SNe la spectral analysis with the SNfactory spectrophotometric data sample

Nicolas Chotard NAOC / Tsinghua (THCA)

5th FCPPL Workshop March 22, 2012

Summary

Context

- +Observational cosmology with SNe Ia
- The Nearby Supernova Factory project

SNe la spectral analysis

- + SNe la variability
- + Standardization <u>Bailey, et al., A&A. (2009)</u>
- + Extinction law Chotard, et al., A&A. (2011)

SNfactory status

Framework: concordance cosmology

Three principal probes

Standard candles (SNe Ia) Large scale structures (Nearby and distant surveys) (BAO, Weak lensing, Clusters)

Three independent measurements

Cosmological parameters

- + Ω_{M} matter density
- + Ω_{Λ} dark energy density

+w = p/ $\rho \simeq -1$

$$\label{eq:Omega} \begin{split} \Omega_M &\simeq \ 0.27 \\ \Omega_\Lambda &\simeq \ 0.73 \end{split}$$

CMB (COBE, WMAP, PLANCK)

Hubble diagram

- + Hubble diagram: distance modulus vs. redshift
- + High-z SNe: cosmological parameters + $H_0^2 L$
- * **Nearby SNe:** constrain the degeneracy between cosmology and SNe Ia luminosity
- + High quality data of low redshift SNe la needed to reduce systematics

Hubble diagram

- + Hubble diagram: distance modulus vs. redshift
- + High-z SNe: cosmological parameters + $H_0^2 L$
- * Nearby SNe: constrain the degeneracy between cosmology and SNe Ia luminosity
- + High quality data of low redshift SNe la needed to reduce systematics

5

The Nearby Supernovae Factory

A unique data set of spectrophotometric type la supernovae spectra

Main Goals

- + Anchor the Hubble diagram: control of systematics
- + Spectrophotometric time series of nearby SNe Ia
- + Standardization
- +SN la physics: spectral properties, extinction studies...

Data sample

- +~200 SNe with more than 5 spectra
- +~3000 spectra from -15 to +40 days / max
- +0.01 < redshift < 0.1
- + median phase of 1st spec: -4 days
- + mean cadence of observation: ~3 days
- + spectral coverage 3200 9000 Å

SNfactory: Observations

SNe la : quasi-standard candles

Homogeneity up to ~0.4 mag

Expected sources of Variability

+ <u>intrinsic</u>:

* progenitor composition (metallicity)

* progenitor explosion (⁵⁶Ni mass)

+ <u>extrinsic</u>:

* host interstellar medium extinction

Empirical corrections to reduce the dispersion at maximum light:

- + Light curve width: ∆m I 5, stretch, x I
 brither slower (intrinsic)
- + Color: B-V at max, SALT2 color brighter - bluer (extrinsic)

Empirically corrected Hubble diagram $\mu_B^i = \boxed{m_B^i} - M_B + \alpha \times \boxed{x_1^i} - \beta \times \boxed{c^i}$

From an empirical LC fitter (SALT2, <u>Guy et al. 07</u>)

At a given phase (at max), spectral differences between SNe are linked to the different types of variabilities

- **Spectral indicators:** tracer of these variabilities
- +4 type of spectral indicators:
 - *flux ratio
 - * depth ratio
 - *equivalent width
 - * feature velocity

At a given phase (at max), spectral differences between SNe are linked to the different types of variabilities

- + **Spectral indicators:** tracer of these variabilities
- +4 type of spectral indicators:
 - *flux ratio
 - * depth ratio
 - * equivalent width
 - * feature velocity

2 examples of SNfactory spectral analysis at maximum light.

At a given phase (at max), spectral differences between SNe are linked to the different types of variabilities

- + **Spectral indicators:** tracer of these variabilities
- +4 type of spectral indicators:
 - *flux ratio
 - * depth ratio
 - * equivalent width
 - * feature velocity

2 examples of SNfactory spectral analysis at maximum light.

Spectral flux ratios to standardize SN Ia

Bailey et al. 2009

Spectral flux ratios to standardize SN Ia

Spectral flux ratios to standardize SN Ia

- + Spectral flux ratios measured at max
- + All correlation with Hubble residuals
- +Only I ratio do better than (x_1,c)
- + SNfactory publication: Bailey et al. 2009

At a given phase (at max), spectral differences between SNe are linked to the different types of variabilities

- + **Spectral indicators:** tracer of these variabilities
- +4 type of spectral indicators:
 - *flux ratio
 - * depth ratio
 - * equivalent width
 - * feature velocity

2 examples of SNfactory spectral analysis at maximum light.

At a given phase (at max), spectral differences between SNe are linked to the different types of variabilities

- **Spectral indicators:** tracer of these variabilities
- +4 type of spectral indicators:
 - *flux ratio
 - * depth ratio
 - * equivalent width
 - * feature velocity

2 examples of SNfactory spectral analysis at maximum light.

Which extinction law for SNe la?

