Supernova Remnants in the FERMI Era

Melitta Naumann-Godó

APC/Univ. Paris 7 AIM/IRFU/CEA Saclay

l r f u

saclay

Credit: X-ray: NASA/CXC/SAO, Infrared: NASA/JPL-Caltech, Optical: MPIA, Calar Alto, O.Krause et al.

"Diplomarbeit" sur la physique hadronique

- production des mesons η sur faisceau et cible polarisé
- Thèse sur ANTARES à l'Université d'Erlangen: 2007
 - développement d'une méthode de reconstruction
 - modélisation des sursauts gamma
- Post-doc sur HESS à l'École Polytechnique (LLR)
 - amélioration et vérification de l'analyse HESS (Model 3D) par comparaison MC/données
 - analyse du vestige de supernova SN 1006
- Post-doc sur FERMI au Sap à CEA/IRFU
 - travaux et analyses sur les catalogues de FERMI : IFGL et 2FGL
 - analyse du vestige de supernova Tycho

Why do we study SNRs ?

THE SNR PARADIGM:

- Cosmic rays are accelerated in SNRs by diffusive shock acceleration: $Q(E) \sim E^{-\gamma}$
- They should reach energies up to the knee

MULTIWAVELENGTH OBSERVATIONS NECESSARY TO UNDERSTAND THE SNR EMISSION:

Melitta Naumann-Godo

Why do we study SNRs ?

THE SNR PARADIGM:

- Cosmic rays are accelerated in SNRs by diffusive shock acceleration: $Q(E) \sim E^{-\gamma}$
- They should reach energies up to the knee

MULTIWAVELENGTH OBSERVATIONS NECESSARY TO UNDERSTAND THE SNR EMISSION:

Melitta Naumann-Godo

What are the challenges in SNRs ?

PENDING QUESTIONS:

- How efficient is cosmic ray acceleration in SNRs ?
 What is the energy density of the accelerated particles ?
- What is the maximum energy of the accelerated particles ?
- What is the nature of the accelerated particles (electrons/hadrons)?
- How large is the magnetic field ?
 - Has it been amplified ?

LET US SEE WHAT WE CAN LEARN FROM GAMMA-RAY OBSERVATIONS

SNRs seen in γ-rays

- SNRs interacting with molecular clouds:
 - W51C, W44, IC443, W28, W49B, W30(G8.7-0.1), CTB37A, ...
- Evolved SNR without molecular cloud interactions:
 - Cygnus loop, (Puppis A)
- TeV-bright SNRs:
 - **–** RXJ 1713
 - Vela junior
- Historical SNRs:
 - Cassiopeia A
 - SN 1006 ☜
 - 🗕 Tycho 🖘

SNRs interacting with molecular clouds

- Extended GeV emission has been discovered from several SNRs with molecular cloud (MC) interactions
- GeV extension is consistent with the size of the radio remnant

SNRs interacting with MCs are GeV-bright + the dominant class of FERMI SNRs

Melitta Naumann-Godo

SNRs interacting with molecular clouds

🖙 Uchiyama et al. 2010

Crushed cloud model: radio and gamma-ray emission comes from radiativelycompressed filaments

SNR W44

synchrotron radio emission correlated with shocked H₂ gas

21

The Cygnus loop

Spectral break at 2-3 GeV

- γ-ray luminosity is ~10³³ erg/s between 1-100 GeV (< other Fermi SNR)
- ringlike morphology with radii $0.7^{\circ}\pm0.1^{\circ}$ and $1.6^{\circ}\pm0.1^{\circ}$
- strong correlation between X-ray rims, Hα filaments and γ-rays

 \Rightarrow Y-rays originate in interactions between accelerated particles in the SNR and interstellar gas or radiation fields adjacent to the shock regions

