Exploring the primordial Universe with QUBIC the Q U Bolometric Interferometer for Cosmology

J.-Ch. Hamilton APC, Paris

QUBIC QU Bolometric Interferometer for Cosmology

J.-Ch. Hamilton - FCPPL Workshop - March 22nd 2012 <u>hamilton@apc.univ-paris7.fr</u>

Timeline

QUBIC QU Bolometric Interferometer for Cosmology

J.-Ch. Hamilton - FCPPL Workshop - March 22nd 2012 <u>hamilton@apc.univ-paris7.fr</u>

(COBE/DMR homepage)

J.-Ch. Hamilton - FCPPL Workshop - March 22nd 2012 <u>hamilton@apc.univ-paris7.fr</u>

(COBE/DMR homepage)

+1.4 mK

-1.4 mK

QUBIC QU Bolometric Interferometer for Cosmology

J.-Ch. Hamilton - FCPPL Workshop - March 22nd 2012 <u>hamilton@apc.univ-paris7.fr</u>

(COBE/DMR homepage)

+/- 30 μK

J.-Ch. Hamilton - FCPPL Workshop - March 22nd 2012 <u>hamilton@apc.univ-paris7.fr</u>

J.-Ch. Hamilton - FCPPL Workshop - March 22nd 2012 <u>hamilton@apc.univ-paris7.fr</u>

WMAP

Planck

QUBIC QU Bolometric Interferometer for Cosmology

J.-Ch. Hamilton - FCPPL Workshop - March 22nd 2012 <u>hamilton@apc.univ-paris7.fr</u>

CMB Polarization

- Generated by Thomson scattering of electrons in quadrupolar motion
- Stokes Parameters (linear pol.) $Q = \left\langle \left| E_x \right|^2 \right\rangle - \left\langle \left| E_y \right|^2 \right\rangle$ $I = \left\langle \left| E_x \right|^2 \right\rangle + \left\langle \left| E_y \right|^2 \right\rangle$ $U = 2 \left\langle \operatorname{Re}[E_x E_u^{\star}] \right\rangle$

QU Bolometric Interferometer for Cosmology

J.-Ch. Hamilton - FCPPL Workshop - March 22nd 2012 hamilton@apc.univ-paris7.fr

Quadrupole

Anisotropy

W. Hu

Thomson Scattering

Linear

Polarization

QUBIC

Recent latest CMB measurements

- Pol. detection 2001
 - ★ DASI et CBI (interferometers)
 - ★ WMAP, QUAD, BICEP ...
 ★ Perfect agreement with
 - temperature measurements
 - Correspondance between TT peaks and EE troughs
 - Typical of adiabatic primordial fluctuations (generated by inflation for instance ...)

QU Bolometric Interferometer for Cosmology

[QUAD Collaboration: Arxiv:0906.1003]

J.-Ch. Hamilton - FCPPL Workshop - March 22nd 2012 <u>hamilton@apc.univ-paris7.fr</u>

jeudi 22 mars 2012

QUBIC

Recent latest CMB measurements

- Pol. detection 2001
 - ★ DASI et CBI (interferometers)
 - ★ WMAP, QUAD, BICEP ...
 - Perfect agreement with temperature measurements
 - Correspondance between TT peaks and EE troughs
 - Typical of adiabatic primordial fluctuations (generated by inflation for instance ...)

QU Bolometric Interferometer for Cosmology

[QUAD Collaboration: Arxiv:0906.1003]

J.-Ch. Hamilton - FCPPL Workshop - March 22nd 2012 <u>hamilton@apc.univ-paris7.fr</u>

QUBIC

Inflation

- Phase of accelerated expansion in the Early Universe
- Initially invented to solve some issues in Big-Bang theory
 - ★ Horizon
 - ★ Flatness
 - ★ Monopoles

Predicts the shape of the primordial density perturbations

- \star Seeds for Structure formation
- ★ Gaussianity
- \star Generation of both scalar and tensor perturbations
- Nearly scale invariant power spectrum (spectral index slightly lower than I)

All the models that are fitted to observations (CMB or Large Scale Structure) implicitely assume inflation

★ One would feel more confortable checking this detail ...

