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Summary

Context
✦Observational cosmology with SNe Ia
✦The Nearby Supernova Factory project

SNe Ia spectral analysis
✦ SNe Ia variability
✦ Standardization Bailey, et al., A&A. (2009)

✦ Extinction law Chotard, et al., A&A. (2011)

SNfactory status

SN 1994D

Conley et al 2011
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Framework: concordance cosmology
Three principal probes

ΩM ≃ 0.27
ΩΛ ≃ 0.73

Cosmological parameters

✦ΩM matter density

✦ΩΛ dark energy density

✦w = p/ρ ≃ -1
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Three independent measurements

Standard candles (SNe Ia) 
(Nearby and distant surveys)

CMB 
(COBE,  WMAP,  PLANCK)

Large scale structures 
(BAO,  Weak lensing, Clusters)
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✦ Hubble diagram: distance modulus vs. redshift
✦ High-z SNe: cosmological parameters +
✦ Nearby SNe: constrain the degeneracy between cosmology and SNe Ia luminosity

✦ High quality data of low redshift SNe Ia needed to reduce systematics
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✦ ~200 SNe with more than 5 spectra

✦ ~3000 spectra from -15 to +40 days / max
✦ 0.01 < redshift < 0.1
✦ median phase of 1st spec: -4 days
✦ mean cadence of observation: ~3 days
✦ spectral coverage 3200 - 9000 Å

Data sample

✦ Anchor the Hubble diagram: control of systematics
✦ Spectrophotometric time series of nearby SNe Ia
✦ Standardization
✦ SN Ia physics: spectral properties, extinction studies...

Main Goals

Redshift

The Nearby Supernovae Factory

N
SNfactory
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A unique data set of spectrophotometric type Ia supernovae spectra



1. Search

2. Observation

3. Analyze

SNfactory: Observations

Follow up

Palomar
Nightly

Ref New New-Ref

= ~10-7 of the surface
    observed each night

✦ synthetic light curve in any filter

✦ spectral details

B
+SALT2

Spectrometer built for 
nearby SNe Ia observations 

SNIFS

Dedicated search until 2008. 
Public sources and PTF after.

SNIFS  UH 2.2-m
Every 2-3 nights
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Homogeneity up to ~0.4 mag

Expected sources of  Variability
✦ intrinsic: 

✴ progenitor composition (metallicity)
✴ progenitor explosion (56Ni mass) 

✦ extrinsic: 
✴ host interstellar medium extinction 

STRETCH

~ 40%

Empirical corrections to reduce the 
dispersion at maximum light: 

✦ Light curve width: Δm15, stretch, x1  
    brither - slower (intrinsic)

✦ Color: B-V at max, SALT2 color              
brighter - bluer (extrinsic)

SNe Ia : quasi-standard candles

Stretch+Color 
corrected

~ 15%

M
B

phase

co
rr

ec
te

d 
M

B
Empirically corrected Hubble diagram

µi
B = mi

B �MB + �� xi
1 � � � ci

From an empirical LC 
fitter (SALT2, Guy et al. 07)
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http://adsabs.harvard.edu/abs/2007A%2526A...466...11G
http://adsabs.harvard.edu/abs/2007A%2526A...466...11G


Spectral indicators 
At a given phase (at max), spectral differences between SNe are 

linked to the different types of variabilities

✦ Spectral indicators: tracer of these 
variabilities

✦ 4 type of spectral indicators:
✴flux ratio
✴depth ratio
✴equivalent width
✴ feature velocity
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Spectral indicators 
At a given phase (at max), spectral differences between SNe are 

linked to the different types of variabilities

✦ Spectral indicators: tracer of these 
variabilities

✦ 4 type of spectral indicators:
✴flux ratio
✴depth ratio
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2 examples of SNfactory spectral analysis at maximum light.

�µ� = �I� + �A�

Hubble residuals 
(total variability)

Intrinsic variability

Extrinsic variability 
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Spectral indicators 
At a given phase (at max), spectral differences between SNe are 

linked to the different types of variabilities

✦ Spectral indicators: tracer of these 
variabilities

✦ 4 type of spectral indicators:
✴flux ratio
✴depth ratio
✴equivalent width
✴ feature velocity

2 examples of SNfactory spectral analysis at maximum light.

�µ� = �I� + �A�

Hubble residuals 
(total variability)

Intrinsic variability

Extrinsic variability 
(absorption)

Is there one 
spectral indicator 

able to 
standardize 

SNe Ia?

