban,Volin’08],[BB,Korchemsky’08’09]
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Strong coupling regimes (scalar)

» Non-perturbative regime: E ~ p ~m
E=+/p2+m?2|1—c(9)p® + O(m*,m*p?,p*)

Mass is exponentially small [Fioravanti,Grinza,Rossi’08],[BB,Korchemsky’08]]
m=kg'/*e"™ (1+0(1/g))

Expression for constant k agrees with string theory prediction
[Alday,Maldacena’07],[BB,Korchemsky’08]]

» Perturbative regime: E ~p ~ 1

p?
E=p 1—C;+O(1/92)

> Other regimes: Near-flat space E ~ p ~ 91/4 and Giant hole E~p~g
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Comparison with string theory

Perturbative regime: E ~p ~ 1

2
B= it +mi@)|1- et oq/e)

Agreement with string theory computations for most of the excitations...
[Giombi,Ricci,Roiban, Tseytlin’10]

> gauge field: m(g) = V2 —1/(4v/2g) + O(1/¢?) c=

00—

> fermion: m(g) =1

=

. except for scalar
> scalar: m(g) = O(1/g*) OK!... but

r(3)*

CABA = 8(12)5/471'2 odn Cstring

Recent explanation was proposed in [zarembo,Zieme’11]
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Some applications I

Application to computation of subleading large-spin corrections to twist-two scaling
dimensions [BB,Belitsky’11]

» Twist-two scaling dimension = vacuum energy for a string with length R ~ 2logS > 1

» — Vacuum energy receives finite-size corrections due to exchange of virtual excitations

(2) (b) (c) (d

The finite-size corrections (c) are qualitatively different from those (d) that contribute to the
leading (bulk) energy A — S ~ 2Tcusp(g) log S

It leads to an interesting (but intricate) interpolation between gauge and string theory which
can be analyzed by means of integrability
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Some applications 11

Application to computation of scattering amplitudes in the near-collinear limit
[Alday,Gaiotto,Maldacena,Sever, Vieira'10-11]

Bottom line: scattering amplitudes = light-like (cusped) Wilson loops, related to GKP string
[Alday,Maldacena’07],[Drummond,Korchemsky,Sokatchev’07],
[Drummond,Henn,Korchemsky,Sokatchev’07],[Brandhuber,Heslop, Travaglini’07]

Interpolatin,



Small spin limit




Small spin expansion

> Consider minimal scaling dimension A of operators

O~trD%Z7 + mixing

v

A is defined for physical operators (integer spin)
A=Ay(S)
as a function of spin S, twist (R-charge) J, and 't Hooft coupling A
> Perform analytical continuation in the spin S and expand around S = 0 (BPS point)

A=J+asN)S+0(S?)

v

The slope a.7(A) is a function of J and A only, computable at weak and strong coupling

Interpolation?
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Tlustration

> Consider twist-two operator (J = 2)
O=trD%22 + mixing
> Its scaling dimension is given up to one loop as

Avwictiwo =2+ 8+ 2 (B(S +1) — (1)) + ON?)
2T

with v the logarithmic derivative of Euler Gamma function

200 -
15+
10+
sL
p 1 ¢ 8
» Straigthforward expansion at small spin yields [Kotikov,Lipatov,Onishchenko, Velizhanin]
AdA twist-two A A2 3
a]:z()\) _ twist-two -1 + 2 + + O(}\4)

s s 12 576 ' 17280




Proposal

Exact slope in planar A" =4 SYM theory [BB'11]
_ VALY VAL (VN

aj(A) = =

J I3 (V) J IV

Expressed in terms of the modified Bessel’s function I;(z) (and its derivative
I')(z) = dIj(x)/dx)

Proposal: Formula is correct for any twist J and 't Hooft coupling A
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Immediate checks

» Weak coupling expansion

A A2
2J(J+1) 8J(J+1)2(J+2)

ay(\) =1+ +0(\?)

OK with previous twist-two expression for J = 2!
> At large J (and for any \)

A
ay(\) =1+ oz T o(1/J%)

Correct BMN limit!
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Numerical interpolation
Plot of the slope as(\) as a function of the coupling v/A
350

30[

200

151
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Strong coupling expansion
Let us reformulate the proposal as

A? = T2+ B;(N)S + O(S?)

where

5N

Br(\) =2Jas(A )_2f 0

Motivation: remember the flat-space string theory result
A% = J% +2VAS
Here we find that at strong coupling VA (i.e., large string tension)

J2—-1/4 J%2-1/4
/ /Jr

_ _ /
Br(AN) =2VA—1+ 7 +— O(1/23/2)

» Correct flat-space limit!

» Correct one-loop correction! [Gromov,Serban,Shenderovitch, Volin’11],
[Roiban,Tseytlin’11],[Vallilo,Mazzucato’11]

Further check: consider the semiclassical string regime where J = J/ﬁ is fixed, then
Bs(N) =2VAV1+ 72 — 0(1/V)

Comment: it is in perfect agreement with classical and one-loop string prediction
[Frolov,Eseytlin®02],[Gromov,Valatka 11]
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Physical application I

Apply the formula
A? = T2+ B (NS +v5(N)S% +6,(V)S? + O(SY)
to physical operators (i.e., for finite spin) at strong coupling
Assumption: coefficients of higher spin powers are suppressed by higher powers of 1/v/X, e.g.,

BsA) =0(VA), ) =0(1), &) =0(1/VX),

Further assumption: coefficients of small spin expansion can be directly matched against those
predicted by the semiclassical string computation
Comments:

» Non-trivial claim since the semiclassical analysis produces an expansion at small
semiclassical spin S = S/v/A (possible order of limit issue)

> So far these assumptions have been found to be in good agreement with exact (numerical)
predictions from Y-system [Gromov,Serban,Shenderovitch,Volin’11],[Gromov, Valatka’11]
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Physical application IT
Under the battery of assumptions
A2 = T2+ B; (NS + 75 (NS +8,(0)S® +
applies to physical operators (i.e., for finite spin) at strong coupling, with (up to two loops)
> Bs(N) =2VA =1+ (J2 = 1/4)/VA
> 77(A) =3/2 = b/VA
> 350 = =3/(8VX)
Missing piece for two-loop prediction: the one-loop semiclassical coefficient b was unknown...

. up to recent work of [Gromov,Valatka’11] who found that

3
b= - —3C3
3 G
Complete two-loop prediction for minimal scaling dimension at strong coupling... observed to
be in good agreement with Y-system (numerical) result

In particular: For the Konishi scaling dimension, i.e., for S = J = 2, ones find [Gromov,Valatka'11]

1/4 1/2 —3¢s 5/2
A =2\ +>\1/4+7>\3/4 £ O(1/A5/2)
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Some interesting features

The expression from the slope hints that

» Weak coupling expansion is convergent
Radius of convergency is finite and fixed by the first non-trivial zero of Bessel’s function
I;(VX)

» Strong coupling expansion is asymptotic and non-Borel summable

Strong coupling series determines the exact expression up to exponentially small
contributions ~ exp (—2v/A) only

Similar to the situation for the cusp anomalous dimension (as predicted from the BES
equation) [Beisert,Eden,Staudacher’06],[Basso,Korchemsky, Kotanski’07]
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Summary and outlook
Examples of interpolation between gauge and string theory based on integrability

> Solution to spectrum of excitations over the GKP string at any coupling
» Exact representation for dispersion relations

» Interpolation of finite size corrections to twist-two scaling dimension

v

Formula for the slope of minimal scaling dimension

Extensions

> Scattering amplitudes

» Spectrum of short strings
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