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Fondamentals in Statistics

In 2 lessons, it’s impossible to cover correctly even the
Fondamentals in Statistics.
Better saying Introduction to Statistics for Physicists
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Why such a course ? w77
4 N

As experimentalists, we need statistics every day

Electronic detector amplitudes/times — (x,y,2)
Pattern recognition points — tracks

Particle identification hypotheses testing

Signal or not signal hypotheses testing
Extracting results estimations/fits
Redondancy of measures combining estimators

Data analysis Monte-Carlo simulation

automatic classification (clustering)
multivariate analyses

e o/
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How the course is organized

-

The first lesson (today) will be a quick survey on some main topics:
e Basic concepts

e Point Estimation

e Interval Estimation

The second lesson (tomorrow) will treat a complete exemple, namely
“Observation of a fine structure” through 3 items

e Hypothesis testing
e (Classical approach

e Modern approach

I have borrowed many slides from Fred James’ course at CERN !
Thank vou, Fred !

e

o
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Introduction

Classical Statistics have been developed at the end of the 18th
century : (GAUSS, BERNOUILLI, BAYES, ...)
During one century (19th) statistics is almost always *“Bayesian™.

Since then, two major impulses :

1. begining of the 20th century, the Theory of Probabilities
(KOLMOGOROV.,...) leads to the frequentist view-point in

statistics
( FISHER, PEARSON(s), NEYMAN, DARMOIS)

2. For the last 50 years or so, due to the computer era (polls)

One can distinguish :

1. Descriptive statistics : any kind of *raw”™ data

b2

. Explanatory statistics : estimation. correlations
3. Decision statistics : hypotheses testing
4. Prevision statistics (time is a new parameter) : weather forecast
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Bibliography w7
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e The Bible : Kendall et Stuart (Ch. Griffin)
The advanced theory of statisties, 3 tomes.

e my favorite : Frederick James (World Scientific)
Statistical Methods in Experimental Physics..

e for the advanced people The PHYSTAT conferences
http://www.physics.ox.ac.uk/phystat05/reading.htm

We will assume that you have sufficient background in Probabilities !
Nevertheless, some remarks may be useful.

% A
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Probability P77
4 N\

All statistical methods are based on calculations of probability.

e Mathematical probability is an abstract concept which obeys the
Kolmogorov axioms.

We will need a specific operational definition. There are two such definitions
we can use :

e Frequentist probability is defined as the limiting frequency of favourable
outcomes in a large number of identical experiments.

e Bavesian probability is defined as a degree of belief in a favourable outcome
of a single experiment.

e of
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Bayesian Probability ol
= A

For phenomena that are not repeatable, the frequentist approach cannot work.
(it’s almost always the case if we want a prediction : for example, we want to
know the probability that it will rain tomorrow).

Bayesian probability is defined as the degree of belief that the event will
happen.

It depends not only on the phenomenon itself, but also on the state of
knowledge and beliefs of the observer, and it will in general change with time
as the observer gains more knowledge.

We cannot verify if the Bayesian probability is “correct” in terms of counting
frequencies.

\ S
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Bayes’ Theorem 77T
o A

Bayes’ Theorem says that the probability of both A and B being true
simultaneously can be written : P(A|B)P(B) = P(B A)'P (A), which implies :

P(A|B) = P(B|A)P(A)/P(B
p(zly) = q(ylz)f(z)/g(y)

Bayesian statisticians consider parameters as random variables and use the
Bayes’ theorem also in that case :

f(6]x) = f(«|6)f(6)/f(x)

where f(#) is called the “prior” probability, and f(6|x) the “posterior”
probability.

X P
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Fundamental Concepts (1) w777

— H : The standard model is correct
— H : The tau neutrino is massless

The Hypothesis is what we want to test, verify, measure, decide.
Examples :

A Random Variable is data that ecan take on different values, unpredictable
except in probability. P(datalhypothesis) is assumed known, provided any
“parameters” in the hypothesis are given some values. Example for a
POISSON process :

g =My

The possible values of the data (N ) are discrete, and p is the only
parameter of the hypothesis.

P(i\rﬁ\} ==

i
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4 Fundamental Concepts (2 2?77
%

e Probability Density Function (pdf). When the data are continuous, the

probability becomes a pdf, as for the Gaussian

i 2

exp =5

V 2mo?
where ;1 and o are the parameters of the model. Note that p is the true
value of the quantity being measured, while o is the width of the
(Gaussian. p is the parameter of interest, and o, if unknown, is a nuisance

parameter, unknown but unfortunately necessary for the calculation of
P(data hypothesis).

Plz|p o) =

% o
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Fundamental Concepts (3) e

" )

The Likelihood function

If in P(data hypothesis), we put in the values of the data observed in the
experiment, and consider the resulting function as a function of the (unknown)
parameter(s), it becomes

P(datalhypothesis)

L{hypothesis|data)

L is called the Likelihood function.