Melitta Naumann-Godo

Seminar at LPNHE

12/01/2012

The Cygnus loop

Spectral break at 2-3 GeV

- γ-ray luminosity is ~10³³ erg/s between 1-100 GeV
 (< other Fermi SNR)
- ringlike morphology with radii 0.7°±0.1° and 1.6°±0.1°
- strong correlation between X-ray rims, Hα filaments and γ-rays

 \Rightarrow Y-rays originate in interactions between accelerated particles in the SNR and interstellar gas or radiation fields adjacent to the shock regions

Melitta Naumann-Godo

The Fermi LAT + H.E.S.S. spectrum can be fit well with leptonic models If interpreted with hadronic models, extremely efficient particle acceleration is required to fit the data (proton index must be $s_p \sim 1.5$ to fit the Fermi LAT spectrum)

Joint FERMI/HESS gamma-ray spectrum favoures the leptonic model

Melitta Naumann-Godo

🖙 Ellison et al. 2010

For J1713, reasonable fits possible to **continuum only** with either pion-decay or inverse-Compton dominating GeV-TeV emission

🖙 Ellison et al. 2011

When X-rays are calculated self-consistently, force lower density and higher K_{ep} = 0.02, eliminates pion-decay fit

Fermi LAT count maps (> 10 GeV)

Spatially extended source at the location of the SNR RX J0852.0-4622 The emission clearly detected in the high energy region (Hereafter we show results with events > 5 GeV) TS = 221 with the H.E.S.S. image used as a spatial template Using a uniform disk as a spatial template, we obtain a radius of 1.12 (+0.07, -0.06) deg, which is consistent with the extent observed in radio, X-rays, and TeV gamma rays

Melitta Naumann-Godo

Melitta Naumann-Godo

SN 1006

- SN Type la 🖙 Schaefer et al., 1996
- ▶ distance: 2.2 kpc ☞ Winkler et al., 2003
- diameter: 30'
- 500 pc above the galactic plane -> clean environment
- First detection of nonthermal component of hard X-rays (synchrotron radiation) in the rims of SN 1006 by ASCA @ Koyama et al., 1995 and ROSAT @

Willingale et al., 1996

An (almost) sure SNR candidate for gamma-ray telescopes

Melitta Naumann-Godo

SN 1006 observations in Y-rays

- HESS continued observations in 2006, 2007 and 2008
- The source is both extended and very faint (~1% of Crab, 130 h of data)
- SN 1006 a difficult field of view to analyse due to bright stars (2.7 mag)

X-ray morphology

- Comparison with XMM-Newton data in the 2 - 4.5 keV energy band
- synchrotron emission regions are located in the filaments
- shock-acceleration of particles

XMM-Newton vs H.E.S.S.

TeV-morphology traces very well the non-thermal X-ray emission if PSF is accounted for

Melitta Naumann-Godo

H.E.S.S. data analysis

- I°xI° significance map using hard cuts (>200 p.e.)
- PSF R₆₈=0.064°
 - NE and SW region defined as regions which contain 80% of the non-thermal Xray emission in the 2-4.5 keV energy range

Rothenflug et al., 2004 after smearing with the HESS PSF

Region	ON	OFF	α	#γ	Significance
NE, Std Cuts	4306	25421	6.67	495	7.3
NE, Hard Cuts	619	2575	6.44	219	9.3
SW, Std Cuts	3798	26523	7.615	315	4.9
SW, Hard Cuts	548	2591	7.25	191	8.7

Mixed emission model

A mixed model (hadronic + leptonic) fits all multi-wavelength data best

Melitta Naumann-Godo

Tycho SNR: introduction

SNR parameters:

- Type la
- ejected Mass: I.4 M_{sol}
- radius: 256"
- age: 439 yr
- distance measurements:

Hayato et al. 2010: d=4 (3-5) kpc by combining the proper motion measurements and Doppler broadening of thermal X-ray lines of Si
 Krause et al. 2008: d=3.8 (2.7-5.3) kpc based on the optical echo

