Physics at International Linear Collier - Complementarity with LHC Physics

IN2P3 Istilt T. National. De Pinsique Niclânie et de l'Aussiget des Particules

FAPPS2008, 25th Sept.

Why Linear Collider?

Highest energy e+e- collider: LEP (Large Electron Positron collider @ CERN 1989-2000) Beam energy: 45.6-104 GeV Storage ring circumference: 27 km

Charged particles accelerated in a curved orbit → Synchrotron radiation

Its energy loss*: $\rightarrow \alpha E^4/r$

Limiting factor for going to higher E

Solution \rightarrow Linear collider

* LHC uses the same LEP tunnel but the proton energy loss is 10⁻¹³ smaller than electron at the same energy

e+e- Linear Colliders

1st high energy linear collider (1989-1998):

- SLC (SLAC Linear Collider, √s up to 50 GeV)
- Competitor of LEP

Regional Linear Collider Projects:

- TESLA (Teraelectronvolt Energy Superconducting Linear Accelerator)
- NLC (Next Linear Collider)
- Global Linear Collider (GLC)

International Linear Collider (ILC):

- World wide project
- Superconducting radio-frequency technology recommended in Aug. 2004
- Reference Design Report (Physics, Accelerator, Detector) released in 2007

Compact LInear Collider (CLIC):

- Nominal $\int s=3$ TeV (for physics up to multi-TeV)

The Current Status of the ILC

Baseline design:

√s=200-500 GeV, upgradeable to 1 TeV High luminosity: 2·10³⁴ cm⁻²s⁻¹ [SLC: 2.5·10³⁰ cm⁻²s⁻¹] → 500 fb⁻¹ in 1^{s†} 4 years Polarized beams: (e-: 80%, e+: 60%) e⁻e⁻, γγ options

Site study/selection on going

Cost estimation (2007): ~6.6b

Use 16,000 superconducting cavities to accelerate electrons and positrons to 99.999999998 % of the speed of light

~31 Km

Schematic Layout of the 500 GeV Machine

FAPPS2008, 25th Sept.

Quasi-Ideal Detectors for Discovery & Precision

> Vertex detector: Heavy flavors (b,c,t) tagging ~1/5 r, ~1/30 pixel size (LHC), $\sigma_{ip} = 5\mu m \oplus 10\mu m/p \sin^{3/2} \theta$

- > Tracking detector: excellent momentum (P) resolution ~1/6 material, ~1/10 resolution (LHC), $\sigma(1/p) = 5 \times 10^{-5}/\text{GeV}$ (1/10 LEP)
- Calorimetry: high granularity ~1/200 (LHC)
- > Muon identification capability
- > Hermeticity

Precise diagnostics for initial state (polarization, lumi, energy)

→ Particle Energy Flow: ~1/2 jet resolution (LHC) $\sigma_E/E = 0.3/\sqrt{E(\text{GeV})}$

Four Detector Concepts

SiD(Sillicon Detector) LDC(Large Detector Concept) GLD(Global Large Detector) 4th

Component \ Concept	SiD	LDC	GLD	4ème
Tracking	Silicon	TPC	TPC	TPC
Magnetic field	5T	4T	3Т	3.5T
FCAL	ECAL SiW SiW W/Scintill	Si\M/	W/Scintillator	Scintillant &
		W/Scintinator	Cerenkov	

Other differences: Size, Muons: instrumented iron or double solenoid

→R&D to optimize performance & price and to make choice (One interaction point → at most two detectors in push-pull option)

Clean Experimental Environment (1)

FAPPS2008, 25th Sept.