R. A. Fisher, who introduced this in 1921, knew that it was not a probability,
called it a likelihood.

This is THE central concept in statistics

e, A
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Statistics versus Probabilities

Probabilities

w777

Statistics

/. MODEL : a jar containing N marbles (B white and N-B black marbles) \

DATA : B. N known
p =B/N known

p, B, N unknown. One has drawn n
marbles and got & white marbles.

QUESTIONS :

* Find the probability law
of the number of white marbles
in n drawings, with or without
replacement.

* Find the law of the number of
drawings necessary for obtaining
the first white marble.
Expectation of this p.d.f.

* Give to p a reasonable value
point estimation

* Find an interval where p has
a good chance to be
interval estimation

* Decide if the true value of p
is less then a given value
(or between 2 given limits)
hypothesis testing

e

Conclusions : certains
and in principle with an
arbitrary precision.

A certain answer is impossible
The more precise the answer, the bigger
the prob. that it is wrong.

/
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In brief e
~ R

“The probability model, the set of statistical hypotheses, and the data, form a
triplet which is the foundation of statistical inference.

Of the many outcomes, each with a specified probability given the hypothesis.
which could have occured on the basis of the accepted model, one has occured
- the data. What can they reveal about the hypotheses 7”

A. Edwards : Likelihood
Cambridge Univ. Press (1972)

X P

Pierre Lutz Fundamentals in Statistice (page 18) Cours FAPPS




The measuring “errors” (1) 277
Be A" an observable, X its (unknown) true value. In order to determine X, we
make a number of measures r; pertinent for X, and a computation

(estimation) leads to the result .
Definitions

¢ ¢ =X — z is the error on X
e ¢, = Fle] is the systematic error on X
® ¢, = € — €, is the statistical (or accidental) error on X.

With these definitions, x, € and ¢, are random var., but e, is NOT.

Statistical error

According to the Law of Large Numbers, ¢, = E[x] — z = lim,, .. T,, — . The
dispersion of €, is thus the dispersion of the x;, measures done in the same
conditions by the same instrument. It is called the dispersion of the instrument

%, o
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The measuring “errors”(2)

245

04

L

L]

L ]

oz
aias
L

e

2RSSR

1253

The ¢, p.d.f. is usually taken as a
GAUSSIAN.
The smaller the dispersion, the more
trusty the apparatus.
20 is called the precision of the appa-
ratus.
Dispersion (or precision) are easy to
estimate, by the usual estimator

1

Sa==—=> (¢ —%)’

o
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The measuring “errors”(3) p77]

Systematic error \
Recall : by its definition, e, = Ele], it’s NOT a random variable. It is linked to
the measuring instrument: the smaller it is, the more accurate the apparatus.

It appears more like a bias, contrarily to the statistical error, which looks like
the root of a variance.

In order to estimate a systematic error, one should use (gedanken experiment)
many measuring devices of the same type, in order to measure the same
quantity X. On should moreover admit that all devices are fabricated in such

a way that their systematic uncertainty has a zero mean. Thus e, becomes a
random variable ! (somehow bayesian)

So we have k instruments, and a large number of measures for each device. We

have thus k& means T;, where j goes from 1 to k. For each instrument,

e .'p & = T 1 — 1 . IP

T; — X — €j. Consequently, (since Eles] =0), £ > €; — 0 and then

5 _o P ; ; 5 e ;

F=+Y.T; — X. The €; estimator is then = —T; and the variance of €, can
ahs W S | i ~ 32

be estimated as 02 = — > (T; — 1)

Note : €, and ¢, are independent in probability.

s o
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Systematics come in 3 fypes

P. Sinervo (2003)

For Thres Wen
The Givil War

LL]INT EﬂS’E’WﬁDD
~THE GOOD,
THE BAD2
JI‘HL I.EGL )
ELI WMEH

" TELHRSCOPE TEcHilLum

Type 1 : « The Good »

Can be constrained by other measurements
(sideband/auxiliary) ; can then be treated
as statistical uncertainties

* scale with luminosity
Type 2 : « The Bad »

Arise from model assumptions in the
measurement or from poorly understood
features in data or analysis technique.

* eg : « shape » systematics
Type 3 : « The Ugly »

Arise from uncertainties in underlying
theoretical paradigm used to make the
inference (somewhat philosophical)



Type 2 systematics

Type Il systematics generally due to 3™} e
uncertainty in shape of background = ™t B tthb (QCD)
o sol H tthh (EW)
» this uncertainty is limiting factor g :
in ttH(H — bb) analysis 2
» also relevant for H — v~

my, (GeV)
A huge amount of effort goes into
identifying other measurements
that can be used to estimate or
constrain the background

» control samples are an important .
tool for experimentalists '

o M {pii)
(] =] o




Type 3 systematics

C'PH calculation FeynHiges calculation

Two theoretical tools used
to exclude regions of CPX
Higgs scenario using the
same measurement &
statistical techniques

1 F Theoretically 1 F Theoretically 4
inacpessible inzeoessizle ]
0 I 40 50 BD 100 120 J40 0 I 40 &0 ED 10O 120 )4

m,, (GeVie™) m,,, (GeVie™)

Do we want to weight these plots CFH OR. FrynHiges

with a Bayesian prior,
Do we want to only exclude in the
region where they both exclude?