Multi-Wavelength Observations

Seminar at LPNHE

- Flux(> I TeV) = 0.9% Crab
- 5.0 sigma detection (post-trial)
- B-field constraint by X-ray measurements does not rule out IC origin
- Fermi-LAT can test : "leptonic versus hadronic"

Melitta Naumann-Godo

12/01/2012

Fermi-LAT Observations of Tycho

- Data-set: 34 months
- Zenith-angle cut: <100 deg
- Energy range: 0.4 100 GeV
- Binned analysis mode

Melitta Naumann-Godo

Fermi-LAT Localisation

- TS-map in the energy range 1 100 GeV
- Green contours correspond to the XMM-Newton map in the 4.5 – 5.8 keV energy range
- The pointlike emission can be localised at 95% confidence level within the black line, thus implying that the best fit is compatible with Tycho's supernova position.

Fermi-LAT Spectrum

12/01/2012

Tycho: Origin of the emission

Tycho: Is a leptonic model possible ?

Tycho: more about modelling Morlino & Caprioli 2011 arXiv: 1105.6342 The unequivocal evidence of hadron acceleration in Tycho's Supernova Remnant 1 Total **VERITAS** FermiLAT

Donnerstag, 12. Januar 2012

Summary of SNRs

- SNRs interacting with molecular clouds:
 - W44,W51C, IC443,W28,W49B,W30, CTB37A, ...
 - Hadronic origin + reacceleration of ambient CRs in most cases
- Evolved SNRs without molecular cloud interactions
 - Cygnus loop
 - Blast wave region ? (X-ray) or radiative shock ? (H α)
- Young TeV-bright SNRs:
 - RX J1713.7-3946, Vela junior
 - Leptonic origin ?
- Historical SNRs: B-field amplification, CR acceleration
 - Tycho: hadronic origin almost certain
 - SN 1006: hadronic + leptonic origin
 - Cassiopeia A: not conclusive
- Fermi-LAT SNR catalogue in the making

Conclusions

SNR PHYSICS

- Categorising SNRs is possible with respect to their
 - age (young, intermediate, evolved)
 - type (thermonuclear or core collapse)
 - environment (molecular cloud, dense or thin ISM, bubble)
- But SNRs are essentially individual objects
 - local environmental conditions dominate emission processes

FUTURE OF SNR MEASUREMENTS

- Multiwavelength measurements are crucial for understanding SNRs
 - Radio + X-ray (electron population, density)
 - Infrared (target photons for IC)
 - GeV + TeV gamma-rays (IC, brems and CR acceleration)
- Fermi-LAT, HESS/CTA and HESS 2 to cover the whole gamma-range

Melitta Naumann-Godo

Backup Transparencies

Melitta Naumann-Godo

Tycho Discussion: general constraints

- starting point: X-ray paper @ Cassam-Chenai et al. 2007
- authorised maximal density by X-rays: $n_0 = 0.84$ cm⁻³/ D_{kpc}
- $n_0 = 388 \times D_{kpc}^{-7} \times E_{51}^2$
- fix $E_{p,tot} = 0.1 E_{amb}$
- consider 2 scenarios:
 - "Nearby" in order to fix $E_{SN} = 1.0 \times 10^{51} \text{erg}$
 - "Far" D = 3.5 kpc in order to come close to Hayato's measurement

Emission models in comparison

Model	E _{cut,e} [TeV]	E _{cut,p} [TeV]	$W_{\rm e}$ [10 ⁴⁷ erg]	$W_{\rm p}$ [10 ⁵⁰ erg]	Β [μG]
Leptonic	10	_	3.3	—	30
Hadronic	5	80	0.3	3.0	120
Mixed	8	100	1.4	2.0	45

- Leptonic case:
 - 30µG + Bohm diffusion → electrons of I TeV confined to a shell of I0 arcsec (compatible with radial profile)
 - Measured flux well reproduced but not the slope
- Hadronic case:
 - I20µG consistent with B field amplification at shock
 - 20% of E_{SN} needs to be converted in CR
- Mixed case:
 - 14% of E_{SN} in CR, K_{ep} =3.9 x 10⁻³

