ÉCOLE DE PHYSIQUE LES HOUCHES

Detector at LHC : Calorimetrv

Particles Energy Mesurements using Calorimeters

2. Electron-Gamma

- Electromagnetic Cascade
- Energy resolution parameters.

3. Hadron measurement Hadronic Cascade Hadronic Calorimeter Performances

4. Calorimeters ATLAS CMS
5. What was not address

Outline

Answer 1

Estimated Momentum Resolution v/s p_T in CMS

Answer 2

Answer 3

For "heavy" charged particles (M>>m_e: p, K, π , μ), the rate of energy loss (or stopping power) in an inelastic collision with an atomic electron is given by the Bethe-Block equation:

Muon momentum

Bibliography Experimental Challenges in High-Luminosity Collider Physics N. Ellis and T. Virdee (Ann. Rev. Nucl. Part. Sci. 44 (1994) 609

D. Fournier and L. Serin, Experimental Techniques, European School of Particle Physics, CERN 96-04

T. S. Virdee, Experimental Techniques, European School of Particle Physics, St. Andrews, CERN 99-04

CERN Academic Training Lectures

ATLAS and CMS outreach pages

Important Lecture Note

In this lecture I use many exemples from CMS , only because of my better knowledge of this experience. This must not be taken as a ranking between ATLAS and CMS.

To detect particles energy must be transferred to the detecting medium

Energy Loss by Charged Particles Lose energy via interactions of virtual photons with atomic electrons

Can consider the medium as consisting of a gas of electrons

The energy transferred to the electrons causes them to be ejected from the parent atom (ionization) or to be excited to a higher energy state (excitation)

Particle detection is based on one or both of these processes

Measurement of Energy: Calorimeters

Neutral and charged particles incident on a block of material deposit their energy through destruction and creation processes

The deposited energy is rendered measurable by ionisation or excitation of the atoms of matter in the active medium.

The active medium can be the block itself *(totally active or homogeneous calorimeter)* or a sandwich of dense absorber and light active planes *(sampling calorimeters)*.

The measurable signal is usually linearly proportional to the incident energy.

Big European Bubble Chamber filled with Ne:H2 = 70%:30% 3T field, L=3.5m, X0=34 cm $^{e^-}$ 50 GeV incident electron $^{50 \text{ GeV/c}}$

ÉCOLE DE PHYSIQUE LES HOUCHES XXVII

Part.II

Electron-Gamma Electromagnetic Cascade Energy resolution Parameters

Electromagnetic Cascade

A high energy e or γ incident on a thick absorber initiates a cascade of e[±]'s, γ 's via bremstrahlung and pair production.

JV217.c

The multiplication continues until the energies fall below the critical energy ϵ . Simplemodel of shower development - use scaled variables

$$t = \frac{x}{X_0}$$
 and $y = \frac{E}{\varepsilon}$

In $1 X_0$, an electron loses about 2/3rd of its energy and a high energy photon has a probability of 7/9 of pair conversion - **naively take X₀ as a generation length**. Assume that after each generation the number of particles increases by a factor of 2.

Electromagnetic Cascade: longitudinal

After t generations,

ÉCOLE DE PHYSIQUE

LES HOUCHES

energy of particles
$$e(t) = \frac{E}{2^{t}}$$

number of particles $n(t) = 2^{t}$
no. of particles $n(t_{max}) \approx \frac{E}{\varepsilon} = y$
and $t_{max} \approx \ln \frac{E}{\varepsilon} = \ln y$

After shower maximum

remaining energy is carried forward by photons giving the typical exponential falloff