1 F Thecredcally
inaccessible

0 20 40 60 80 100 120 140
my;, (GeVic')



So much for the
introduction

Estimation (flying over)



Point Estimation

The goal of Point Estimation is
to find the function of the data X which gives

the “best” estimate (measurement) of the parameter pi.

We assume, as always, P(data|hypothesis) = P{X |z} known.

¥YWhat we mean by the "best” estimate depends wery much on
whether we will use a frequentist or Bayesian method.

Historically, the Bayesian was the first method, so we start there.



Point Estimation - Bayesian

For parameter estimation, we can rewrite Bayes' Theorem:

P(data|hyp) P{hyp)

Pihynldata) =
(hyp|data) P(data)

and if the hypothesis concens the value of u:

FII::I:I ata LEE ::l FI[_l'l' |

FIII d:'lt.:I] = Fl::l:l.j‘t.j]

which is a probability density function in the unknown .
5ince it is a pdf. it must be normalized:

Jo Pluidata) = 1 which determines P{data).



Bayesian Point Estimates 2

Assigning names to the different factors, we get:

Posterior pdf{y) = ZUt) * Prior pdfiu)

normalization factor

The Prior pdf represents your belief about ¢ before you do any
experiments. If you already have some experimental knowledge
about i (for example from a previous experiment), you can use the
posterior pdf from the previous expt. as the prior for the new one.
Eut this implies that somewhere in the beginning there was a prior
which contained no experimental evidence, just belief.

This wery first prior can be thought of as a kind of phase space, or
density of possible states of nature. But there is no law of nature
that tells us what this density is.

In the true Bayesian spirit, the posterior density represents all our
knowledge and belief about i, so there is no need to process this

pdf any further, but since we usually want a point estimate (and
an interval estimate), we take another step.



Bayesian Point Estimates 2.1

Given the Bayesian posterior density for .

the Eayesian point estimate [ is usually taken as

the value of i for which the Posterior pdf takes on its maximum
value.

This is sometimes called incorrectly the most probable value.
The correct terminclogy is

the highest posterior density, or HFD point.

If the Prior probability density is taken as a uniform density,

then the maximum of the Posterior density will occur

at the maximum of the likelihood LCiu).



Bayes Point Estimates 3

Example: In a Poisson process, we observe 3 events.

. £ H |'|':I
AL |||] F'l ?-|||.| 7 Il

Rkl beesd Do oo

— ] 1
2 i i | 10 15 L |
ol P ArILT TL

If the prior P(u) = flat, the peak in the pdf occurs at g = 3.



Bayesian Point Estimates 4

Generalizing from 3 to n, we see that this method gives the
expected result:

with n events observed, i = n

However, in order to get this result we had to do two suspicious
things:
» We used a flat pricr: That means our prior belief of the true

value of 2, integrated between any two finite values is zero.
That is hardly possible.

» Clur point estimate was the mode (position of the peak) of
the pdf, which is not invariant under change of variables.

That means that if we had chosen instead to estimate p”, we
would not have obtained ji°.

We will now consider alternatives to both these choices.
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FPoint Estimation — Bayesian alternatives

Another possible Bayesian estimate of g would be to use the
Fosterior Expectation E{gu). With a uniform prior on the Poisson
parameter ji, when N events are observed, this gives E(u) = N+1.

Since E(N) = p. one might prefer to see E(u) = N
In fact, you get E{u) = N if you use the prior pdf Plu) =1/

The 1/ prior also has other advantages:
» It is a proper (normalizable) prior. unlike the uniform.

* |t could actually represent someone’s pricr belief, since it goes

to zero at g = oo, and it produces a uniform density on a log
scale.

» It is a leffreys Prior, proposed by physicist H. Jeffreys as
being “objective” because it is scale-invariant.
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Point Estimation — Bayesian alternatives

Unfortunately, the 1/p prior doesn't work, because:
» If you observe N =10, P{pu|0) is a delta-function at p = 0.

» YWhen there 5 background to the Poisson process, none of the
integrals converge, and all the point estimates come out = (.

We will consider the problem of background in more detail later
(under interval estimation).
To summarize the most common Bayesian choices:
1. The priors:
#» Uniform: Good properties, but cannot be belief.,
w» Jeffreys 1/u; Better in theory, not in practice.
2. The point estimate:
» HFD grves good results, but violently non-invariant.
» Expectation E{u) is possible, also not invariant.
= Median (50th percentile) of posterior is invariant, but & not
used much.