Clean Experimental Environment (2)

ILC:

LHC:

Proton (composed) initial beams Fractional \slash s involved in parton interactions

Event rate/s = $\sigma \cdot L$

~ 80[mb]·10³⁴[cm⁻²]

~ 109

- → Need 10^7 rate reduction (trigger)
- \rightarrow Danger to miss small rate/P_T New Physics
- → Challenge in data handling

Bunch distance: 25 ns

- → 25 interactions / bunch
- → Event pile-up (800 charged particles $|\eta|$ <2.5)
 - + underlying events

Hard parton-parton interaction

Clean Experimental Environment (3)

Pandora PFA (Particle Flow Algorithm) 100GeV jet (MOKKA simulation) TESLA TDR detector

A simulated $H \rightarrow \gamma \gamma$ event at ATLAS

http://atlas.web.cern.ch/Atlas/documentation/ divers_poster/lhc/lhc.html

Selected Physics Topics at ILC

Main missions for present and future H.E. colliders:

- Clarify the Higgs sector (ElectroWeak Sym. Breaking mechanism)
- Search for new physics at the TeV scale (e.g. SUSY)
- Look for Dark Matter (DM) candidate(s)

Higgs Physics at ILC

Current limits on Higgs mass:

- Direct search (LEP): >114.4 GeV (95%CL)
- From precision data (radiative corrections): <154 GeV (95%CL)

Precision measurements of Higgs properties at ILC

- Higgs mass
- Higgs spin and CP property
- Decay branching fractions
- Total decay width
- Coupling to gauge bosons
- Yukawa coupling to top quarks
- Trilinear Higgs couplings

Constraints on SM m_H from Precision Data (1)

Sensitivity on m_t , m_H from EW radiative corrections:

$$\begin{array}{c} \mathbf{t} & \delta_{t} \propto G_{F} M_{top}^{2} & \mathbf{H} \\ \mathbf{W} & \mathbf$$

Constraints on SM m_H from Precision Data (2)

ICHEP 2008

If $\delta m_t \ 1.2 \rightarrow 1.0 \text{ GeV}$ If $\delta M_w \ 25 \rightarrow 15 \text{ MeV}$ $m_{\rm H} = 84_{-26}^{+34} \,\text{GeV} < 154 \,\text{GeV} @ 95\% \,\text{CL}$ $m_{\rm H} = 84_{-26}^{+34} \,\text{GeV} < 153 \,\text{GeV} @ 95\% \,\text{CL}$ $m_{\rm H} = 71_{-20}^{+25} \,\text{GeV} < 119 \,\text{GeV} @ 95\% \,\text{CL}$

This illustrates the importance of

- precision measurements
- complementarity of different data

SM Higgs Productions at LHC

FAPPS2008, 25th Sept.

SM Higgs Branching Fractions, Decay Width

- → Dominant decay modes:
 - bb_{bar} at low mass (<140GeV)
 - WW at high mass (>140GeV)

- Narrow resonance at low mass smaller than intrinsic detector resolution
- → Broad structure at high mass

Expected SM H Searches with 1st LHC Data

2

1.5

1

0.5

0

0.80

0.99 0.95 0.85 0.75 0.65 0.55 115 125 130 135 140 120 m_H [GeV] **Ricardo Goncalo** ICHEP08. Philadelphia Zhiqing Zhang 张智庆 (zhangzg@lal.in2p3.fr, LAL, Orsay) FAPPS2008, 25th Sept.

Combining several analysis channels

- \rightarrow Discovery (5 σ):
 - Need ~20 fb⁻¹ to probe down to m₁=115 GeV
 - 10 fb⁻¹ will allow 5σ discovery if m_H=127-440 GeV
 - 3.3 fb⁻¹ : 5σ discovery for m_н=136-190 GeV
 - Just under 2 fb⁻¹ : 5σ discovery for m_H=160 GeV
- \rightarrow Fxclusion:
 - 2.8 fb⁻¹ will allow exclusion at 95% CL of m_{H} =115 GeV (i.e. just above the LEP limit)
 - 2 fb⁻¹ : exclusion at 95% CL in m_H=121-460 GeV
 - Less than 2 fb⁻¹ should be enough to exclude region around $m_{H} \approx 2m_{W}$

SM Higgs Production at ILC

→ Higgs-strahlung process e^+e^- →HZ: dominant golden process at $\int s=500 GeV$

Precise Higgs Mass Measurement at ILC (1)