QUBIC QU Bolometric Interferometer for Cosmology

Scalar and tensor modes - E & B polarization

Scalar perturbations:

- Density fluctuations
 - Temperature
 - E polarization
 - No B polarization

 $P_s(k) = A_s \left(\frac{k}{k_0}\right)^{\prime}$ $\sigma_{scal}^T \simeq 100 \mu \mathrm{K}$ $\sigma^E_{scal} \simeq 4\mu \mathrm{K}$

Tensor perturbations:

 $P_r(k) = A_t \left(\frac{k}{k_0}\right)$

- Specific prediction from inflation!
 - = Primordial gravitational waves
 - Temperature
 - **E** polarization
 - **B** Polarization

\Rightarrow detect B-modes is :

- Direct detection of tensor modes
- «smoking gun» for inflation
- Measurement of its energy scale

 $\sigma_{tens}^T \leq 30 \mu \mathrm{K}$ $\sigma_{tens}^E \leq 1\mu \mathrm{K}$ $\sigma^B_{tens} \le 0.3 \mu \mathrm{K}$

E and B modes

 $V^{1/4} = 1.06 \times 10^{16} \text{GeV} \left(\frac{r_{\text{CMB}}}{0.01} \right)$

 n_t

QUBIC QU Bolometric Interferometer for Cosmology

Primordial fluctuations: where are we standing ? Inflation predictions

QU Bolometric Interferometer for Cosmology

Primordial fluctuations: where are we standing ? Inflation predictions

QU Bolometric Interferometer for Cosmology

Expected difficulties in the Holy Grail Quest

Sensitivity :

- \star B polarization is at best 10 times weaker than E
- ★ Amplitude could be **very** small ...
- ★ I year of Planck is ~ S/N=1 for T/S=0.01
- ★ A dedicated space mission might not be for tomorrow.

<u>Foregrounds :</u>

- ★ Need to remove them accurately (can't just mask)
 - Multiwavelength detectors
- ★ Observe an ultra-clean region
 - can't be too small as primordial B modes are mainly on large scales

<u>Systematic effects :</u>

- Instrument induces leakage of T into E and B (and T>>E>>B)
 - Cross-polarization and ground pickup are major issues
- \star Atmospheric polarization ...
 - Need for accurate polarization modulation

Possible instruments

Imagers with bolometers:

- ★ No doubt they are nice detectors for CMB:
 - wide band
 - low noise
- Especially true for a satellite (small background)

Interferometers:

- ★ Long history in CMB
 - CMB anisotropies in the late 90s (CAT: Ist detection of subdegrees anisotropies,VSA)
 - CMB polarization Ist detection (DASI, CBI)
- ★ Technology used so far
 - Antennas + HEMTs : higher noise
 - Correlators : hard to scale to large #channels
- ★ Clean systematics:
 - No telescope (lower ground-pickup & cross-polarization)
 - Angular resolution set by receivers geometry (well known)

Can these two nice devices be Bolometric Interferon

QU Bolometric Interferometer for Cosmology

Imaging and Interferometry

P.Timbie

Imager

Visibilites V(u,v)

com

PLWorkshop - March 22nd 2012 n@apc.univ-paris7.fr

A-COM AL WMAP CR ACBAR

Possible instruments

Imagers with bolometers:

- ★ No doubt they are nice detectors for CMB:
 - wide band
 - low noise
- Especially true for a satellite (small background)

Interferometers:

- ★ Long history in CMB
 - CMB anisotropies in the late 90s (CAT: 1st detection of subdegrees anisotropies,VSA)
 - CMB polarization 1st detection (DASI, CBI)
- ★ Technology used so far
 - Antennas + HEMTs : higher noise
 - Correlators : hard to scale to large #channels
- ★ Clean systematics:
 - No telescope (lower ground-pickup & cross-polarization)
 - Angular resolution set by receivers geometry (well known)

Can these two nice devices be combined ? Bolometric Interferometry !