1
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Spectral analysis at max

Arbitrary flux ratio: 
F1

F2
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Spectral analysis at max

Arbitrary flux ratio: 
F1

F2
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Spectral flux ratios to standardize SN Ia
Bailey et al. 2009
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Spectral flux ratios to standardize SN Ia

R642/443

Bailey et al. 2009
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Spectral flux ratios to standardize SN Ia

R642/443

✦ Spectral flux ratios measured at max
✦ All correlation with Hubble residuals
✦ Only 1 ratio do better than (x1,c)
✦ SNfactory publication: Bailey et al. 2009

Bailey et al. 2009
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Spectral indicators 
At a given phase (at max), spectral differences between SNe are 

linked to the different types of variabilities

✦ Spectral indicators: tracer of these 
variabilities

✦ 4 type of spectral indicators:
✴flux ratio
✴depth ratio
✴equivalent width
✴ feature velocity

2 examples of SNfactory spectral analysis at maximum light.

�µ� = �I� + �A�

Hubble residuals 
(total variability)

Intrinsic variability

Extrinsic variability 
(absorption)

Can we use spectral 
indicators to 

separate the 
SNe Ia 

variabilities?

2
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A

−0.1

0

0.1

0.2

0.3

0.4 SALT2 (this paper)

SALT2 (G07)

Cardelli Rv=3.1

Cardelli Rv=1.0

Guy, et al., A&A. (2010)

Which extinction law for SNe Ia?
✦ SNe Ia dispersion dominated by extinction variability
✦ Recurrent issue in SNe Ia analysis: extinction law or ‘Rv’?

Difficulty:  SNe Ia variability is a mix of intrinsic + extrinsic components
Our Solution: Measure the intrinsic variability with equivalent widths

Cardelli extinction law: 
✴ dust properties: Rv 
✴ amount of dust: E(B-V)

Cardelli 89

extinction more grey

UV extinction, reddening

High RV

Low RV

RV

A�

AV
= a� +

b�

RV
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Which extinction law for SNe Ia?
✦ SNe Ia dispersion dominated by extinction variability
✦ Recurrent issue in SNe Ia analysis: extinction law or ‘Rv’?

Difficulty:  SNe Ia variability is a mix of intrinsic + extrinsic components
Our Solution: Measure the intrinsic variability with equivalent widths

SNe Ia:        1.5 < Rv < 2.2 (or β)
Our galaxy:  <Rv> = 3.1

Lower values than the Milky Way one 
usually found

+
Large dispersion in these values

Cardelli extinction law: 
✴ dust properties: Rv 
✴ amount of dust: E(B-V)

Cardelli 89
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Spectral analysis at max

EW =
� �2

�1

�
1� ��(�)

�c(�)

�
d�

9 equivalent widths
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Spectral analysis at max

EW =
� �2

�1

�
1� ��(�)

�c(�)

�
d�

9 equivalent widths

Intrinsic part of 
the variability
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1st step: Decompose the Hubble residuals into intrinsic variabilities and relative 
absorptions δAλ 

�A�= �µ�� �I Two intrinsic corrections

�I� = sSi� ewSi + sCa
� ewCa

Extinction law construction

14



1st step: Decompose the Hubble residuals into intrinsic variabilities and relative 
absorptions δAλ 

�A�= �µ�� �I Two intrinsic corrections

�I� = sSi� ewSi + sCa
� ewCa

Extinction law construction

2nd step:  Use the relation between the δAλ to construct the law

�AU

�AV

Slopes

�A�(i) = �� �A�
V (i) + ��

Linear model

Measured

Extinction law

Extinction
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Chotard, et al., A&A. 

�� �
A�

AV

Additional color dispersion needed...

RV = 2.6± 0.4

Classic extinction law
+

1st step: Decompose the Hubble residuals into intrinsic variabilities and relative 
absorptions δAλ 

�A�= �µ�� �I Two intrinsic corrections

�I� = sSi� ewSi + sCa
� ewCa

Extinction law construction

2nd step:  Use the relation between the δAλ to construct the law

�AU

�AV

Slopes

�A�(i) = �� �A�
V (i) + ��

Linear model

Measured

Extinction law

Extinction
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SNfactory status 

✦All published analysis: Peculiar SNe (Aldering 06, Thomas 07), Standardization (Bailey 09), Super-C 
(Scalzo 10), Host (Childress 11), Extinction (Chotard 11), Carbon-footprint (Thomas 11)

✦Ongoing analysis: Standardization, Classification, Reddening analysis, Host galaxies analysis, NaID 
absorption line analysis, Twin supernovae analysis, Spectral data / Explosion model comparison, 
SN2011fe, etc. Some of them already under publication process.

✦More data taken in a regular basis to feed these analysis.

