
DIRAC software

DIRAC Project

Outline

}  Software structure
}  Software management
}  Releases procedure
}  Installation
}  Updates

Lyon 18-19/01/2012 2 Formation administrateurs DIRAC

Main software components

Lyon 18-19/01/2012 Formation administrateurs DIRAC 3

}  Services
}  Passive stateful components responding to requests of

(remote) clients
}  Agents

}  Active components running in a endless loop and executing
periodically their operation
}  Generally stateless (only caching some information)
}  Can not be contacted

}  Databases
}  MySQL databases where Services are keeping their state

}  Clients
}  The DIRAC functionality is available through clients – API

interfaces to Services, Agents, Databases

Software Systems

Lyon 18-19/01/2012 Formation administrateurs DIRAC 4

}  The basic components are
grouped in Systems

}  Systems are top level directories
}  In each system there are Service,

Agent, DB and Client
subdirectories

}  scripts directory contains mini
applications seen by the users as
commands

}  E.g. dirac-wms-job-submit

Software Systems

Lyon 18-19/01/2012 Formation administrateurs DIRAC 5

}  Other top level directories
}  Core

}  DISET secure framework
}  Common utilities and tools

}  Interfaces
}  DIRAC API – programming interface

for external projects, e.g. GANGA

}  Resources
}  Clients for various external services:

Computing Elements, Storage
Elements, Catalogs

Software technologies

Lyon 18-19/01/2012 Formation administrateurs DIRAC 6

}  Most of the DIRAC software is written in Python
}  Easy to prototype, read, debug
}  Do not hesitate to look into the code to understand better

the functionality

}  Much of the code is self-documented
}  Automatic code documentation is generated (epylog, sphinx)

}  Some binary platform dependent software
}  PyGSI module to implement GSI standards, based on OpenSSL

libraries
}  Written in C++ for efficiency reasons

Software repository

Lyon 18-19/01/2012 Formation administrateurs DIRAC 7

}  Using Git software management
}  Very flexible, powerful
}  Excellent branch management
}  A bit difficult to start using it
}  A huge step forward compared to CVS/SVN repositories

}  Using Github code repository service
}  https://github.com/DIRACGrid/DIRAC
}  Support for collaborative work

}  Personal code forks, assembling tools
}  Issue tracker, wiki, etc

}  Register in Github if you want to
}  contribute to the DIRAC development
}  report bugs
}  request new functionality features

External software

Lyon 18-19/01/2012 Formation administrateurs DIRAC 8

}  The idea of the DIRAC software distribution is that it
contains everything necessary to run DIRAC components
}  No assumption is done about any preinstalled software

}  except the native python to run initial dirac-install script
}  This makes the distribution heavier but much more reliable

}  No dependency on local environments where DIRAC clients happen
to run

}  The client external software bundle includes:
}  Python interpreter, openssl libs, …
}  This is installed in pilots as well

}  The server includes in addition
}  MySQL, Web server (lighttpd), plotting (matplotlib), sqlite, …

LCG/gLite software

Lyon 18-19/01/2012 Formation administrateurs DIRAC 9

}  We are providing a subset of LCG/gLite software
necessary to do basic operations with the gLite resources
and services
}  This is taken from the CERN Application Area middleware

installation
}  Available only on the reference platforms of the gLite

middleware: flavors of SL.
}  Binaries, libraries, command line tools

}  VOMS tools (voms-proxy-XXX)
}  gLlite commands (glite-wms-job-XXX)

}  Python bindings for the gfal library
}  Access to the SRM storage services, gridftp client

Software platform dependency

Lyon 18-19/01/2012 Formation administrateurs DIRAC 10

}  The DIRAC software proper can be compiled for any
flavor of Linux/Unix, including Mac OS
}  Precompiled binaries are available for the platforms that we

encounter
}  Even Windows client was demonstrated (although not maintained)

}  If clients must access third party services (LFC, SRM)
then there 2 solutions to avoid installing gLite UI
}  Use LCG/gLite bundle provided by DIRAC

}  Limited platforms

}  Use DIRAC proxy services:
}  LFC proxy, StorageElement proxy
}  Clients interact with the services via DISET protocol

Software releases

Lyon 18-19/01/2012 Formation administrateurs DIRAC 11

}  Branching and tagging using git tools
}  nvie.com/posts/a-successful-git-branching-model

}  DIRAC software versioning:
}  v6r1p5 – major/minor/patch versions
}  Major releases – once in several years
}  Minor releases – once in 1-2 months

}  Need certification testing

}  Patch releases – at any pace
}  Bug fixes, minor functionality updates
}  No need for certification tests

Software release tools

Lyon 18-19/01/2012 Formation administrateurs DIRAC 12

}  Tools to build and upload DIRAC releases
}  > dirac-distribution –l DIRAC – r v6r1p5
}  Building both python and binary tar files

}  DIRAC Web Portal software is a separate project
}  DIRAC release description contain dependencies:

}  v6r1p4
 {
 Modules = DIRAC, Web:web2011121301
 Externals = v6r0
 }

}  The release tools allow also to create and manage specific
software projects based on DIRAC
}  Examples: LHCbDIRAC, ILCDIRAC, BelleDIRAC, EELADIRAC
}  In Lyon we will use only general purpose DIRAC software

}  Extensions can be considered

Release procedure

Lyon 18-19/01/2012 Formation administrateurs DIRAC 13

}  Collecting developer contributions by applying Github
“pull requests”

}  Tagging a prerelease, e.g. v6r2-pre1, building distribution
tar balls

}  Installing the prerelease on the certification machine (at
CERN), making a serious of tests

}  Repeating the prerelease cycle until it stabilizes
}  Typically 2-4 weeks

}  Tagging the final release, deploying it in the release area
}  CERN web server