Point Estimation — Bayesian Summary

Assuming that you like the Bayesian definition of Probability
(degree of belief), Bayesian point estimation is a coherent
methodology which provides a reasonable way to estimate
parameters. But it involves two arbitrary choices:

» [he Frior pdf.

® The Mapping from Posterior pdf to Point estimate.

In practice, both these problems become less important as the

amount of data increases, so that
» the data dominates the prior and

» the Posterior pdf tends toward a Gaussian.

However, in this limit,

almost any statistical method would give the same result.
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Foint Estimation - from Bayesian to Frequentist

Up to the early 1900°s, the only statistical theory was Bayesian.

In fact, frequentist methods were already being used:

Linear least-squares fitting of data had been in use for many years,
and in 1900, Karl Pearson published the Chi-square test

to be treated later under goodness-of-fit.
Harl Pearson also had a famous son: Egon Pearson
and he founded a famous journal: Biometrika.

Another biologist, B. A. Fisher, was one of several people looking

for a statistical theory that would not require as input prior belief.
He succeeded in making a frequentist theory of point estimation,

but was unable to produce an acceptable theory of interval
estimation.



Pt

Point Estimation - Frequentist

An Estimator £ is a function of the data X which can be used to
estimate (measure) the unknown parameter 8.

0 = £(X)

The goal: )
Find that function £5 which gives estimates &

closest to the true value of &.

As usual, we know PLX )

and because the estimate is a function of the data,
we also know the distribution of #, for any given value of #-

P[§|E}=j£Eg[E}F{E|de.H
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Foint Estimation - Frequentist Estimates

For our trial estimator £, assuming & = 0,
the distribution of estimates & might look something like this:

Claoean dams

L4 I
LI

0=
1K
015

pd @B
1 1 1
L1 1 1

0E -

meilretas fhary bai

Mow we can see whether this estimator has the desired properties.

Is it (1) consistent, {2) unbiased, (3) efficient, and (4) robust?
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Frequentist Point Estimation - Consistency

Let £ be an estimator producing estimates uﬁn. where n is the
number of observations entering into the estimate.

Given any £ > 0 and any n > 0, & is a consistent estimator of & if
an N exists such that

P(|fn—f| = £) < 1
for all m > N, where 8 is the assumed true value.

This says that fln converges (in probability)

to the true value of @ as m increases.
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Frequentist Point Estimation - Bias

We define the bias ? of the estimate  as the difference between
the expectation of ¢ and the assumed true value #p,

bu(f) = E(d) — 6y = E(8 - dg).
Thus, an estimator is unbiased if, for all N and &,

bu{f) = 0

E(#) = fip.
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Frequentist Point Estimation - Efficiency

Among those estimators that are consistent and unbiased, we
clearly want the one whose estimates have the smallest spread

around the true value, that is, estimators with a small variance.

We define the efficiency of an estimator in terms of the variance of
its estimates V(&)
II"'rmin

V(6)

where Vi,in 5 the smallest variance of any estimator.

Efficiency =

The above definition i possible because, as we shall see,
Vinin is given by the Cramér-Rao lower bound.



Point Estimation - Fisher Information

Let the pdf of the data X be dencted by f or by L:
Pidata|hypothesis) = f(X|9) = L{X|#)

depending on whether we are primarily interested in the
dependence on X or &.

The amount of information given by an observation X about the
parameter § is defined by the following expression (if it exists)

- (a InE:_[;[}iﬂE'})!]

J{m (‘3 n ;f E])EL{ME'}.:LH-

be(8) =
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Point Estimation - Fisher Information cont.

If 8 has k dimensions, the definition becomes

[ L{X|8) @ In L(X|9)
) 3 In L(X|8) @ In L(X|8)
_ [ﬁa [ T ] L(X|8)dX

Thus, in general, [, (#)is a k x k matrix. Assuming certain
regularity conditions, the same matrix can be expressed as the
expectation of the second derivative matrix see next slide:

a2
;50

[ Ly (8)], = —E[ n L{X g]] |
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Point Estimation - Fisher Information cont.

50 the Fisher information in the sample X about the parameter(s)
B is
i

;00

[ Ay (8)]; = —E n L(X|8)|

It can be seen that ly (@) has the additive property: If [y is the
information in N events, then fy{#) = Nij(#).

We will also see that information about ¢ is related to the
minimum variance possible for an estimator of theta.

But first we introduce the concept of Sufhicient Statistics



Point Estimation - Sufficiency

Any function of the data is called a statistic.

A suthcient statistic for & is a function of the data that contains all
the information about #.

A statistic T(X) s sufficient for # if the conditional density
function for X given T, f(X|T) is independent of 4.

Sufficient statistics are clearly important for data reduction.

