VRINAC

I DIRAC software

DIRAC Project

T RINAC Outline

» Software structure

» Software management
» Releases procedure

» Installation

» Updates

2 Formation administrateurs DIRAC Lyon 18-19/01/2012

SYIMAC .
oy Main software components

» Services

Passive stateful components responding to requests of
(remote) clients

» Agents

Active components running in a endless loop and executing
periodically their operation

Generally stateless (only caching some information)
Can not be contacted

» Databases
MySQL databases where Services are keeping their state

» Clients

The DIRAC functionality is available through clients — API
interfaces to Services, Agents, Databases

3 Formation administrateurs DIRAC Lyon 18-19/01/2012

S VIMAC
o Software Systems

» The basic components are ¥ &5 > DIRAC [DIRAC fix

> (5 AccountingSystem

gl"OU Ped in SYStem S » (= ConfigurationSystem
> (= Core

» Systems are top level directories

> (5 Agent

» In each system there are Service,) Sy Cent

Agent, DB and Client > G private

P [scripts

subdirectories > G Service
> (Sytest
» scripts directory contains mini > G Utilities
. . P} _init__.py
applications seen by the users as 3 ConfigTemplate.cfg
> (= FrameworkSystem
CommandS > (5 Interfaces
. . . » (5 RequestManagementSystem
E.g. dirac-wms-job-submit b G > Resources

> (5 ResourceStatusSystem

> (=% StorageManagementSystem
» (= TransformationSystem

» (- WorkloadManagementSystem

4 Formation administrateurs DIRAC Lyon 18-19/01/2012

SDINAC
o Software Systems

» Other top level directories ¥1&h > DIRAC [DIRAC fix
> (5 AccountingSystem
Core » (= ConfigurationSystem
¥ (=% Core
DISET secure framework » (4 Base
o » (4 DISET
Common utilities and tools > G5 LCG
P [y scripts
Interfaces > Gy Security
P [Utilities

DIRAC APl — programming interface > G Workflow
for external projects, e.g. GANGA (£} _init__.py

» (s DataManagementSystem

Resources » (=% FrameworkSystem

¥ [Interfaces

Clients for various external services: > Gy API
. P (= scripts
Computing Elements, Storage B_init__py
Elements, Catalogs P (5% RequestManagementSystem
¥ (5 > Resources

> (- Catalog

» (= Computing

P [scripts

L N .

5 Formation administrateurs DIRAC Lyon 18-19/01/2012

Software technologies

» Most of the DIRAC software is written in Python
Easy to prototype, read, debug

Do not hesitate to look into the code to understand better
the functionality

» Much of the code is self-documented

Automatic code documentation is generated (epylog, sphinx)

» Some binary platform dependent software

PyGSI module to implement GSI standards, based on OpenSSL
libraries

Written in C++ for efficiency reasons

6 Formation administrateurs DIRAC Lyon 18-19/01/2012

S INAC .
oo Software repository

» Using Git software management
Very flexible, powerful
Excellent branch management
A bit difficult to start using it
A huge step forward compared to CVS/SVN repositories

» Using Github code repository service

Support for collaborative work
Personal code forks, assembling tools
Issue tracker, wiki, etc

Register in Github if you want to
contribute to the DIRAC development
report bugs
request new functionality features

7 Formation administrateurs DIRAC Lyon 18-19/01/2012

) 2 @&

- RIMAG

External software

» The idea of the DIRAC software distribution is that it
contains everything necessary to run DIRAC components

No assumption is done about any preinstalled software
except the native python to run initial dirac-install script

This makes the distribution heavier but much more reliable

No dependency on local environments where DIRAC clients happen
to run

» The client external software bundle includes:
Python interpreter, openssl libs, ...
This is installed in pilots as well
» The server includes in addition
MySQL,Web server (lighttpd), plotting (matplotlib), sqlite, ...

8 Formation administrateurs DIRAC Lyon 18-19/01/2012

LCG/gLite software

» We are providing a subset of LCG/gLite software

necessary to do basic operations with the glite resources
and services

This is taken from the CERN Application Area middleware
installation

Available only on the reference platforms of the glLite
middleware: flavors of SL.

» Binaries, libraries, command line tools
VOMS tools (voms-proxy-XXX)
glLlite commands (glite-wms-job-XXX)

» Python bindings for the gfal library
Access to the SRM storage services, gridftp client

9 Formation administrateurs DIRAC Lyon 18-19/01/2012

RIMAC
o Software platform dependency

» The DIRAC software proper can be compiled for any
flavor of Linux/Unix, including Mac OS

Precompiled binaries are available for the platforms that we
encounter

Even Windows client was demonstrated (although not maintained)

» If clients must access third party services (LFC, SRM)
then there 2 solutions to avoid installing gLite Ul
Use LCG/gLite bundle provided by DIRAC
Limited platforms
Use DIRAC proxy services:
LFC proxy, StorageElement proxy

Clients interact with the services via DISET protocol

10 Formation administrateurs DIRAC Lyon 18-19/01/2012

L W=)
INAC
® 0‘) Software releases

» Branching and tagging using git tools
nvie.com/posts/a-successful-git-branching-model
» DIRAC software versioning: LR e

vér|p5 — major/minor/patch versions

Major releases — once in several years

Minor releases — once in -2 months
Need certification testing

Patch releases — at any pace

Bug fixes, minor functionality updates

No need for certification tests

Formation administrateurs DIRAC Lyon 18-19/01/2012

SDIMAC
® o‘) Software release tools

» Tools to build and upload DIRAC releases
> dirac-distribution —| DIRAC —r vérlp5
Building both python and binary tar files

» DIRAC Web Portal software is a separate project
DIRAC release description contain dependencies:
vér|p4

Modules = DIRAC,Web:web2011121301
Externals = v6r0

}
» The release tools allow also to create and manage specific
software projects based on DIRAC

Examples: LHCbDIRAC, ILCDIRAC, BelleDIRAC, EELADIRAC
In Lyon we will use only general purpose DIRAC software
Extensions can be considered

12 Formation administrateurs DIRAC Lyon 18-19/01/2012

Release procedure
» Collecting developer contributions by applying Github
“pull requests”

» Tagging a prerelease, e.g. vé6r2-prel, building distribution
tar balls

» Installing the prerelease on the certification machine (at
CERN), making a serious of tests

» Repeating the prerelease cycle until it stabilizes
Typically 2-4 weeks

» Tagging the final release, deploying it in the release area
CERN web server

13 Formation administrateurs DIRAC Lyon 18-19/01/2012

