CERN-PH-TH/2007-053 hep-ph/0703112

CP Violation and B Physics at the LHC

Robert Fleischer Theory Division, Department of Physics, CERN CH-1211 Geneva 23, Switzerland

R. Hori L.T.HUE

Motivation

- CP violation (CPV) and flavor physics have interests with new physics (NP).
 - extension of Standard Model (SM)?
 - SUSY, left-right-symmetric models, extra Z', extra dimensions, little Higgs...?
 - Beyond Standard Model (BSM)?
 - The Baryon asymmetry of the Universe?
 - Why matter is dominating anti-matter?
 - The decay of heavy Majorana neutrinos?

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \simeq \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$
26/09/2008 France-Asia Particle Physics 2 School

CP violate term

LHCb Detector view

• More information->backup slides.

26/09/2008

Topics of B meson CPV in LHCb π K Puzzle

1.6

1.4

1.2

പ്പ

0.8

0.6

q = 1.75

 $\phi = 290^{\circ}$

q = 0.58

0.9

 $R_{\rm n}$

exp. region

2005

 $\phi = 280^{\circ}$

6=900

0.8

2003

 $\phi = 2709$

0.7

 $\phi = 300^{\circ}$

q = 0.69

1

 $q \neq 1.22$

2003

SM

1.1

The Unitarity triangle

Many topics

$$\begin{split} B_{d} &\to \pi^{+}K^{-}, \pi^{-}K^{+}, \pi^{0}K^{0} & \pi \text{ K Puzzle} \\ B_{s} &\to D_{s}^{\pm}K^{\mp} & B_{d} \to D^{\pm}\pi^{\mp} & \text{Determine } \gamma \\ B_{d} &\to \pi^{+}\pi^{-} & B_{s} \to K^{+}K^{-} & \text{b->s transition} \\ B_{s,d} &\to \mu^{+}\mu^{-} & B_{d}^{-0} \to K^{*}\mu^{+}\mu^{-} & \text{Rare decay} \end{split}$$

• We explain about $B_s^0 \rightarrow J/\psi\phi$. (Mixing)

26/09/2008

$B_q - \overline{B}_q$ mixing

- The off-diagonal element of the mass matrix.
 - M^(d)₁₂: obtain from experiment
 - M^{d,SM}₁₂: SM model value.

$$\begin{split} M_{12}^{(d)} &= M_{12}^{d,\mathrm{SM}} \begin{pmatrix} 1 + \underline{\kappa}_d e^{i\sigma_d} \\ \mathrm{constant} \ ^{i} \mathrm{phase} \end{pmatrix} \\ \Delta M_d &= \Delta M_d^{\mathrm{SM}} + \Delta M_d^{\mathrm{NP}} = \Delta M_d^{\mathrm{SM}} \left| 1 + \kappa_d e^{i\sigma_d} \right| \\ \phi_d &= \phi_d^{\mathrm{SM}} + \phi_d^{\mathrm{NP}} = \phi_d^{\mathrm{SM}} + \arg(1 + \kappa_d e^{i\sigma_d}), \end{split}$$

 - From experiment
 Problem!

 $B_d \rightarrow J/\psi K^*$ V_{ub} determination
 $B_d - \overline{B_d}$ mixing

 $\phi_d = (42.4 \pm 2)^0$ $\phi_d^{NP}|_{excl.} = -(3.4 \pm 7.9)^\circ$ $\Delta M_d = 0.5 \, ps^{-1} \, \frac{\Delta \Gamma_d}{\Gamma_d} \approx 0$

$B_d - \overline{B}_d$ mixing

- The prediction from SM $\sin \Phi_d = 0.695 \pm 0.055$
- The results of experiment : $\sin \phi_d = \begin{cases} 0.741 \pm 0.075 & \text{babar} \\ 0.719 \pm 0.082 & \text{belle} \end{cases}$

->SM agrees with experiment, then no conclusions can be drawn at the moment.

$B_s - \overline{B}_s$ mixing

- Considering B_s system
- Just replace d by s .Then
- with SM : $\Delta M_s = O(20 p s^{-1})$
- $B_s^o \overline{B}_s^0$ oscillations are very rapid, consequently.
- Γ_s is small, so is needed to measure precisely.
- calculation $\frac{\Delta\Gamma_s}{\Gamma_s} \approx o(0.1)$
- Tevatron: $\frac{\Delta\Gamma_s}{\Gamma_s} = \begin{cases} 0.65^{+0.25}_{-0.33} \pm 0.01(CDF) \\ 0.24^{+0.28+0.03}_{-0.38-0.04}(D0) \end{cases}$ The

They have large error!

CPV of phase in the SM

$$\phi_s^{SM} = -2\lambda^2 \eta = -2^0$$

26/09/2008

Measurement ΔM_s

D0	$17 \mathrm{ps}^{-1} < \Delta M_s < 21 \mathrm{ps}^{-1}$ (90% C.L.),	2.5σ
CDF	$[17.77 \pm 0.10(\text{stat}) \pm 0.07(\text{syst})] \text{ ps}^{-1}$	5.0σ
HPQCD	20.3 ps ⁻¹	
JLQCD	16.1±2.8 ps ⁻¹	
HP+JLQCD	23.4±3.8 ps ⁻¹	

Figure 5: The allowed regions (yellow/grey) in the $\sigma_s - \kappa_s$ plane. Left panel: JLQCD lattice results. Right panel: (HP+JL)QCD lattice results.