SNe la dispersion dominated by extinction variability Recurrent issue in SNe la analysis: extinction law or 'Rv'?

Difficulty: SNe la variability is a **mix of intrinsic + extrinsic** components **Our Solution**: Measure the **intrinsic variability** with **equivalent widths**

Which extinction law for SNe la?

SNe la dispersion dominated by extinction variability
Recurrent issue in SNe la analysis: extinction law or 'Rv'?

Difficulty: SNe la variability is a **mix of intrinsic + extrinsic** components **Our Solution**: Measure the **intrinsic variability** with **equivalent widths**

Extinction law construction

 I^{st} step: Decompose the Hubble residuals into intrinsic variabilities and relative absorptions δA_{λ}

 $\delta A_{\lambda} = \Delta \mu_{\lambda} - \delta I$

Two intrinsic corrections

$$\delta I_{\lambda} = s_{\lambda}^{\rm Si} \mathrm{EW}^{\rm Si} + s_{\lambda}^{\rm Ca} \mathrm{EW}^{\rm Ca}$$

Extinction law construction

-1.0

 $-1.5^{-1.5}$

 δA_V

0.6

0.8

1.0

1.2

0.2

0.0

Extinction law

Extinction

Measured

Extinction law construction

SNfactory status

- + All published analysis: Peculiar SNe (<u>Aldering 06, Thomas 07</u>), Standardization (<u>Bailey 09</u>), Super-C (<u>Scalzo 10</u>), Host (<u>Childress 11</u>), Extinction (<u>Chotard 11</u>), Carbon-footprint (<u>Thomas 11</u>)
- Ongoing analysis: Standardization, Classification, Reddening analysis, Host galaxies analysis, NaID absorption line analysis, Twin supernovae analysis, Spectral data / Explosion model comparison, SN2011fe, etc. Some of them already under publication process.
- +More data taken in a regular basis to feed these analysis.
- + Chinese collaboration to SNfactory phase II since 2011 (obs/reduc/analysis)
- +French (CPPM/IPNL) / Chinese (THCA) collaboration on several sides:
 - Data transfert / Calibration process runing
 - + Spectral analysis / Classification / SNe Ia velocity studies (see Wang Xiaofeng from THCA)
- +Autumn SNf II collaboration meeting probably in Tsinghua

BACKUP

Cosmology and standard candles

+Need an object for which the **luminosity L is known**

Standard candles

+ Luminosity distance depends on redshift and cosmological parameters

$$\omega = \{\Omega_{\Lambda}, \Omega_M, w, H_0\}$$

* Measurements:

- * redshift
- * distance modulus: μ

apparent absolute

$$\mu = \underbrace{m(f)}_{M(L)} - \underbrace{M(L)}_{S} = 5 \log \left(\frac{d_L(z, \omega)}{10 \text{pc}} \right)$$

SN la: properties

Progenitor: White dwarf (C+O) in a binary system **Explosion**:

* Accretion of the companion (?) mass up to the Chandrasekhar mass limit (~1,4 ${\rm M}_{\odot})$

* Thermonuclear fusion in the SN core gives Ni, Si, S, Ca

+ Properties:

*~same luminosity $L > 10^9 L_{\odot}$ *~spectroscopic homogeneity

Nearby Hubble diagramm

Analysis sample

Quality cut on the SALT2 light curve fit:

* at least 5 points/night on the light curvea

* a «good» fit to the light curve (RMS)

At a given phase **(at max), spectral differences** between SNe are linked to the **different types** of **variabilities**

- Spectral indicators: tracer of these variabilities
- +4 type of spectral indicators:
 - *flux ratio
 - * depth ratio
 - *equivalent width
 - * feature velocity

- * Standardization
- *Sub-classification
- * Extinction parameters

 $R_{642/443}$

At a given phase **(at max), spectral differences** between SNe are linked to the **different types** of **variabilities**

21

- **Spectral indicators:** tracer of these variabilities
- +4 type of spectral indicators:
 - *flux ratio
 - * depth ratio
 - * equivalent width
 - * feature velocity

- * Standardization
- *Sub-classification
- * Extinction parameters

W(6100)

At a given phase **(at max), spectral differences** between SNe are linked to the **different types** of **variabilities**

- Spectral indicators: tracer of these variabilities
- +4 type of spectral indicators:
 - *flux ratio
 - * depth ratio
 - *equivalent width
 - * feature velocity

+ Different goals

- * Standardization
- *Sub-classification
- * Extinction parameters

 $E(B - V)_{host}$ (mag)

At a given phase **(at max), spectral differences** between SNe are linked to the **different types** of **variabilities**

Dust extinction

* Dust in the ISM/CSM responsable for an extinction, function of the wavelength

Sensitivity to dust extinction

Considering **S** as the **sensitivity** of spectral indicators **to dust** (in %)

Spectral indicators could trace a: * purely **intrinsic effect** of the SNe la variability **S=0** * **mixt** of **intrinsic** and **extrinsic** variability **0<S<100** * purely **extrinsic effect** of the variability **S=100**

S depends on the :

* type of spectral indicators

* reddening : E(B-V) and R_V

* position in the spectrum (width, central wavelength, depth...)

