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A few words about Kun

e Master at USTC
e Came to LPNHE May-June 2011 with Yanwen for a pre-thesis stage
e Stayed at LPNHE till mid Feb. 2012 - now at USTC for a few months
e Started his co-tutorship Ph.D. at UPMC (Paris-6) in September 2011
e \Worked hard on

e photon efficiency

e photon trigger optimization for 2012 running

e ATLAS authorship qualification work (trigger software development/debugging)

¢ unfolding of SM diphoton cross section with ATLAS 2011 data



Motivation

e Prompt photons = photons not originated from hadron decays
e Measurements with prompt photons (examples):
e inclusive y/yy and y+jet xsections: tests of pQCD, extract gluon PDF

e diphoton resonances: search for Higgs, Graviton, ...
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e Photon identification (ID): discriminate against large bkg from jets (i°—yy)

e Photon (identification) efficiency needed to compute xsections and compare
them to predictions (pQCD; SM vs fermiophobic Higgs; ...)
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Photon ID In ATLAS :
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e Exploit segmentation of electromagnetic calorimeter = P

e Based on 9 discriminating “shower shape” variables
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Measuring the photon identification efficiency

e No abundant, clean source of photons to measure efficiencies with
tag&probe technique (unlike e,p leptons: Z—Il) 3 7=
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Data-driven measurements of the photon |1D
efficiency in ATLAS

e Radiative Z decays
e select Z—lly sample using requirements on leptons and kinematics of Ily
e gamma candidate = clean probe to measure efficiency

e Matrix method

e select a photon-enriched sample with events passing photon triggers (very
loose selection)

¢ estimate residual bkg contamination in selected sample, both before and
after application of ID criteria, using a discriminant variable for which the
different signal and background efficiencies are known

e Electron extrapolation
e select pure sample of electrons from Z—ee (with T&P)

e “transform” electron shower shapes into photon shower shapes



¢ single electron or muon triggers

Photon efficiency from radiative Z decays

e good electron or muon (in tracker, EM calorimeter/muon spectrometer)

e originating from primary vertex

e jsolated (reject leptons from heavy flavor decays)

e not too close to the photon (avoid bias on photon shower shapes)
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Photon efficiency from radiative Z decays

* Typical probe Et/eta distribution peaks at low E1_

e Residual bkg from Z+jets; estimated from
template fit to Myy using MC templates
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Photon efficiency from matrix method

e After selecting photon-enriched sample (photon triggers: very loose cuts on few
shower shapes), use track isolation as discriminating variable to count signal (S)
and background (B) that pass/fail the identification (T) criteria

e System of 4 equations in 4 unknowns (if track iso efficiencies are known)
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e Prompt photon track iso efficiencies from signal MC (systematic uncertainty from
data/MC efficiency difference for electrons from Z—ee)

e Background track iso efficiencies from data control sample enriched with jets
(systematic uncertainty from closure tests on MC)



Ingredients for efficiency measurement with matrix

method

e Track isolation efficiencies

track isolation efficiency track isolation efficiency

e Efficiency of trigger preselection

(from MC; to be checked with
radiative Z decays at low ET)
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Conclusion

e Prompt photon identification efficiency measured with 2 data-driven methods

e radiative Z decays = precise at low Et (limited at high Er by statistics)
e matrix method = precise at high Er (limited at low Et by purity uncertainty)

¢ Results from 2 methods consistent within few %
e can reduce systematic uncertainties significantly wrt 2010 analyses
e MC estimates typically within 5% from data results

e confirms validity of 2010 results based on MC efficiencies (with
conservatively large systematic uncertainties)
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£, and €% from DP simulated sample

e Central values from truth reconstructed isolated photons

DP 17 ( Et > 20 GeV)
DP 35 ( Et > 45 GeV)
DP 70 ( Et > 90 GeV)
DP 140 ( Et > 150GeV)
DP 280 ( Et > 290GeV)
DP 500 ( Et > 510GeV)

* * * * * *

e Systematic uncertainties:

* Possible data/MC discrepancies:
* from the difference between ¢’ in Z->ee data and MC
* plots are shown in next slide

* difference between € ° for 1/ 2 track conversion
* only for converted photons
* from difference between ¢ ° for unconverted and converted photons
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€, and €, from DP simulated sample

e Track isolation efficiency from probe electrons in Z->ee data and MC passing or not
the unconverted/converted photon identification

unconverted photon
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gy and &% from bkg-enriched data sample

Select photon candidates in data by reversing narrow strips variables cuts
* four variables: AE , fside , Ws3 and Eratio
* relaxed-tight cut: ID tight cuts except above narrow-strips variables cuts
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1: pass tight cuts

2: pass narrow-strip variable cuts but fail

relaxed-tight cuts

narrow-strip cuts

pass
W
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pass fail 3: pass relaxed-tight but fail narrow-strip cuts

relaxed-tight . . . .
4. fail relaxed-tight and fail narrow-strip

cutsvariables

™ S1gnal leakage correction (see next slide )

Systematic uncertainty:
* bias on ¢’ checked with simulated JF MC samples: comparing the difference of ¢

obtained with truth match and with the same procedure used in data
JF17(Et >20GeV) + JE35(Et>45GeV) + JF70(Et>90GeV) + JF140(Et>150GeV)
+ JF240(Et>250GeV) + JF500(Et>510GeV)
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We introduce a few definitions according to Fig. 3:

e N4: total number of photon candidates in region 3. pass fail

e Np: total number of photon candidates in region 4. relaxed-tight

e &,: fraction of photon candidates that are isolated in the tracker after passing tight criteria (region
1).

e gy fraction of photon candidates that are 1solated in the tracker after failing tight criteria (region
2+3+4).

o 8?;2 fraction of photon candidates in region 3 that are isolated in the tracker.

o 8]]9:1 fraction of photon candidates in region 4 that are 1solated in the tracker.

We also remind the previous definitions of:

o N ]fa .- total number of photon candidates that pass tight criteria (region 1).

o Nme.l: total number of photon candidates that fail tight criteria (region 2+3+4).

The previous quantities are determined on data.
From the prompt photon MC sample we extract the following quantities for true prompt photons:

e f,: fraction of prompt photons that leak into region 3.

e f¢: fraction of prompt photons that leak into region 4.

e &) track 1solation efliciency for prompt photons in region 1.

e g track 1solation efficiency for prompt photons in region 2+3+4.
e & : track isolation efficiency for prompt photons in region 3.

“ oL
2 K 2

S

18

o)

e &% : track isolation efficiency for prompt photons in region 4.



Signal leakage correction

* Fraction of true photons in bkg control sample passing or failing relaxed-tight criteria
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e Signal leakage correction procedure: solve three equations to obtain 3 unknowns
total real photons in passing and failing tight criteria

b _ b
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m*NP+ﬁ*NF ....... (1)
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equations are noniinear, 1teratve procedure is used with inputs:
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are solved during iteration (3~5 ste 2,



Bias on Sf, and 8_? in JF Monte Carlo

e InJF MC, compare the difference of 82 and 8? obtained with the truth match anc
the procedure used in data(bkg control sample and subtract signal leakage by using
iteration)

unconverted photons
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o These ditference is independent with E_within statistical error. The average

difference is taken as systematic uncertainty for each |n| region passing or not tight

criteria..
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