Need a depth of > 25 X₀ to contain high energy em showers

CSS99

ÉCOLE DE PHYSIQUE diation Length and Moliere Radius

Critical Energy, ε

Defined to be the energy at which the energy loss due to ionisation* (at its minimum i.e. $\beta \approx 0.96$) and radiation are equal (over many trials)

i.e.
$$\frac{(dE/dx)_{rad}}{(dE/dx)_{ion}} = 1$$

 $\Rightarrow \varepsilon = \frac{560}{Z} (E \text{ in } MeV)$

LES HOUCHES

Fractional Energy Loss by Electrons

Moliere Radius, R_M

This gives the average lateral deflection of critical energy electrons after traversing 1 X_0 and can be parameterised as :

$$R_M = \frac{X_0 E_s}{\varepsilon} = \frac{21_{MeV} X_0}{\varepsilon} \approx \frac{7A}{Z} \quad g.cm^{-2}$$

	Z	ր g.cm-³	I/Z eV	(1/ρ) dT/dx MeV/g⋅cm⁻²	X _o cm	ε MeV	λint cm
C Al Fe Pb U	6 13 26 82 92	2.2 2.7 7.87 11.35 18.7	12.3 12.3 10.7 10.0 9.56	1.85 1.63 1.49 1.14 1.10	~19 8.9 1.76 0.56 0.32	103 47 24 6.9 6.2	38.1 39.4 16.8 15.1 10.5
		$-\frac{dE}{dx} _{ra}$	_{1d} =	$\left[4n \ \frac{Z^2 \alpha^3(\hbar)}{m_e^2 c}\right]$	$\frac{(bc)^2}{4}$ In	$\left\lfloor \frac{183}{Z^{1/3}} \right\rfloor$	Е

$$\star \qquad -\frac{dE}{dx}\Big|_{ion} = N_A \frac{Z}{A} \frac{4\pi\alpha^2(\hbar c)^2}{m_e c^2} \frac{Z_i^2}{\beta^2} \left[\ln \frac{2m_e c^2 \gamma^2 \beta^2}{I} - \beta^2 - \frac{\delta}{2} \right]$$

Meneral Resolution of Calorimeters

Parametrisation of the energy resolution of calorimeters:

 $\frac{\sigma}{E} = \frac{a}{\sqrt{E}} \otimes \frac{\mathbf{C}}{E} \otimes \mathbf{b}$

symbol \oplus implies the quadratic sum of the three terms on rhs

'stochastic or sampling' term (coeff. a) accounts for

• the statistical fluctuation in the number of primary signal generating processes

<u>'noise' term</u> (coeff. c) includes

ECOLE DE PHYSIQUE

- the energy equivalent of the electronics noise and
- pileup the fluctuation of energy entering the measurement area from other sources

<u>'constant' term</u> (coeff.b) accounts for

- non-uniformity of signal generation and/or collection
- the cell to cell inter-calibration error
- the fluctuation in the amount of energy leakage
- •fluctuation in the e.m. component for hadronic showers
- The tolerable value of the 3 terms depends on the energy range of interest.
- Such parametrisations allow the identification of the causes of resolution degradation.
- Quadratic summation implies independent contributions which may not be the case.

Ecal : Resolution versus Energy

$$\frac{\sigma}{E} = \frac{a}{\sqrt{E}} \oplus b \oplus \frac{c}{E}$$

It is important to have a balance between each contribution to the resolution

Also important is the variation of **b** and **c** with time, mainly because of radiation.

Note that the scale refers the e or $\boldsymbol{\gamma}$ energy

For example for low mass Higgs we are looking to measure e, γ in the 20 -60 Gev energy range.

Effect of Material in Front of ECAL

ÉCOLE DE PHYSIQUE

LES HOUCHES

Reconstruction of electrons that radiate little (and unconverted γ s) is simple : CMS - **collect energy in an array of 5 x 5 crystals** centred on ~ impact point

For 'bremming' e's and converting γ 's, challenge is in coping with the combined result of tracker material and the 4T magnetic field (CMS) – problem is not energy loss but spraying/spreading of energy

Photon Reconstruction

ÉCOLE DE PHYSIQUE LES HOUCHES XXVII

Part.II

Hadron measurement Hadronic Cascade Hadronic Calorimeter Performances

Hadronic Cascade

- Analogy with em showers. Strong interaction is responsible for shower development.
- A high energy hadron striking an absorber leads to multi-particle production consisting of mesons (e.g. π^{\pm} , π^{0} , K etc.). These in turn interact with further nuclei
- Nuclei breakup leading to spallation neutrons.
- Multiplication continues until the pion production threshold, $E_{th} \sim 2 m_{\pi} = 0.28 \text{ GeV}$