✦Chinese collaboration to SNfactory phase II since 2011 (obs/reduc/analysis)

✦French (CPPM/IPNL) / Chinese (THCA) collaboration on several sides:
✦  Data transfert / Calibration process runing

✦  Spectral analysis / Classification / SNe Ia velocity studies (see Wang Xiaofeng from THCA)

✦Autumn SNf II collaboration meeting probably in Tsinghua 
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Cosmology and standard candles
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✦ Luminosity distance depends on redshift and cosmological parameters

✦ Need an object for which the luminosity L is known 

Standard candles

✦ Measurements:
✴ redshift 
✴ distance modulus: 

apparent absolute

� = {��,�M , w, H0}

f =
L

4�dL(z,�)2

µ = m(f)�M(L) = 5 log
�

dL(z,�)
10pc

�

flux

µ



SN Ia: properties
✦ Progenitor: White dwarf (C+O) in a binary system 
✦ Explosion:  

✴ Accretion of the companion (?) mass up to the Chandrasekhar mass limit (~1,4 M⊙)
✴ Thermonuclear fusion in the SN core gives Ni, Si, S, Ca

✦ Competition between:
✴ Opacity: decrease with the expansion
✴ Radioactive decay rate: decrease in the SN core

time (days)

L

⌧Si ⇡ 6j ⌧
Co

⇡ 77j56Ni 56
Co

56Fe Maximum light

phase = 0 phase > 0phase < 0

light curve
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Visible up to cosmological distances
&

Identification by spectral features
L > 109L�

✦ Properties:
✴~same luminosity
✴~spectroscopic homogeneity



Nearby Hubble diagramm

✦ Above : «sub-luminous»
✦ Below : «over-luminous»

Empirically corrected Hubble diagram

�µB > 0
�µB < 0

α, β and MB optimized
&

dispersion in magnitude added to 
reach   χ2=1

0.40 mag 0.16 mag

µi
B = mi

B �MB + �� xi
1 � � � ci

Dispersion decreases

µB

Before

After

�
µ

B

�µB



Analysis sample

Quality cut on the SALT2 light 
curve fit:

✴ at least 5 points/night on the light curvea
✴ a «good» fit to the light curve (RMS)



Bailey09

Spectral analysis 
At a given phase (at max), spectral differences between SNe are 

linked to the different types of variabilities

✦ Spectral indicators: tracer of these 
variabilities

✦ 4 type of spectral indicators:
✴flux ratio
✴depth ratio
✴equivalent width
✴ feature velocity

✦ Different goals
✴Standardization
✴Sub-classification
✴Extinction parameters

21



Bailey09

Spectral analysis 
At a given phase (at max), spectral differences between SNe are 

linked to the different types of variabilities

✦ Spectral indicators: tracer of these 
variabilities

✦ 4 type of spectral indicators:
✴flux ratio
✴depth ratio
✴equivalent width
✴ feature velocity

✦ Different goals
✴Standardization
✴Sub-classification
✴Extinction parameters
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Spectral analysis 
At a given phase (at max), spectral differences between SNe are 

linked to the different types of variabilities

✦ Spectral indicators: tracer of these 
variabilities

✦ 4 type of spectral indicators:
✴flux ratio
✴depth ratio
✴equivalent width
✴ feature velocity

✦ Different goals
✴Standardization
✴Sub-classification
✴Extinction parameters
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Spectral analysis 
At a given phase (at max), spectral differences between SNe are 

linked to the different types of variabilities

✦ Spectral indicators: tracer of these 
variabilities

✦ 4 type of spectral indicators:
✴flux ratio
✴depth ratio
✴equivalent width
✴ feature velocity

✦ Insensitive to dust extinction <3%
✦Correlated to intrinsic variabilities
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Dust extinction
✴ Dust in the ISM/CSM responsable for an extinction, function of the wavelength

✴ A 2 parameters law:
✴ dust properties: Rv 
✴ amount of dust: E(B-V)

✴ Cardelli extinction law:

extinction more grey

UV extinction, reddening

High RV

Low RV

RV =
AV

E(B � V )

A� = E(B � V )� (RV � a� + b�)

aλ et bλ, given parameters

A�

AV
= a� +

b�

RV
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Cardelli, Clayton, Mathis,   ApJ. (1989)



Sensitivity to dust extinction
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Considering S as the sensitivity of spectral indicators to dust (in %)

Spectral indicators could trace a: 
✴ purely intrinsic effect of the SNe Ia variability       S=0
✴ mixt of intrinsic and extrinsic variability       0<S<100
✴ purely extrinsic effect of the variability               S=100

S depends on the :
✴ type of spectral indicators
✴ reddening : E(B-V) and RV
✴ position in the spectrum (width, central wavelength, depth...)