Golden channel: $Z \rightarrow \mu^+ \mu^-$ in Higgs-strahlung process

Recoil mass method:

$$m_{H}^{2} = p_{H}^{2} = (p_{e^{+}} + p_{e^{-}} - p_{Z})^{2} = s + m_{Z}^{2} - 2E_{Z}\sqrt{s}$$

No Higgs decay information used -> Model independent analysis

For a 120 GeV Higgs, one can tune E_{beam} to an optimum value:

Precise Higgs Mass Measurement at ILC (2)

Experimental condition: √s=230 GeV L=500fb⁻¹ m_H=120 GeV

Preliminary result with μ channel: $\delta m_H = 36 \text{ MeV}$ (model independent result) RUAN Mangi

FAPPS2008, 25th Sept.

Higgs Spin

Based on Higgs-strahlung process with Z \rightarrow e+e-, $\mu+\mu-$ decay modes

m_H=120 GeV

L=20fb⁻¹ at √s=215, 222, 240GeV

- → 20fb⁻¹ data at three energies sufficient to determine the spin of the Higgs boson
- → Capability of performing threshold scan is again a unique feature of ILC

M.T. Dova, P. Garcia-Abia, W. Lohmann, hep-ph/0302113

FAPPS2008, 25th Sept.

CP Property of the Higgs Boson (1)

SM: does not predict any observable effect of CP violation

→ Look for new CP violation source to describe the baryon asymmetry of the universe

In general the amplitude of a scalar boson $\boldsymbol{\varphi}$ having an arbitrary CP has

$$M_{\phi Z} = M_{HZ}$$
 (SM, CP even) + ηM_{AZ} (BSM, CP odd)

The η term causes a CP violation forward-backward asymmetry in the angular distribution of the production of $Z \rightarrow \mu^+\mu^-$ of Higgs-strahlung process

FAPPS2008, 25th Sept. Z

CP Property of the Higgs Boson (2)

Defining an optimal observable:

$$\mathcal{O} \equiv \frac{\sigma_{\mathcal{CP}}}{\sigma_{\rm SM}} \equiv \frac{2Re(\mathcal{M}_{ZA}^*\mathcal{M}_{\rm ZA})}{|\mathcal{M}_{\rm ZH}|^2}$$

SM expectation: <0>~0

Any significant deviation implies CP violation

A model independent test

M. Schumacher, LC-PHSM-2001-003

FAPPS2008, 25th Sept.

Measurement of Higgs Branching Fractions

This measurement is of utmost importance:

- Allows to disentangle between SM & BSM
- gg mode indirectly sensitive to Htt_{bar} Yukawa coupling, new strongly interacting particles couple to Higgs
- $\gamma\gamma$ and $Z\gamma$ modes sensitive to new heavy particles
- WW mode allows measurement of HWW in a model independent way

Absolute measurement only possible at ILC

At LHC, only relative Measurement is possible

m_H=120GeV, L=500fb⁻¹, √s=300-500GeV

Decay mode	Relative precision (%)	
$b\bar{b}$	1.0 - 2.4	
$c\overline{c}$	8.1 - 12.3	
$\tau^+\tau^-$	4.6 - 7.1	
gg	4.8 - 10	
WW	3.6 - 5.3	
$\gamma\gamma$	23-35	

FAPPS2008, 25th Sept.

The Higgs Total Decay Width

At low Higgs mass: indirect determination $\Gamma_{H} = \Gamma(H \rightarrow WW^{*})/Br(H \rightarrow WW^{*})$

J.A. Aguilar-Sasvedra et al., hep-ph/0106315: L=500fb⁻¹, √s=350GeV

			and the second		
	Channel	$M_H = 120 \text{ GeV}$	$M_H = 140 \text{ GeV}$	$M_H = 160 \text{ GeV}$	
\ <u>[</u>	g_{HWW} from $\sigma(e^+e^- \to H\nu\nu)$	6.1%	4.5%	13.4~%	
ા	g_{HWW} from $\sigma(e^+e^- \to HZ)$	5.6%	3.7%	3.6~%	
	$BR(WW)$ at $\sqrt{s} = 1$ TeV	3.4%	3.6%	2.0 %	
4	T. Barklow, hep-ph/0312268: L=1 ab ⁻¹ , √s=1TeV				
				$\delta\Gamma/\Gamma$	