The Darmois Theorem says that a number of sufficient statistics
independent of N can exist only if £ (X |#) belongs to the

exponential family

F(X|8) = expla X )a{f) + 3(X ) + c(F)] -
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Point Estimation - Cramér-Rao Inequality

Let the estimator # have the sampling distribution g(#/|9). The
bias is a function of the true value #

b= E(f)—8 = fé[:n:}f(x B dX — @,
Then the variance of the sampling distribution,

vid) = [10 - E@)aldi8)d.

is related to the information by the Cramér—Hao inequality:
[+ (db/dB)]®  [1+(db/dd)]*
Ig [ (&t ]

Vid) =
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Point Estimation - Robustness

i,

An estimator is said perfectly robust if its p.d.f. g(#) does not depend on the
model (P(z|6)). None of the usual estimators is perfectly robust. Thus,
robustness is more a qualitative property : a robust estimator is such that g(ﬁ)
is weakly sensitive to (small) variations of the probablity model. This property
is particularly useful when the chosen analytical form of P is not well known,
for example due to some tails in the distribution.

Example : the trimmed mean and the Winsorized mean are more robust than
the usual sample mean in order to estimate the center of a symmetrical
distribution.

\ /




Point Estimation - The Usual Estimators

The most commaon general-purpose estimators are:

» The method of moments is based on approximating f{.X|¢) by
its first few moments. It is surprisingly efhcient for an

approximate method, but will not be treated here.

» Maximum likelihcod is the most important method, mostly
because it can be shown to be asymptotically efhcient.

» Least sguares is asymptotically efhicient for data that is
already grouped into bins or points, and is generally easier to

apply than M.L.
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FPoint Estimation - Maximum Likelihood
The likelihood of a set of N independent cbservations X is

L(X|8) = ﬁf[.:r;,-.a},
|

where f[X,#) is the p.d.f. of any observation X.
The maximum likelihood estimate of the parameter # is that value

i for which L{X|?) has its maximum, given the particular
observations X.

Mote that maximizing In L or L gives the same result.

The likelihood equation is

Eilnf[x-g}—ﬂlnuxﬂ]—n
a1 4 AT R

foe]

since that is the analytic way to find the maximum, but in practice
we will usually find the maximum numerically.
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Asymptotic Properties of Maximum Likelihood

Asymptotically (for wvery large data samples), the M. L. estimator
has optimal properties:

» It is consistent.

» It is efficient, the variance 'I.-"l[é]- being given by the
Cramer—Rao lower bound

o (2]}

» The estimates # are Mar mally distributed.

» Since it is consistent, it is asymptotically unbiased.



. . . . . W
Asymptotic Properties of Maximum Likelihood 2

If the range of the data is independent of the parameters #, then
the variance V() may be estimated by
-1
a-ﬂ} '

o-{(- %

The estimate vN{# — 8) is distributed as N[0, I (#)].
(Estimates are asymptotically Gaussian-distributed. )
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Finite Sample Properties of Maximum Likelihood

® For finite samples, M.L. estimates are efficient only when
there exist sufficient statistics for the parameter(s) being
evaluated, and that can be shown only for the exponential
family. consistent with the Darmois Theorem.

* Although the estimates are in general biased, they have a more
important property, invariance, which is incompatible with

unbiasedness because the dehnition of bias is not invariant.
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Point Estimation - Least Squares

Consider a set of observations ¥j...., ¥y from a distribution with
expectations E(Y;, @) and covariance matrix Y. The @ are

unknown parameters and the E(Y;. &) and Vj(#) are known
functions of 8.

In the method of least squares the estimates of the & are those
values 1, which minimize

N N

NNCIY - E(Y OV LY - E(Y;.8)]

I

Y — E(Y,0)]T ¥ [Y - E(Y.0)].

{;IE
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Foint Estimation - Least Squares 2

When the observations Y; are independent, it follows that they are
uncorrelated, and the covariance matrix is diagonal, with elements

Vi = o2(8).

The covariance form then simplifies to the familiar sum of sguares

[Yi - E-[ ¥;. 8)]°
E 77(8)

The 8 are found by solving the Mormal equations

Q)58 =0,
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Point Estimation - Linear Least Squares

The method of linear least squares is applicable when the
variances o~ are independent of the r parameters 8 = (B, -...0:).

and the expectations E(Y;. @) are linear in the §;'s,

E[F}E}:Z.?ig_r- i=1....N
j=1

or in matrix notation

E{Y.0)=A8
The elements 2; of the design matrix A are given by a model.

In the linear case. the solution of the Mormal equations is

B=(AV7iatAY Y.
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FPoint Estimation - Linear Least Squares

Since the linear least squares solution is found by matrix inversion
and multiplication {no minimization needed), one often solves the

non-linear problem by linearization, setting:

_ 9E(Y¥:.8)

a--
i .
M

Example of linear least squares: fitting a curve to a polynomial.

i = Y(X;) = o+ 01X + X7 + 837

is clearly of the linear form. To find the matrix 4 one only needs
to evaluate the (j—1)* power of X;.
Solving the Mormal equations -E'{JEJ-‘EEJ' = [, we find:

§=|:-5'T£_1-'5}|_1 JﬂT,Er_i?.

which is exact and unigue as long as gﬂT,Er_i,eﬂ is non-singular.
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Foint Estimation - Least Squares

The asymptotic properties of least sguares are the same as for

maximum likelihoad. and in fact the two methods are often
identical. YWhen they are different, it is believed that M.L
generally approaches the asymptotic limit faster than L.5.