Germi The FERMI Observatory

Large area telescope (LAT)

Large area, large field of view, good angular and energy resolution E: 20 MeV to 300 GeV

> Gamma-ray burst monitor (GBM) Full sky coverage, BGO, Csl detector E: few keV to 30 MeV

Melitta Naumann-Godo

The FERMI Observatory

- Energy range:
- Energy resolution:
- Collecting area:
- Field of view:
- Angular resolution:
- Observation mode:
- Orbital period:
- Full sky view:

20 MeV to 300 GeV

15% – 100 MeV to 10 GeV

9,500 cm²

2.4 sr (104° cone)

0.6°@1GeV, 0.15°@10GeV

sky survey, rocking 35° N/S

95 minutes

3 hrs (~uniform in 55 days)

The 2FGL Catalogue

- Analysis of 24-month data from 100 MeV to 100 GeV with maximumlikelihood method based on "LAT Science Tools"
- 1888 sources in the 2FGL catalogue
- Separating sources from each other and from the background is challenging, especially in the Galactic ridge

Melitta Naumann-Godo

Dermi

Gamma-ray pace Telescope

FERMI statistics: 2FGL

Туре	Number	Percentage of total
Active Galactic Nuclei	832	44%
Candidate Active Galactic Nuclei	268	14%
Unassociated	594	32%
Pulsars (pulsed emission)	86	5%
Pulsars (no pulsations yet)	26	1%
Supernova Remnants/Pulsar Wind Nebulae	60	3%
Globular Clusters	11	< 1%
Other Galaxies	7	< 1%
Binary systems	4	< 1%
TOTAL	1888	100%

Melitta Naumann-Godo

Historical SNR: Cassiopeia A

Fermi-LAT spectrum: $\Gamma = 2.0 \pm 0.1$

in hadronic model: CR: $0.4x10^{50}$ erg E_{CR} ~2% of E_{SN} = $2x10^{51}$ erg

Melitta Naumann-Godo

Historical SNR: Cassiopeia A

Fermi-LAT spectrum: $\Gamma = 2.0 \pm 0.1$

in hadronic model: CR: $0.4x10^{50}$ erg E_{CR} ~2% of E_{SN} = $2x10^{51}$ erg

Melitta Naumann-Godo

Seminar at LPNHE

10¹⁴

Historical SNR: Cassiopeia A

Tycho: more about modelisation

Corrioli 2011 arXiv: 1105.6342

Hydrodynamic model for SNR evolution and non-linear DSA

Computed radio profile in good agreement with measured

Melitta Naumann-Godo

7

Tycho: more about modelisation Dermi Gamma-ray Space Telescope

Towards a FERMI SNR catalogue

- After 3 years of data-taking FERMI sensitivity in the Galactic plane has improved sufficiently to allow the detection of SNRs
- Green catalogue of radio SNRs offers a good starting point to search for correlations in Fermi-LAT data
- Analysis pipeline for this analysis is currently set-up using:
 - 36 month data
 - 12 deg ROI
 - Pass7_V6 source
 - energy threshold: I GeV, 500 MeV, ...
 - catalogue containing TS>10 as input model for neighbouring sources
 - SNR modelled as extended disk (extension given by radio), 2D
 Gaussian and soon radio template fits-file

Towards a FERMI SNR catalogue

- Analysis results w.r.t. individual SNRs include:
 - smoothed counts map
 - integral flux, photon index
 - spectrum points
 - TS
 - TS map
 - residual TS map
 - localisation coordinates, error ellipse
 - extension TS
 - radial and azimuthal profile

Preliminary results on SNR extension

• Significance of the SNR extension vs. detection significance

Melitta Naumann-Godo

Seminar at LPNHE

?

pace Telesc

Preliminary results on SNR extension

Graph SNR extension in gamma-rays vs. extension in radio

Donnerstag, 12. Januar 2012

?

Space Telesc

.