Simple model treats interaction on a black disc of radius R $\sigma_{int} = \pi R^2 \alpha A^{2/3}$ Infact $\sigma_{inel} = \sigma_0 A^{0.7}$ where $\sigma_0 = 35 \text{ mb}$

Defne nuclear interaction length
$$\lambda_{int} = \frac{A}{N_A \sigma_{int}} \propto A^{1/3} \qquad \lambda \sim 35 A^{1/3} \text{ g cm}^{-2}$$

Cascade particles have a limited transverse momentum $< p_T > \approx 300-400 \text{ MeV}$

ÉCOLE DE PHYSIQUE LES HOUCHES

X0 versus λl

Material	Z	Α	ρ [g/cm ³]	$X_0[g/cm^2]$	$\lambda_{I} [g/cm^{2}]$
Hydrogen (gas)	1	1.01	0.0899 (g/l)	63	50.8
Helium (gas)	2	4.00	0.1786 (g/l)	94	65.1
Beryllium	4	9.01	1.848	65.19	75.2
Carbon	6	12.01	2.265	43	86.3
Nitrogen (gas)	7	14.01	1.25 (g/l)	38	87.8
Oxygen (gas)	8	16.00	1.428 (g/l)	34	91.0
Aluminium	13	26.98	2.7	24	106.4
Silicon	14	28.09	2.33	22	106.0
Iron	26	55.85	7.87	13.9	131.9
Copper	29	63.55	8.96	12.9	134.9
Tungsten	74	183.85	19.3	6.8	185.0
Lead	82	207.19	11.35	6.4	194.0
Uranium	92	238.03	18.95	6.0	199.0

Comparing X0 and λI we understand why Hadronic Calorimeter are in general larger then EM calorimeters

Hadron shower not as well behaved as an em one

red - e.m. component blue - charged hadrons Hadron calorimeter are always sampling calorimeters

ÉCOLE DE PHYSIQUE LES HOUCHES

Hadronic Cascade: Profiles

10³

10²

101

100

10-1

 10^{-2}

0

Hadron shower profiles for single π[±]

Longitudinal

- sharp peak from π^{0} 's produced in the 1st interaction
- followed by a more gradual falloff with a characteristic scale of λ .

WA78 : 5.4λ of 10mm U / 5mm Scint + 8λ of 25mm Fe / 5mm Scint

Lateral

- Secondaries produced with $< p_t > ~ 300 \text{ MeV}$
- -approx. energy lost in $\approx 1 \lambda$ in most materials.
- Characteristic transverse scale is $r_{-} \approx \lambda$.
- Pronounced core, caused by the π^0 component,

150 GeV Pion Shower Profile

 $r f(r) = B_exp(-r/\lambda 1) + B_exp(-r^2/\lambda)$

Transverse radius for 95% containment is $R_{0.05} \approx 1 \lambda$

20

Radius [cm]

30

50

40

λ., = 14.3 cm

 $\lambda_{n} = 3.66 \text{ cm}$ B₁ = 2.69 cm B₂ = 16.8 cm

10

The efficiency (response) of HCAL in energy deposition due to EM interaction and energy deposition due to hadron is called e/h The EM part of an Hadronic shower in mainly due to $\pi 0 \rightarrow \gamma \gamma$ with the subsequent EM photon interactions The response of the calorimeter can be written as $\pi \pm$ response of the calorimeter to charge pion $\pi \pm = \text{fem e} + \text{fh h}$ EM response е Hadronic response h fh = 1 - femfem fraction of EM energy fraction of Hadronic energy fh