The biggest difference is largely practical.

If the data are already grouped into bins or points, L.5. is more
convenient and there is no advantage in using M.L.




Point Estimation: Example: Poisson data e~

Example: In a Poisson process, we observe 3 events.

3

Liu) = P(3p) = ==

lEnlhs ool et

e |
2 4 iG B 1] 1E Ld
T Bl AT T

The peak in the likelihood occurs at p = 3.

zeneralizing from 3 to n. we get the expected result:
with n events observed, ji = n
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Foint Estimation - Example: Weighted Average

Suppose we have Mormally-distributed observations X; of a
quantity p, each X; being distributed with standard deviation ;:

%llﬂ axp [_%Hjn__j!#:lzl |

We wish to use this data to estimate . The likelihood function is
the product of the £{X;|u). and its logarithm is:

F(Xile) = N(p. of) =

1(X; — p)?
" ]

I_E o

In£(p) = k —

where k is a constant. It is clear that in this case,
maximizing the log likelihood is equivalent to minimizing y~.
In both cases. the solution is the familiar weighted average:



Interval Estimation vy

The goal of interval estimation is to find an interval which will contain the
true value of the parameter with a given probability.

The meaning of this probability, and hence the meaning of the interval,
will of course be very different for the Bayesian and frequentist methods.

In both methods, the interval with the required probability content will not
generally be unique. Then one must find the best interval with the
specified probability content.



Interval Estimation e

We may distinguish four different theories of Interval Estimation:

1. Bayesian Theory is based on Bayes' Theorem, and requires only a
straightforward extension of the Bayesian Theory of Point Estimation.
However, it will cause us to look more carefully at the problem of
Priors.

2. Frequentist Normal Theory, is an asymptotic theory valid when
estimates are approximately Normally distributed, which is nearly

always the case. MOST BOOKS AND COURSES PRESENT ONLY
THIS THEORY.

3. Exact Frequentist Theory was developed by Jerzy Neyman with the
help of Pearson's son Egon and a few others around 1930.

4. Likelihood-based Methods, intermediate between 2. and 3., are what
you will probably use most of the time. (You can get these intervals

easily with Minuit.)



Interval Estimation - Bayesian vy

Recall that in the Bayesian method of parameter estimation,
all the knowledge about the parameter(s) is summarized in the posterior

pdf P(6|data).

To find an interval (1, #2) which contains probability /3, one simply has to
find two points such that

6
fEF“(GHX) dd = [.
b
where (3 is usually chosen either 0.683 for one-standard-deviation intervals,
or 0.900 for safer intervals. This is the degree of belief that the true value
of # lies within the interval. The Bayesian interval with probability [ is
called a credible interval to distinguish it from its frequentist equivalent,
the confidence interval.



Interval Estimation - Bayesian e

Since the credible interval of content /3 is not unique, we can impose an
additional condition, which is usually taken to be one of:

» Accept into the interval the points of highest posterior density
(H.P.D.). [This interval is not invariant under change of variable
0— 6]

> A central interval, such that the integral in each tail is = (1 — [3)/2.

Central intervals are invariant, but do not produce one-sided intervals
(upper limits) in cases where they are obviously appropriate.

» A one-sided interval, usually an upper limit, when there is reason to
believe that # is near one end of the allowed region. One-sided
intervals are invariant.



Bayesian Intervals — The Physical Region w777

One of the most attractive features of the Bayesian method:
Since the Prior is always zero in the non-physical region,
the entire credible interval is necessarily in the allowed region.

But the negative side of this property is:
A measurement near the edge of the physical region will always be biased
toward the interior of the physical region.

This is to be expected, since the credible interval represents belief,
but it means that we lose the information about what comes from the
actual measurement and what comes from the prior.



Interval Estimation - Frequentist P77

The Problem: Given [, find the optimal range [f,, fp] in #-space such that:
’D(E"E < Otrye < gb) = /3.

The interval (0, 0p) is then called a confidence interval. A method which

yields intervals (0,,0p) satisfying the above is said to possess the property
of coverage.

Formally, if an interval does not possess the property of coverage, it is not
a confidence interval, although we will consider sometimes approximate
confidence intervals, which have only approximate coverage.

Overcoverage occurs when P > [3.
Undercoverage occurs when P < [5.



Normal Theory Interval Estimation 77T

/S-uppﬂae we are sampling X from the Gaussian N (u,o?), with p parameter
(unknown) and ¢ known. Thus T follows the Gaussian N (p,o?/n) and
z= (T —p)/o/y/n follows the reduced Gaussian A'(0,1). So, if we choose (ex.)
G = 0.95, we know that P(|z]| < 1.96) = 0.95 = 5. In other words

T—1.960/yn<pu<T+1.960/\/n

with a 95% probability.