2FGL statistics: extended sources

Extended Source	Spatial Form	Spectral Form
SMC	2D Gaussian	Exp Cutoff PL
LMC	2D Gaussian ^a	Exp Cutoff PL
IC 443	2D Gaussian	Log Parabola
Vela X	Disk	Power Law
Centaurus A (lobes)	Contour Map	Power Law
MSH 15-52	Disk	Power Law
W28	Disk	Log Parabola
W30	Disk	Log Parabola
HESS J1825-137	2D Gaussian	Power Law
W44	Ring	Log Parabola
W51C	Disk	Log Parabola
Cygnus Loop	Ring	Exp Cutoff PL

Melitta Naumann-Godo

SNRs interacting with MC: W41

Melitta Naumann-Godo

- TeV Extended emission:
 - Good matching with GeV emission
 - Compatible intrinsic sizes
 - γ-ray spectra like interacting SNRs
 - W41 possibly in interaction with a cloud
 - Interacting SNR scenario ? But TeV morphology does not match ¹³CO density
 - PWN scenario ? But GeV spectrum not typical and PSR younger than SNR?
- TeV Compact source:
 - ► Not seen by Fermi-LAT
 - · Coincident with Chandra compact nebula and pulsar candidate
 - No pulsations found in GeV, X-ray and radio data
 - Voung PWN scenario ? But PSR younger than SNR?

Gamma-ray Space Telescope

Cygnus X and CR acceleration

Cocoon emission seems to be diffuse rather than a combination of individual point sources.

Lack of significant spectral variations supports this.

Melitta Naumann-Godo

Cygnus X and CR acceleration

IC emission (upscattering of intense stellar light) too faint and too soft CR acceleration by shockwave of Cyg X ? CR acceleration by stellar winds in superbubble ?

Melitta Naumann-Godo

γ-Cygni and VER J2019+407

• G78.2+2.1 (γ-Cygni):

- Distance ~ 1.5 1.8 kpc, Age ~ 5-10 kyr.
- VERITAS: 18.6 hrs live time Sep-Nov, 2009.
 - Detection: 9.6 (7.5) σ pre (post) trials.
 - Extended emission: $\sigma \sim 0.18^{\circ} \pm 0.03^{\circ}_{stat} \pm 0.02^{\circ}_{sys}$
- What's driving the TeV emission?
- Likely SNR shock interacting with ambient material:
 - Partial HI shell encloses north, west (Gosachinskij 2001).
 - Suggests hadronic emission.
- Lack of CO: differs from W28, W44, IC 443, W51C, ...

DSA of Cosmic Rays in SNRs

TROUBLE WITH SLOPES ?

Seminar at LPNHE

12/01/2012

Donnerstag, 12. Januar 2012

Melitta Naumann-Godo

2

DSA of Cosmic Rays in SNRs

 \circledcirc REQUIRED POWER \rightarrow NON LINEAR THEORY OF ACCELERATION

- \odot MAGNETIC FIELD AMPLIFICATION \rightarrow MOST LIKELY CR INDUCED
- © EFFICIENT ACCELERATION SEEN IN SIZE OF X-RAY FILAMENTS, ABSENCE OF X-RAYS FROM PRECURSOR, EMAX @ KNEE, ANOMALOUS BALMER LINE WIDTHS
- ⊗ ANISOTROPY SUGGESTS δ~1/3 → INJECTION SLOPE 2.3-2.4
- ◎ GAMMA RAYS ALSO SUGGEST STEEP INJECTION → PROBABLY ACTION OF SCATTERING CENTERS SPEED, BUT ALSO NEUTRALS
- **© TYCHO PROBABLY THE FIRST UNAMBIGUOUS HADRONIC SOURCE**
- **IN GENERAL EFFICIENT ACCELERATION DOES NOT IMPLY GAMMA**
- © AS A BY-PRODUCT OF SNR PARADIGM → TRANSITION TO EXTRA GALACTIC CR AT 10^{18} eV, NOT @ ANKLE