At higher mass: direct determination from the reconstruction of lineshape

FAPPS2008, 25th Sept. Z

The Higgs Couplings to Gauge Bosons

SM expectation:

 $g_{HVV} \alpha m_V$ with V=Z,W $\sigma \alpha g^2$

Model independent measurement

(Higgs-strahlung process + recoil mass method):

W. Lohmann, M. Ohlerich, A. Raspereza and A. Schälicke: arXiv:0710.2602v1 [hep-ex]

Assuming, m_H =120 GeV, L=500fb⁻¹

The Higgs Yukawa Coupling to Top Quarks

FAPPS2008, 25th Sept.

The Trilinear Higgs Coupling

SM expectation:

m²_H=4λv² with λ being its self-coupling, vacuum exp. value v≈246 GeV

λ_{ΗΗΗ}=6/**√**2 λ**ν**

Could be the most decisive test of the electroweak symmetry breaking mechanism

Impact of Higgs Coupling Measurements

SM mass-coupling relation: $m_i = k_i v$

FAPPS2008, 25th Sept.

For this test, the capability of making absolute measurement in a model independent way at ILC is crucial

Higgs Coupling Determination: ILC vs. LHC

Comparison: LHC (with mild theory assumptions) vs. ILC (model-independent)

[M. Dührssen, S. Heinemeyer, H. Logan, D. Rainwater, G. W., D. Zeppenfeld '04] [K. Desch '06]

FAPPS2008, 25th Sept.

Why Beyond SM?

Despite its enormous success, the SM is believed to be an effective theory valid only at low energy.

- A few known "problems":
- Saying nothing about quantum gravity
- The hierarchy problem (e.g. why the weak force is 10³² stronger than gravity?)
- No unification of gauge coupling constants at the Grand Unification scale
- Zero neutrino mass
- Baryogenesis
- No candidate for cold Dark Matter
- Quadratically divergent radiative corrections to m^2_H

Many Beyond SM Models

E.g. Supersymmetry (SUSY) models:

MSSM (the Minimal Supersymmetric extension of the SM)

cMSSM (constrained MSSM) or mSUGRA (minimal supergravity) model

which have only 4 free parameters plus a sign:

 $m_0, m_{1/2}, A_0, \tan\beta, \operatorname{sign}(\mu)$

All these models are able to solve the known problems, e.g. the coupling unification

FAPPS2008, 25th Sept.

Superpartners of the SM Particles

	Names		spin 0	spin $1/2$	$SU(3)_C, SU(2)_L, U(1)_Y$
sq	uarks, quarks	Q	$(\widetilde{u}_L \ \widetilde{d}_L)$	$\begin{pmatrix} u_L & d_L \end{pmatrix}$	$({f 3},{f 2},{1\over 6})$
($\times 3$ families)	\overline{u}	\widetilde{u}_R^*	u_R^\dagger	$(\overline{f 3},f 1,-rac{2}{3})$
		\overline{d}	\widetilde{d}_R^*	d_R^\dagger	$(\overline{3},1,rac{1}{3})$
sle	ptons, leptons	L	$(\widetilde{ u} \ \widetilde{e}_L)$	$(\nu \ e_L)$	$({f 1}, {f 2}, -{1\over 2})$
($\times 3$ families)	\overline{e}	\widetilde{e}_R^*	e_R^\dagger	(1, 1, 1)
Hi	ggs, higgsinos	H_u	$\begin{pmatrix} H^+_u \ H^0_u \end{pmatrix}$	$\begin{pmatrix} \widetilde{H}^+_u & \widetilde{H}^0_u \end{pmatrix}$	$({f 1}, {f 2}, + {1\over 2})$
		H_d	$\begin{pmatrix} H^0_d \ H^d \end{pmatrix}$	$({\tilde H}^0_d \ \ {\tilde H}^d)$	$({f 1}, {f 2}, -{1\over 2})$
	Names		spin $1/2$	spin 1	$SU(3)_C, SU(2)_L, U(1)_Y$
	gluino, gluo	on	\widetilde{g}	g	(8, 1, 0)
	winos, W bos	sons	\widetilde{W}^{\pm} \widetilde{W}^{0}	$W^{\pm} W^0$	(1, 3, 0)
	bino, B bos	on	\widetilde{B}^0	B^0	(1, 1, 0)