This has been possible because we found a statistic (z) the pdf of which does
not depend on the parameter. z is a funection of x, not its pdf. We thus have
been able to reverse the inequalities as

B=Pla<z<b) =P(mi <p<ms)

This is possible only for very few situations;
e Gaussian law (all cases)
e Poisson law
e Binomial law

\ o Asymptoticaly through the Central Limit Theorem j

Pierre Lutz Fundamentals in Statistics (page B8) Cours FAPPS



Normal Theory Interval Estimation el

Given a random variable X with p.d.f. f(X) and cumulative distribution
F(X), the a-point X, is defined by

Xa
[ F(X)dX = F(X.) = a.

of — O

In terms of a-points, the interval |[c, d] is obviously [Z,, Z,+3] .

1-f—a

|
C ..'-".I:..u d EE-I--!I

N(0, 1) with regions of probability content &, 3, and 1 — 3 — . ¢ is the a-point and d
the (a + 3)-point.



Normal Theory Interval Estimation el

Clearly for a given value of [3, there are many possible intervals,
corresponding to different values of . The most usual choice is
a = (1— [3)/2, which gives the central interval, symmetric about zero.

Example: Central Intervals for N(0,1).

b= (1 — ﬂ))j2 Z, th—l—,."'_?
0.6827 -1.00 1.00
0.9000 -1.65 1.65
0.9500 -1.96 1.96
0.9545 -2.00 2.00
0.9900 -2.58  2.58
0.9973 -3.00 3.00




Likelihood-based Confidence Intervals

If X is Gaussian, its log-Likelihood function is a parabola and finding a
confidence interval is easy.

This property can be used in
all cases asymptotically
since a ML estimator is
asymptotically gaussian.

Log-likelihood function for Gaussian X, distributed N(u,a?).

In case of a finite sample, we have no more a
parabola. One can give a dissymmetric interval
(with respect to the point est).




Normal Theory Intervals in Many Variables 7

In more than one dimension, the confidence interval becomes a confidence
region, and the Normal pdf becomes:

1 1 _
F(t[0) = 2m)N/2| V 172 exp [_ i(t -6)" V7 (t-9)|.

It follows from the Normality of the t that the covariance form
Q(t,8)=(t—8)T V' (t—6)

has a x?(N) distribution. This means that the distribution of Q is
independent of 8, and we have

PIQ(t.6) < K3] =5
where K§ is the (3-point of the x?(N) distribution.

The region in t-space defined by Q(t,8) < K&
is a hyperellipsoid of constant probability density for the Normal pdf, a
region with probability content (3.



Normal Theory Intervals in Two Variables ]

For two Normally-distributed variables with covariance matrix

2
V k] Pa109
P 2
pPo102 o5

el \

The elliptical con-
fidence region will
look like this:

N

Confidence region of probability content 3 for covariance matrix V. Shown here is the
case p = 0.5. If p =0, the axes of the ellipse are horizontal and vertical. If p =1, the
ellipse degenerates to a diagonal line.



Exact Frequentist Intervals w7

The first important step in finding an exact theory was to work in the right
space: P(datalhypothesis), with one axis (or set of axes) for data, and
another for hypotheses.

Trying to plot “true values” and “measured values’ on the same axis is
not a good approach, since we know that P(data|hypothesis) transforms
differently as a function of data or as a function of the hypothesis.



he Neyman Construction A7

The confidence belt is constructed horizontally in the space of

P(t]6).
[ 3
L= _ F -~
= {5‘1
5 WY -
; | o
e _:'- -
| tr(61)
i i —
’ ¢ ta(th)
o I -

data
t1(#) and t2(0) are such that: P(t; < data < to) =[5
where (3 is usually chosen to be 0.683 or 0.900.




The Neyman Construction 2 ol

The two curves of t(#) are re-labelled as 6(t), and
the confidence limit is read vertically.

A (tn)

parameter #

Br(to)

observed data £
tn

For observed data tg, the confidence interval is (6Y,6;)

¥



Upper limits, Flip-flopping and Empty Intervals 4,27

When the parameter cannot be negative but is very close to zero, one
often quotes an Upper limit rather than a two-sided interval.

HRLEEE JRE

empty  intervals

down here — —T44

measured mean r

Flip-flopping for a Gaussian measurement. The solid lines delimit the central 90%
confidence belt, the dashed line the 90% upper limit, and the shaded area the effective
confidence belt resulting from choosing between the two after seeing the data. This
effective belt undercovers for 1.2 < p < 4.3, for example at p = 2.5 where the intervals
AC and Boo each contain 90% probability but BC contains only 85%.



The Unified Approach (Feldman-Cousins) 77

The elegant way to solve all the problems (flip-flopping and empty
intervals) would be to find an ordering principle which automatically gives
intervals with the desired properties.