Indicator <S> (%)
Flux ratio > 10

Depth ratio > 10
EW <   3

Velocity a few %

For a mean extinction

Intrinsic

Mixt
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Spectral indicator measurements

✦Automated measurement of these spectral indicators on spectra at max
1. Milky Way dereddening 
2. Deredshifting (from observer frame to restframe)
3. Peak finding after optimal smoothing
4. EWs measurements
+ Monte-Carlo estimate for statistical and systematic uncertanties

✦ 96 SNe selected for their:
✴  good phase sampling
✴  good SALT2 fit
✴  spectrum between ± 2.5 days around max

How can we use their properties 
and which one of them?



Standardization

µi
B = mi

B �MB + �xi
1 � �ci + �Xi + ...

Spectral indicatorsPhotometric 
parameters
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General results:
✦ none of the classical spectral indicators itself can standardize better than x1 & c
✦ nor a combinaison of them
✦ only a few of the equivalent widths decrease the RMS when added to x1 & c

The two intrinsic indicators:
✦ EWSi II 4000: 

✴ + c: ~0.15 mag
✴ + x1 & c:  ~0.14 mag

✦ EWCa II HK:
✴ can’t replace x1 or c
✴ no improvement when added to them

~0.14 mag

X
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Standardization

µi
B = mi

B �MB + �xi
1 � �ci + �Xi + ...

Spectral indicatorsPhotometric 
parameters

25

General results:
✦ none of the classical spectral indicators itself can standardize better than x1 & c
✦ nor a combinaison of them
✦ only a few of the equivalent widths decrease the RMS when added to x1 & c

The two intrinsic indicators:
✦ EWSi II 4000: 

✴ + c: ~0.15 mag
✴ + x1 & c:  ~0.14 mag

✦ EWCa II HK:
✴ can’t replace x1 or c
✴ no improvement when added to them

~0.14 mag

X

But we can use their intrinsic properties...



Equivalent width properties
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Equivalent width properties
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Equivalent width properties

EWSiII4000 : A good proxy for x1
26
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Calcium equivalent width
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Uncorrelated to 
EWSi II 4000

Correlated to 
Hubble residuals

EWCa II HK EWCa II HK

E
W

S
i 

II
 4

0
0

0

�
µ

U

EWCa II HK

v
 S

i 
II

 6
3

5
5

Correlated to other 
spectral properties EWCa II HK:

✦ Uncorrelated to EWSi II 4000 / x1
✦ Correlated to Hubble residuals
✦ Correlated to other spectral properties
✦ High signal to noise (<S/N>=40)

Good candidate to be a 
second intrinsic variable

� � 0



EWSi II 4000

�µB �I = sSi
B � EWSi II 4000�ASi

B

Intrinsic variable

No correction

One intrinsic correction

Two intrinsic corrections

Hubble 
residuals

EWSi II 4000 + EWCa II HK

EWSi II 4000 / Strech-like

�I �A

«perfect candles»

�µ�

�µ� =

�
�������

�������

�A0
� (a)

sSi
� ewSi + �ASi

� (b)

sSi
� ewSi + sCa

� ewCa + �ASi+Ca
� (c)
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Construct the extinction law
2nd step:  Use the relation between the δAλ to construct the law
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RV = 2.6± 0.4
Chotard, et al., A&A. (2011)
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Additional color dispersion needed...

RV = 2.6± 0.4
Chotard, et al., A&A. (2011)
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For the case (c): 2 intrinsic corrections

Introduction of a color dispersion, not used in cosmological fit

Dispersion matrix

� [Å]

Why?  
Using the measured covariance matrix only:   Χ2  >>  1  
Extra dispersion matrix needed to set the Χ2  to 1 (as in all cosmological fits with SNe Ia)

How? 
Using the residual rλ(i) to the γλ  fit to construct the additionnal covariance matrix 

Anti-correlation mostly increases with the wavelength differences

� [Å]
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Diagonal dispersion

Rv = 2.6

�A�(i) = �� �A�
V (i) + ��
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Conclusion / What’s next

Result:

✴ Two variables correlated to the intrinsic variability

✴ Extinction law compatible with a Cardelli law

✴ Dispersion in color

✴ Rv value compatible with the Milky Way one

✴ Better understanding of the SNe Ia intrinsic dispersion and extinction is important 
to reduce systematic effects in cosmological analysis

Open questions:
✴ Dispersion: intrinsic or extrinsic residuals variabilities?
✴ Is the result the same at an other phase?
✴ Correlation of the matrix to other quantities (spectral variables, host quantities...)?
✴ ... A lot of further spectral analysis are in progress with the SNFactory spectral sample

Intrinsic corrections 
+ 

Dispersion in color

Cardelli-like extinction law
and 

Higher value of RV
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See details in Chotard, et al., A&A. (2011)