 $|\Delta s|=1/2$

Fermion←→Boson

The mixing of \tilde{W}^0 and $\tilde{B}^0 \rightarrow \text{zino}(\tilde{Z})$ and photino $(\tilde{\gamma})$

Gauginos: gluino, winos, bino, zino & photino

The mixing of gauginos and higgsinos $\rightarrow 2$ charginos ($\tilde{\chi}_{1,2}^{\pm}$) and 4 neutralinos ($\tilde{\chi}_{1,2,3,4}^{0}$)

A Benchmark Scenario SPS1a' in cMSSM

Snowmass Points and Slopes

 $m_{1/2} = 250 \text{ GeV}, \ m_0 = 70 \text{ GeV}, \ A_0 = -300 \text{ GeV}, \ \tan \beta = 10 \text{ and } \mu > 0$

SUSY Higgs Sector: Production

A. Djouadi, hep-ph/0507173

FAPPS2008, 25th Sept.

SUSY Higgs Sector: Light Scalar Boson h

2 dominant decay channels have little dependence on tanβ
 Light SUSY boson h is SM-like, in particular in the decoupling limit
 h can be detected in entire MSSM parameter space

SUSY Higgs Sector: Heavy Scalar Boson H

At large tanβ, two dominant decay modes similar as light boson h
 Boson H can be discovered if m_H<√s (if not, increase √s)

SUSY Higgs Sector: Pseudoscalar Boson A

Boson A similar to heavy boson H
 Photon collider option has larger mass reach for A and H

SUSY Higgs Sector: Charged Bosons H[±]

Dominant decay mode:

- $H \rightarrow \tau v$ at low mass (if $M_H < m_t$, 10fb⁻¹ sufficient for a detection)
- $H \rightarrow tb$ at high mass (ex, M_H =300GeV, $\int s$ =800GeV, L=800fb)

J.A. Aguilar-Saavedra et al., TESLA Technical Design Report

FAPPS2008, 25th Sept.

An Example of SUSY Measurements at ILC

H.U. Martyn, hep-ph/0302024, J.A. Aguilar-Saavedra et al., Eur. Phys. J. C46 (2006) 43

		$m \; [\text{GeV}]$	$\Delta m \; [\text{GeV}]$	Comments
alino sector	χ_1^{\pm}	183.7	0.55	simulation threshold scan, 100 fb^{-1}
	χ_2^{\pm}	415.4	3	estimate $\chi_1^{\pm}\chi_2^{\mp}$, spectra $\chi_2^{\pm} \to Z\chi_1^{\pm}$, $W\chi_1^0$
	χ_1^0	97.7	0.05	combination of all methods
	$\chi_2^{\bar{0}}$	183.9	1.2	simulation threshold scan $\chi_2^0 \chi_2^0$, 100 fb ⁻¹
utr	$\chi_3^{\overline{0}}$	400.5	3-5	spectra $\chi_3^0 \to Z \chi_{1,2}^0, \chi_2^0 \chi_3^0, \chi_3^0 \chi_4^0, 750 \text{ GeV}, \gtrsim 1 \text{ ab}^{-1}$
ne,	χ_4^0	413.9	3-5	spectra $\chi_4^0 \to W \chi_1^{\pm}, \chi_2^0 \chi_4^0, \chi_3^0 \chi_4^0, 750 \text{ GeV}, \gtrsim 1 \text{ ab}^{-1}$
	\tilde{e}_R	125.3	0.05	e^-e^- threshold scan, 10 fb ⁻¹
or	\tilde{e}_L	189.9	0.18	e^-e^- threshold scan 20 fb ⁻¹
ect	$\tilde{\nu}_e$	172.5	1.2	simulation energy spectrum, 500 GeV, 500 fb ^{-1}
n s	$\tilde{\mu}_R$	125.3	0.2	simulation energy spectrum, 400 GeV, 200 fb ^{-1}
oto	$\tilde{\mu}_L$	189.9	0.5	estimate threshold scan, 100 fb^{-1}
Sle	$\tilde{\tau}_1$	107.9	0.24	simulation energy spectra, 400 GeV, 200 fb ^{-1}
<i>v,</i>	$\tilde{\tau}_2$	194.9	1.1	estimate threshold scan, 60 fb^{-1}
ark	$ ilde{t}_1$	366.5	1.9	estimate <i>b</i> -jet spectrum, $m_{\min}(\tilde{t}_1)$, 1TeV, 1000 fb ⁻¹

