Diboson Physics

26 Sep. 2008 (FAPPS) Plamen Tran Horii

Contents:

- Intro and Motivation
- Previous Results
- Prospects for the future
- Conclusion

- Diboson Physics (in pp collider):
 pp → Boson Boson + X
- (a) One can investigate weak gauge boson self interactions, like WWZ(γ) and ZZZ(γ).
- (b) Also one can investigate (as background or signal) diboson production in qq (pp) interactions with q in t channel.

The self-interaction of the weak gauge bosons (W[±], Z, γ) is a consequence of the non-Abelian SU(2)_L gauge symmetry of the standard model. The gauge invariant kinetic term for the gauge field is

$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\,\mu\nu} \quad \text{with} \quad F^{a}_{\mu\nu} = \partial_{\mu} A^{a}_{\nu} - \partial_{\nu} A^{a}_{\mu} + g f^{abc} A^{b}_{\mu} A^{c}_{\nu}$$

- This leads to the 3- and 4- boson self interactions, with strength defined by the so called Three-linear/Quartic Gauge Couplings (TGC/QGC).
- The study of diboson production thus directly tests the predicted Standard Model couplings. Observations of anomalous couplings would be an indication of new physics.

WW / WZ / Wy production

W

SM

- Signal : pp \rightarrow WW (WZ, W γ) + X
- W and Z : reconstructed by leptonic decays. 2 Z/γ (qq have many backgrounds.)
 - I^{\pm} : High E_{T} lepton, v : Large missing E_{T} .
- γ : High E_{T} .

ZZ production

• Feynman diagram

- Involving ZZV (V=Z, γ) coupling
- Signature:
 - $\checkmark \quad ZZ \to 4 \mu$
 - $\checkmark \quad \text{ZZ} \rightarrow \text{4e}$
 - $\checkmark \quad \text{ZZ} \to \text{2e} + 2\mu$

ZZ production

- Conditions for selected leptons
 - ✓ Muons:
 - Track matched to muon $p_T > 15 \text{ GeV}$

Total transverse energy deposited in calorimeter < 2.5 GeV, within $R = 0.1 \sim 0.4$ centered around the track.

Muon recontructed must be required to originate from the primary event vertex.

✓ Electrons:

 $E_T > 15 \,\text{GeV}$ $|\eta| < 1.1 \,\text{or} \, 1.5 < |\eta| > 3.2$

Must be isolated from other clusters in the calorimeter Invariant mass of each pair is above 50 GeV

• Main background: "Z + multi-jet" events, "t + anti-t" production

Result: only 3 events of ZZ (2 candidates for 4e and 1 for 4μ)

Diboson production with CMS

• Study
$$pp \rightarrow Z^0 Z^0 \rightarrow e^+ e^- e^+ e^-$$

 $pp \rightarrow W Z^0 \rightarrow 3l \quad (l = e, \mu)$

Data: PYTHIA Monte Carlo generator

	$e^{\pm}e^{+}e^{-}$	$\mu^\pm e^+ e^-$	$e^{\pm}\mu^{+}\mu^{-}$	$\mu^\pm\mu^+\mu^-$	Total	Efficiency
$W^\pm Z^0\!\rightarrow\!\ell^\pm\ell^+\ell^-$	14.8	26.9	28.1	27.0	96.8	6.2%
$Z^{0}Z^{0}$	0.63	1.54	1.50		3.68	4.2%
$t\overline{t}$	0.93	1.55		0.31	2.79	0.02%
$\mu^+\mu^-b\overline{b}$			6.54	4.9	11.4	0.005%
$e^+e^-b\overline{b}$	1.21	1.82			3.03	0.007%

	Efficiency	$N_{\rm events}/1{\rm fb}^{-1}$	$N_{\rm events}/10{\rm fb^{-1}}$
Z^0Z^0	38%	7.1	71.1
$Z^0\gamma^*$	4.5%	0.16	1.60
$Z^0 b \overline{b}$	0.07%	0.08	0.84
$t\overline{t}$	0.06%	0.12	1.22
S_{L}		4.8	13.1

With high signal-over-background ratios achieved by the $W^{\pm} Z^0$ and Z^0 selections, early observation of these channels will take place at LHC.

Conclusion

- In the SM, the couplings of the gauge bosons are derived from the non-Abelian symmetry.
- Several measurements and searches has been performed at TeVatron, and all the results are consistent with the SM.
- Precise studies at LHC are a stringent test on the SM and a probe into NP.