26/09/2008

The decay $B_s^0 \to J/\psi\phi$

- This decay is counterpart of the $B_s^{\ 0} \rightarrow J/\psi\phi$.
- Two vector meson->mixture different CP eigenstates.
 - Eigenstates can distinguish by angular distribution of meson.
- This Feinman diagram has no phase (b->s, b->t and t->s)
 - Hadronic matrix element is cancel.
- -> $B_s^0 \overline{B}_s^0$ mixing observable!

B_s^{0} CP eigenstates

- This decay mode has 3 linear polarization amplitude.
 - A_0 and $A_{//}$ correspond CP even.
 - A_{\perp} corresponds CP odd.

 $\frac{d\Gamma(B^0_s(t) \to J/\psi\phi)}{d\cos\Theta} \propto \left(\frac{\text{CP even}}{|A_0(t)|^2 + |A_{\parallel}(t)|^2}\right) \frac{3}{8} \left(1 + \cos^2\Theta\right) + \frac{\text{CP odd}}{|A_{\perp}(t)|^2} \frac{3}{4} \sin^2\Theta.$

- Θ is the angle of l_+ (from J/ψ decay) to *KK* plane in J/ψ rest frame.

CP violation measurement (1)

- Then we defined: $P_+(t) \equiv |A_0(t)|^2 + |A_{\parallel}(t)|^2$, $P_-(t) \equiv |A_{\perp}(t)|^2$,
- CPV asymmetry:

$$\frac{P_{\pm}(t) - \overline{P}_{\pm}(t)}{P_{\pm}(t) + \overline{P}_{\pm}(t)} = \pm \left[\frac{2\,\sin(\Delta M_s t)\sin\phi_s}{(1\pm\cos\phi_s)e^{+\Delta\Gamma_s t/2} + (1\mp\cos\phi_s)e^{-\Delta\Gamma_s t/2}}\right]$$

- Angle distribution allows to measure Δ / s and ΔM_s in the CPV asymmetry.
- Derive also $\Delta \Gamma_s = \Gamma(B_s^L) \Gamma(B_s^H)$ ($\Delta \Gamma_s / \Gamma_{sSM} \sim 0.1$)

$B_s \rightarrow J/\psi \phi$		$\sigma(sin\phi_s)$	$\sigma(\Delta\Gamma_{s}/\overline{\Gamma}_{s})$	L
	LHCb	~0.06	0.018	2 fb ⁻¹
lf ∆m _s ~20 ps ⁻¹	ATLAS	~0.04	0.012	30 fb ⁻¹
U	CMS	~0.03	0.015	30 fb ⁻¹

• LHCb has the best resorution about B_s CPV in LHC experiment.

CP violation measurement (2)

• ϕ_s measurement.

D0 result

<u>~04</u>

	່ _ທ _ (a) D⊘ , 2.8 fb '	
SM	-0.0037 ± 0.0002	$ \begin{array}{c} \underline{a}_{0.3} \\ \underline{b}_{0.2} \\ 0.2 \end{array} $
D0 (2.8fb ⁻¹)	$-0.79 \pm 0.56(stat.)^{+0.14}_{-0.01}(syst.)$	
LHCb1(SM) (2fb ⁻¹)	-0.04 ± 0.02	$-0.1 = - SM$ $-0.2 = \Delta\Gamma = \Delta\Gamma_{SM} \times \cos(\phi_s) $ $-0.2 = -1.5 -1 -0.5 -0 -0.5 -1 -1.5$
LHCb2(NP) (2fb ⁻¹)	-0.20 ± 0.02	φ _s (radian)
ATLAS, CMS (10fb ⁻¹)	O(0.1)	

• LHCb will be the most precise measurement ϕ_s .

Conclusion

- LHCb can measure ϕ_s in 2 σ signal by 2fb⁻¹ data (by 2010) by B_s mixing.
- Another goals.
 - $-\alpha$, β , γ measurements in several channels.
 - access to rare decays.

Backups and others

LHCb in its cavern

Forward spectrometer (running in pp collider mode) Inner acceptance 10 mrad from conical beryllium beam pipe 26/09/2008 France-Asia Particle Physics School

Vertex locator around the interaction region

Silicon strip detector with ~ 30 µm impact-parameter resolution 26/09/2008 France-Asia Particle Physics School

Vertex detector

- Vertex detector has silicon microstrips with $r\phi$ geometry approaches to 8 mm from beam (inside complex secondary vacuum system)
- Gives excellent proper time resolution of ~ 40 fs (important for B_s decays)

26/09/2008

Vertex detector information is used in the trigger France-Asia Particle Physics 18 School

Tracking system and dipole magnet to measure angles and momenta $\Delta p/p \sim 0.4$ %, mass resolution ~ 14 MeV (for $B_s \rightarrow D_s K$) ^{26/09/2008} ^{26/09/2008} ¹⁹

Two RICH detectors for charged hadron identification 26/09/2008 France-Asia Particle Physics School

LHCb detector у 5m Magn RICH1 Vertex Locator - 5m 5m 10m 15m

Calorimeter system to identify electrons, hadrons and neutrals. Important for the first level of the trigger

Muon system to identify muons, also used in first level of trigger

26/09/2008

Another news

A 1 /0

• SU(3) breaking parameter

$$\xi \equiv \frac{f_{B_s} \hat{B}_{B_s}^{1/2}}{f_{B_d} \hat{B}_{B_d}^{1/2}}$$
$$\frac{\rho_s}{\rho_d} = \lambda^2 \underbrace{\left[1 - 2R_b \cos\gamma + R_b^2\right]}_{=R_t^2} \left[1 + \mathcal{O}(\lambda^2)\right] \frac{1}{\xi^2} \frac{M_{B_d}}{M_{B_s}} \frac{\Delta M_s}{\Delta M_d},$$