For a mean extinction

< S > (%)
> 10
> 10
< 3
a few %

Mixt

Intrinsic

Spectral indicator measurements

+Automated measurement of these spectral indicators on spectra at max

- I. Milky Way dereddening
- 2. **Deredshifting** (from observer frame to restframe)
- 3. Peak finding after optimal smoothing
- 4. EWs measurements
- + Monte-Carlo estimate for **statistical** and **systematic uncertanties**

+96 SNe selected for their:

- * good phase sampling
- * good SALT2 fit
- * spectrum between ± 2.5 days around max

How can we use their properties and which one of them?

+ only a few of the equivalent widths decrease the RMS when added to $x_1 \& c$

But we can use their intrinsic properties...

Equivalent width properties

26

Equivalent width properties

Equivalent width properties

Calcium equivalent width

EWCa II HK:

- + Uncorrelated to EWSi II 4000 / x_1
- Correlated to Hubble residuals
- + Correlated to other spectral properties
- + High signal to noise (<S/N>=40)

Good candidate to be a second intrinsic variable

27

Separating the variabilities

 I^{st} step: Decompose the Hubble residuals into intrinsic variabilities and relative absorptions δA_λ

Separating the variabilities

 I^{st} step: Decompose the Hubble residuals into intrinsic variabilities and relative absorptions δA_{λ}

Construct the extinction law

2nd step: Use the relation between the δA_{λ} to construct the law

Construct the extinction law

2nd step: Use the relation between the δA_{λ} to construct the law

Construct the extinction law

 2^{nd} step: Use the relation between the δA_{λ} to construct the law

Wavelength [Å]

Results on the γ_{λ}

Results on the γ_{λ}

Results on the γ_{λ}

Additional color dispersion needed...

Why?

Using the measured covariance matrix only: $X^2 >> I$ $\delta A_{\lambda}(i) = \gamma_{\lambda} \ \delta A_{V}^{*}(i) + \eta_{\lambda}$

Extra dispersion matrix needed to set the X^2 to 1 (as in all cosmological fits with SNe Ia) **How**?

Using the residual $r_{\lambda}(i)$ to the γ_{λ} fit to construct the additionnal covariance matrix

Introduction of a **color dispersion**, not used in cosmological fit

Anti-correlation mostly increases with the wavelength differences

For the case (c): 2 intrinsic corrections

Rv = 2.6

Why?

Using the measured covariance matrix only: $X^2 >> I$ $\delta A_{\lambda}(i) = \gamma_{\lambda} \ \delta A_{V}^{*}(i) + \eta_{\lambda}$

Extra dispersion matrix needed to set the X^2 to 1 (as in all cosmological fits with SNe Ia) **How**?

Using the residual $r_{\lambda}(i)$ to the γ_{λ} fit to construct the additionnal covariance matrix

Introduction of a **color dispersion**, not used in cosmological fit

Anti-correlation mostly increases with the wavelength differences

For the case (c): 2 intrinsic corrections

31

Why?

Using the measured covariance matrix only: X² >> I $\delta A_{\lambda}(i) = \gamma_{\lambda} \ \delta A_{V}^{*}(i) + \eta_{\lambda}$

Extra dispersion matrix needed to set the X^2 to I (as in all cosmological fits with SNe Ia) How?

Using the residual $r_{\lambda}(i)$ to the γ_{λ} fit to construct the additionnal covariance matrix

Introduction of a **color dispersion**, not used in cosmological fit

Anti-correlation mostly increases with the wavelength differences

For the case (c): 2 intrinsic corrections

Why?

Using the measured covariance matrix only: $X^2 >> I$ $\delta A_{\lambda}(i) = \gamma_{\lambda} \ \delta A_{V}^{*}(i) + \eta_{\lambda}$

Extra dispersion matrix needed to set the X^2 to 1 (as in all cosmological fits with SNe Ia) **How**?

Using the residual $r_\lambda(i)$ to the γ_λ fit to construct the additionnal covariance matrix

Introduction of a **color dispersion**, not used in cosmological fit

Anti-correlation mostly increases with the wavelength differences

Conclusion / What's next

Result: See details in Chotard, et al., A&A. (2011)

- * Two variables correlated to the intrinsic variability
- * Extinction law compatible with a Cardelli law
- *** Dispersion in color**
- * **Rv value** compatible with the **Milky Way one**
- * Better understanding of the SNe Ia intrinsic dispersion and extinction is important to reduce systematic effects in cosmological analysis

Open questions:

- * Dispersion: intrinsic or extrinsic residuals variabilities?
- * Is the result the same at an other phase?
- * Correlation of the matrix to other quantities (spectral variables, host quantities...)?
- * ... A lot of further spectral analysis are in progress with the SNFactory spectral sample