The EM fraction of the shower is large (about 1/3 of the produced pions are $\pi 0$) Large fluctuations in EM shower fm depend on the energy of the primary particle If e/ h \neq 1 (> 10%) then $\sigma(E)/E$ is no more proportional to 1/ \checkmark E Hadron response non linear Energy deposition distribution "non Poisson"

Compensation II

- E_{em} em component (π^{0} s)
- E_{ch} charged pions or protons
- E_n low energy neutrons

fem

E_{nucl} -energy lost in breaking nuclei (binding energy)

 $E_{vis} = eE_{em} + \pi E_{ch} + nE_{n} + NE_{nucl}$ N is normally v. small but E_{nucl} can be large (~ 40 % in Pb)

Compensation III

Hadronic Calorimetry at LHC

Jet energy resolution

- Limited by jet algorithm, fragmentation, magnetic field and energy pileup at high luminosity
- Can use the width of jet-jet mass distribution as a figure of merit
 - Low p_t jets: W, Z \rightarrow Jet-Jet, e.g. in top decays
 - High p, jets: W', Z' \rightarrow Jet-Jet
- Fine lateral granularity (≤ 0.1) high p_t W's, Z's

Missing transverse energy resolution

- Gluino and squark production
 - Forward coverage up to $|\eta| = 5$
 - Hermeticity minimize cracks and dead areas
 - Absence of tails in the energy distribution is more important than a low value for the stochastic term
- Good forward coverage is also required to tag processes initiated vector boson fusion

Missina ET

Mesians of General Purpose Detectors

Complementary Conception

ECOLE DE PHYSIQUE

Identify and measure muons after full absorption of hadrons Air-core toroid Good stand-alone p μ measurement p μ measurement safe at high multiplicities solenoid needed for inner tracking σ pT flat with η

High field solenoid placed after calorimetry Fe flux return Measurement of p in tracker and B return with single magnet Solenoid: High pT muon tracks point back to vertex Reasonable stand-alone measurement σ pT degrades progressively with η for tracks exiting the open end of the solenoid

ÉCOLE DE PHYSIQUE LES HOUCHES

Calorimeters ATLAS

ATLAS Calorimeters

ECAL Accordion Pb/LAr $|\eta| < 3.2, 3$ samplings S1: $\Delta\eta x \Delta \phi = 0.025 \times 0.1$ S2: $\Delta\eta x \Delta \phi = 0.025 \times 0.025$ S3: $\Delta\eta x \Delta \phi = 0.05 \times 0.025$

HCAL

Barrel: Fe/Scintillator with WLS fibre readout 3 samplings - $\Delta\eta x \Delta \phi = 0.1 \times 0.1$ **Endcap**: Fe/LAr **Forward**: W/LAr $3.1 < |\eta| < 4.9$ $\Delta\eta x \Delta \phi = 0.2 \times 0.2$

Hadronic Liquid Argon EndCap Calorimeters

ÉCOLE DE PHYSIQUE

ÉCOLE DE PHYSIQUE de Collection in Lar Ionisation Volume

LES HOUCHES

The current and charge for a) single electron-ion pair, b) uniformly distributed e-ion pairs

Liquid Ionisation Calorimeters

 Induced current duration = electron drift time t_d, with a triangular shape

 bipolar impulse response of chamber-preamp-shaper, most important condition for pulse shaping at high rates is system impulse response should have zero area

pileup then does not produce a baseline shift

 for t_p << t_d, i.e. peaking time much faster than drift time, output response becomes 1st derivative of current pulse

energy info. fully contained in the initial current i₀

E DE PHYSIQUE

ATLAS: LAr Calorimeter

Accordion geometry benefits :

No cracks in õ Small modulation (few per mille)

Cabling on front and back only Low inductance

ATLAS: LAr Calorimeter

ÉCOLE DE PHYSIQUE

LES HOUCHES

XXVII

ATLAS: LAr Calorimeter

Assembly of the first HEC wheel (horizontal)

LAr EM half barrel after insertion into the cryostat

ATLAS: Tilecal

Fe absorber with scintillator tile readout with $\Delta \eta \propto \Delta \phi = 0.1 \propto 0.1$, 3 longitudinal samplings, $|\eta| < 1.7$