Inspired by an important result in hypothesis testing
which we will see in the next chapter,
Feldman and Cousins proposed the
likelihood ratio ordering principle:

see Feldman and Cousins, Unified Approach ...
Phys. Rev. D 57 (1998) 3873

When determining the interval for 1 = pip, include the elements of
probability P(x|uq) which have the largest values of the likelihood ratio

P(x|10)

P(x|f)

where /i is the value of p for which the likelihood P(x|u) is maximized
within the physical region.

R(x) =




The Unified Approach (Feldman-Cousins) gy,

Imearn ji

| | | | | | =
-9 -1 0 1 9 3 4

measured mean T

Belts of 90% confidence for a Gaussian measurement showing the effect of using
different ordering principles. The Feldman-Cousins belt is labelled “F-C", and the
straight lines give central intervals. The red line is the M.L. solution
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Combining Bayesian Intervals

In the Bayesian system, both point estimates and interval estimates may
be highly biased, so it would seem impossible to combine the estimates
from different experiments to produce a "world average”, and indeed it is.

However, the Bayesian framework offers an elegant way to combine results
from several experiments by extending Bayes' Rule:

L1(p) x Lo(p) x L3(p) x Prior pdf(p)

normalization factor

Posterior pdf(p) =

where L;(j) is the likelihood function from the jth experiment.

To get the Posterior, you may use as many likelihoods as you want, but
you must use one and only one Prior.



Background in Poisson Processes

We may distinguish different cases:

1. The background expectation is exactly known.
» Observe 10 events.

Expect 3 bgd.
» Observe 0 events.
Expect 3 bgd.

2. The background expectation is measured with some uncertainty.
(“side-bands”, or “signal off".)
example: b=3.1+1.2

In this case, b is a nuisance parameter.



Bayesian Intervals: Poisson with Estimated Background

In the Bayesian framework, everything has its probability distribution,
including of course nuisance parameters. The distribution of background is

some pdf P(b).

Therefore, in calculating the posterior pdf,
one simply integrates over all nuisance parameters:

P(data|u)P(p)
P(j1/data) = /b P(data) P(b)db

This may be very heavy numerically, but it is conceptually easy.



Bayesian Intervals for Poisson, Uniform Prior

N=0

Bayesian
Posterior

for Poisson,
Nops =0,1,2,3,
Uniform Prior




Bayesian Intervals: Poisson with Known Background

Bayesian 90% Upper Limits (Uniform Prior)
observed = | 0 1 2 3
background = 0.0 | 2.30 | 3.80 | 5.32 | 6.68
05| 230|350 4.83]6.17
1.0 230 | 3.26 | 444 | 5.71
2.0 230 | 3.00 | 3.87 | 492
30| 230|283 | 352|437

The uniform prior gives very reasonable upper limits for Poisson
observations, with or without background.

However, the Uniform Prior U(x) cannot represent belief, because

b
/ U(p) dp = 0 for all finite a,b
o d



Bayesian Intervals: Non-Uniform Priors

So let us try the famous Jeffreys Priors.

Jeffreys Priors were derived in order to be
invariant under certain coordinate transformations.

The 1/p Jeffreys Prior is scale-invariant.

It could represent belief, since it goes to zero at infinity.
We have used it earlier in Bayesian Point Estimation.

Bayesian 90% Upper Limits (1/p Jeffreys Prior)
observed = 0 1 2 3

background = 0.0 | 0.00 | 2.30 | 3.80 | 5.32

0.5| 0.00 | 0.00 | 0.00 | 0.00

1.0 | 0.00 | 0.00 | 0.00 | 0.00

2.0 | 0.00 | 0.00 | 0.00 | 0.00

3.0| 0.00 | 0.00 | 0.00 | 0.00




Bayesian Intervals with Jeffreys Priors

Can Jeffreys Priors be saved?

For parameters p1, 0 < p < oo, there is another Jeffreys Prior,

Plp) =1/

which minimizes the Fisher information contained in the prior.

Unfortunately, this very good idea also doesn't work.
The divergences remain.

The prior that gives the desired Poisson intervals in the presence of

background is
Plp)=1//pu+b

where b is the expected background. This means that the prior for i
depends on b, which is completely crazy.



Frequentist Upper Limits for Poisson data

Naive Frequentist 90% Upper Limits for Poisson with Background

observed = 0 1 2 3
background = 0.0 | 2.30 | 3.80 | 5.32 | 6.68
05| 1.80 | 3.39 | 482 | 6.18
1.0 1.30 | 2.80 | 4.32 | 5.58
20| 030 | 1.89 | 3.32 | 4.68
30| -0.70 | 0.80 | 2.32 | 3.68

Feldman-Cousins 90% Upper Limits for Poisson with Background

observed = 0 1 2 3
background = 0.0 | 2.44
0.5| 1.94 | 3.86
1.0 1.61 | 3.36 | 401
20| 126 | 253 | 301 | 5.42
30| 108 |1.88 | 3.04 | 442
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