-ightes Squarl

ILC provides many measurement possibilities/methods, e.g.:

- Beam polarization

- Threshold scan (tunable beam energy)
- e-e- option (in additional to e+e-)
- Clean environment (e.g. end-point method)

FAPPS2008, 25th Sept.

Polarized Beams

- Direct analysis of the interaction structure of New Physics
- Increased sensitivity to non-standard & SM couplings
- Enhanced signal and suppressed background rates

Example: smuon pair productions (signal):

Dominant SM background:

→ Experimental signature: muon pairs + missing E

FAPPS2008, 25th Sept.

Improved S/B Ratio with Polarized Beams

(e-, e+)	Signo	Background (B)	
Polarization	$\sigma(\tilde{\mu}_R^+\tilde{\mu}_R^-)$ [fb]	$\sigma(\tilde{\mu}_L^+\tilde{\mu}_L^-)$ [fb]	$\sigma(W^+W^-)$ [fb]
(-80%, -80%)	11.44	5.06	1448
(-80%, +80%)	21.23	37.74	12995
(+80%, -80%)	82.99	8.37	198
(+80%, +80%)	11.44	5.06	1448
(-80%, 0)	16.34	21.40	7241
(+80%, 0)	47.21	6.72	824

Threshold Scan & e-e- Option

A. Freitas et al, hep-ph/0211108, H.U. Martyn, hep-ph/0302024

\rightarrow ILC allows proper choice of E_e and P_e to disentangle different states & quantum numbers

End-point Method

The measured energy spectrum provides two end-points (E_{min} , E_{max})

In two-body decays, the end-points are related to masses of the final states:

$$E_{\max,\min} = \frac{m_{\widetilde{\mu}}}{2} \left(1 - \frac{m_{\chi_2}^2}{m_{\widetilde{\mu}}^2} \right) \gamma \left(1 \pm \beta \right) \quad \text{with } \beta = \sqrt{1 - \frac{4m_{\widetilde{\mu}}^2}{s}}, \ \gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

Dark Matter Content of the Universe

What we know with good precision:

What we do not know:

- What is dark matter?
- How is it generated?
- Is it related to SUSY?

Cold Dark Matter density:

0.094 < Ω_{DM}h² < 0.129 (WMAP 2σ range)

WMAP: Wilkinson Microwave Anisotropy Probe

FAPPS2008, 25th Sept.

Constraint on the SUSY Phase Space

SUSY Benchmark Scenarios

J. Ellis et al., hep-ph/0303043, E. Baltz et al., hep-ph/0602187

LCC: Linear Collider Cosmo benchmark points

FAPPS2008, 25th Sept.

A Comparison of DM Precision Reach

Expected Planck precision ~ 2% but tell us nothing on the nature of DM ILC will have the precision to clarify the connection of cosmology and SUSY

Synergy LHC+ILC

E. Baltz et al., hep-ph/0602187

There are endless examples showing the gain of synergy LHC+ILC But for this to work, ILC has to be built before the end of LHC

ILC Timeline and Prospects

Summary

ILC has a rich and well established physics programme

ILC is a precision and complementary machine to LHC

ILC may have a revolutionary impact on our understanding of the matter, interactions, time-space structure of the universe