ATLAS: Tilecal Assembly

LES HOUCHES ATLAS: Calorimeter Performance

Combined Test:

EM LAr and Hadronic Tile Calorimeter

Energy Resolution

Compensation e/h \sim 1.31

 $\sigma / E = a / \sqrt{E} \oplus b \oplus c / E$

	a (%Go)/1/	b (%)	c (GeV)
Data	(760ev1) 69.22)±	$3.3 \pm$	1.8±
G-CALOR	61.7 ± 0.1	0.2 2.9 ± 0.3	1.5 fixed

e/ ratio Degree of non-compensation e/h

$$e/\pi = \frac{e/h}{1 + (e/h - 1) \cdot F(\pi^0)}, F(\pi^0) = 0.11 \cdot \ln E$$

ÉCOLE DE PHYSIQUE LES HOUCHES

Calorimeters CMS

CMS Calorimeters

CMS Electromagnetic Calorimeter

ÉCOLE DE PHYSIQUE

LES HOUCHES

CMS: Crvstal Calorimeter

Advantages:

· Fast

ÉCOLE DE PHYSIQUE

- · Dense
- · Radiation hard
- \cdot Emission in visible

Disadvantages:

- Temperature dependence
- · Low light yield
- ·a Photodetector with gain
- · (in a strong magnetic field)

Density [g/cm ³]	8.28
Rad length,X ₀ [mm]	8.9
Int length [mm]	224
Molière rad [mm]	21.9
Decay time [ns]	5(39%) 15(60%) 100 (1%)
Refractive index	2.30
Max emiss [nm]	420
Light yield [ph/MeV]	~50
Temp coeff [%/ºC]	-2

CMS Parameters

Parameter	Barrel	End caps	
Xtal size (mm^3)	21.8 × 21.8 × 230	30.0 × 30.0 × 220	
Depth in X_o	25.8	24.7	
No. crystals	61200	14664	
Volume (<i>m</i> ³)	8.14	2.77	
Xtal mass (<i>t</i>)	67.4	22.9	

~ 75 % of shower energy in one crystal

Photodetectors for PWO

CMS ECAL READOUT CHAIN

ÉCOLE DE PHYSIQUE

LES HOUCHES

CMS ECAL: Performance

ÉCOLE DE PHYSIQUE

LES HOUCHES

CMS: ECAL Calibration

Laser monitoring:

E DE PHYSIQUE

Correct for variations in crystal transparency due to irradiation

ÉCOLE DE PHYSIQUE LES HOUCHES

CMS ECAL Crvstal Monitoring

Crystals light collected changes due to irradiation / modification of transparency

- ==> Monitor transparency using laser light of 440nm, 495nm and 700nm
- Relative response to electrons and laser light characterized by a single constant ¶

CMS HCAL

Routing of clear fibres to optical

plates

CMS HCAL

Central Region ($|\eta|$ <3) :

projective geometry

granularity $\Delta \eta \times \Delta \phi = 0.0875 \times 0.0875$

- Scintillator 4 mm thick with WLS fibre readout, Interleave with 50mm plates of brass
- no longitudinal sampling
- •• **e/h ~ 1.4**

$$\frac{\sigma(E)}{E} \propto \frac{(120\%)}{\sqrt{E}} \oplus 5\%$$

ÉCOLE DE PHYSIQUE CMS: Verv Forward Calorimeter

LES HOUCHES

Fibres insertion in HF wedges

Forward Region ($3 < |\eta| < 5$): Fe/Quartz Fibre, Cerenkov light

A lot was not covered

Alignment issues (mainly : tracker and muon system) Magnets system Luminosity measurements

Electronics Front end and related radiation hardness issues Readout Electronics / Buffering

rigger What is in/out of the triggers Filtering (from 40 Mhz to 100 Hz)

DAQ Event building Data flow

Jets , Events Reconstruction, Simulations (Hadronic Models) See D.Froidevaux Lecture