Spare Slide 1 Types of 3-Boson Vertices

- EXISTING:
 - W+(-) W+(-) Z, γ or Higgs -----> 3+3
 - W+ W- --> Ζ, γ, Higgs -----> 3
 - Higgs^3 ---> 1
 - HZZ ---> 1
- NOT EXISTING:
 - Z Z → Z, γ- no, but H !!!
 - γ^3
 - $\ HZ \ \gamma$
 - $\gamma \gamma H$, Z (tree level),.
- ???:
 - ΗΗΖ, γ

Di - Bosons

- Don't forget that the screen in the conference room is not wide enough,
- So make narrower slides !!!
- Also we should include references in the text !!! (maybe just 1 reference for each of the papers that we have read, or if you found something interesting)
- Contents:
 - Intro and Motivation
 - -WWZ
 - ZZ γ
 - conclusion

- By Di Boson we mean "process including a vertex with at least 2 Bosons
- One can investigate
 - Weak Gauge Boson (WGB) self interactions → we are going to talk only about some of them, like WWZ(γ) and ZZZ(γ)

(here we have WWZ; the diagrams for WW γ and ZZZ(γ) look the same)

 Also one can investigate (as background or signal) "DiBoson (ZZ, W+W-) production in qq (pp) interactions with q in t channel)

• Why study dibosons? (Motivation) (maybe we can move this earlier):

- •Test EW sector of SM and Search for New Physics (SUSY)
- Search Higgs?: diagram $qq \rightarrow WWqq \rightarrow qq$ tau, tau

 The self-interaction of the weak gauge bosons (the W[±], the Z, and the photon) is a consequence of the non-Abelian SU(2)_L gauge symmetry of the Standard Model. The gauge invariant kinetic term for the gauge field is

$$\mathcal{L}_{gauge} = -\frac{1}{4} F^a_{\mu\nu} F^{a\,\mu\nu} \quad \text{with} \quad F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^{abc} A^b_\mu A^c_\nu$$

- This leads to the 3- and 4- boson self interactions, with strength defined by the so called Three-linear/Quartic Gauge Couplings (TGC/QGC)
- The study of diboson production thus directly tests the predicted Standard Model couplings. Observations of *anomalous* couplings would be an indication of **new physics**.

 The self-interaction of the weak gauge bosons (the W[±], the Z, and the photon) is a consequence of the non-Abelian SU(2)_L gauge symmetry of the Standard Model. The gauge invariant kinetic term for the gauge field is

$$\mathcal{L}_{gauge} = -\frac{1}{4} F^a_{\mu\nu} F^{a\,\mu\nu} \quad \text{with} \quad F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^{abc} A^b_\mu A^c_\nu$$

- This leads to the 3- and 4- boson self interactions, with strength defined by the so called Three-linear/Quartic Gauge Couplings (TGC/QGC)
- In practice the New Physics effects can be parametrized as deviations from the SM couplings in an effective Lagrangian.

$$\mathcal{L}_{WWV} = g_{WWV} \left\{ i g_1^{V} [W_{\mu\nu} W^{\mu} V^{\nu} - W_{\mu} V_{\nu} W^{\mu\nu}] + i \kappa_V W_{\mu} W_{\nu} V^{\mu\nu} + \frac{i \lambda_V}{M_W^2} W_{\lambda\mu} W^{\mu} V^{\nu\lambda} \right\}$$

 The study of diboson production thus directly tests the predicted Standard Model couplings. Observations of *anomalous* couplings would be an indication of **new physics**.

 In practice the New Physics effects can be parametrized as deviations from the SM couplings in an effective Lagrangian. E.g. for WWZ or WWγ interactions (WWV) one uses

$$\mathcal{L}_{WWV} = g_{WWV} \left\{ i g_1^{V} [W_{\mu\nu} W^{\mu} V^{\nu} - W_{\mu} V_{\nu} W^{\mu\nu}] + i \kappa_{V} W_{\mu} W_{\nu} V^{\mu\nu} + \frac{i \lambda_{V}}{M_W^2} W_{\lambda\mu} W^{\mu} V^{\nu\lambda} \right\}$$

where g_1^{V} , κ_V and λ_V are 5 C- and P- conserving parameters ($g_1^{\gamma} = 1$ by EM gauge invariance)

- If all we have is the SM then g_1 and κ should be equal to 1 (λ = 0 in SM ??)
- Normally one looks for deviation of these parameters from 1, i.e. tries to measure Δg_1 and $\Delta \kappa$ ($\Delta g_1 = g_1 1$; $\Delta \kappa = \kappa 1$)

Systematic uncertainties (CDF)

Systematic Uncertainties

	Fractional Uncertainties (%)						
Source	WZ	ZZ	$Z\gamma$	$t\overline{t}$	Z+jets	$\sigma(WZ)$	
Cross-section	-	10.0	22.0	15.0	-	2.0	
Energy Scale	1.0	1.0	1.0	-	-	1.1	
$ \not\!\!E_T \operatorname{Modeling} $	1.0	1.0	25.0	1.0	_	2.4	
PDF Uncertainty	2.0	2.0	2.0	2.0	-	2.3	
LepId $\pm 1\sigma$	1.9	2.0	1.9	1.8	-	2.2	
Trigger Eff	1.5	1.9	5.7	2.4	-	2.0	
$Jet \rightarrow Lepton Mis-Id$	-	-	-	-	19.4	2.4	
Total	3.5	10.7	33.9	15.5	19.4	5.6	
Luminosity	6.0	6.0	6.0	6.0	_	6.8	

consistent with the NLO cross section value of 3.7 ± 0.3 pb.

Result: only 3 events of ZZ (2 candidates for 4e and 1 for 4μ)