QUBIC QU Bolometric Interferometer for Cosmology

J.-Ch. Hamilton - FCPPL Workshop - March 22nd 2012 <u>hamilton@apc.univ-paris7.fr</u>

Good sensitivity

Good control of systematics

Bot

The QUBIC collaboration

MANCHESTER 1824 he University of Manchester

CSNSI

APC Paris, France IAS Orsay, France CSNSM Orsay, France CESR Toulouse, France Maynooth University, Ireland Universita di Milano-Bicocca, Italy Universita La Sapienza, Roma, Italy University of Manchester, UK Richmond University, USA Brown University, USA University of Wisconsin, USA

E. Battistelli^e, A. Baú^f, D. Bennett¹, L. Bergé^c, J.-Ph. Bernard^b, P. de Bernardis^e, G. Bordier^a, A. Bounab^b, É. Bréelle^a, E.F. Bunn^j, M. Calvo^e, R. Charlassier^a, S. Collin^c, A. Coppolecchia^e, A. Cruciani^e, G. Curran¹, M. de Petris^e, L. Dumoulin^c, A. Gaultⁱ, M. Gervasi^f, A. Ghribi^a, M. Giard^b, C. Giordano^e, Y. Giraud-Héraud^a, M. Gradziel¹, L. Guglielmi^a, J.-Ch. Hamilton^{a,*}, V. Haynes^g, J. Kaplan^a, A. Korotkov^h, J. Landé^b, B. Maffei^g, M. Maiello^m, S. Malu^k, S. Marnieros^c, J. Martino^a, S. Masi^e, A. Murphy¹, F. Nati^e, C. O'Sullivan¹, F. Pajot^d, A. Passerini^f, S. Peterzen^e, F. Piacentini^e, M. Piat^a, L. Piccirillo^g, G. Pisano^g, G. Polenta^{e,n,o}, D. Prêle^a, D. Romano^e, C. Rosset^a, M. Salatino^e, A. Schillaci^e, G. Sironi^f, R. Sordini^e, S. Spinelli^f, A. Tartari^f, P. Timbieⁱ, G. Tucker^h, L. Vibert^d, F. Voisin^a, R.A. Watson^g, M. Zannoni^f, The QUBIC collaboration

arXiv:1010.0645 ~ Astroparticle Physics 34 (2011) 705-71

QUBIC QU Bolometric Interferometer for Cosmology

J.-Ch. Hamilton - FCPPL Workshop - March 22nd 2012 <u>hamilton@apc.univ-paris7.fr</u>

X polarization bolometer array (~30x30)

Sky ~40 cm

array (~30x30)

QU Bolometric Interferometer for Cosmology

J.-Ch. Hamilton - FCPPL Workshop - March 22nd 2012 <u>hamilton@apc.univ-paris7.fr</u>

~40 cm Sky

J.-Ch. Hamilton - FCPPL Workshop - March 22nd 2012 <u>hamilton@apc.univ-paris7.fr</u>

~40 cm Sky

J.-Ch. Hamilton - FCPPL Workshop - March 22nd 2012 <u>hamilton@apc.univ-paris7.fr</u>

~40 cm Sky

QU Bolometric Interferometer for Cosmology

J.-Ch. Hamilton - FCPPL Workshop - March 22nd 2012 <u>hamilton@apc.univ-paris7.fr</u>

fringes successfuly observed with MBI-4 [Timbie et al. 2006]

~40 cm Sky

Horns and baselines

Primary horns array

Fourier plane coverage

150 GHz, 20x20 horns, 14 deg. FWHM, D=1.2 cm

QUBIC QU Bolometric Interferometer for Cosmology

J.-Ch. Hamilton - FCPPL Workshop - March 22nd 2012 <u>hamilton@apc.univ-paris7.fr</u>

Horns and baselines

Primary horns array

Fourier plane coverage

150 GHz, 20x20 horns, 14 deg. FWHM, D=1.2 cm

QUBIC QU Bolometric Interferometer for Cosmology

J.-Ch. Hamilton - FCPPL Workshop - March 22nd 2012 hamilton@apc.univ-paris7.fr

Horns and baselines

Primary horns array

Fourier plane coverage

150 GHz, 20x20 horns, 14 deg. FWHM, D=1.2 cm

QUBIC QU Bolometric Interferometer for Cosmology

J.-Ch. Hamilton - FCPPL Workshop - March 22nd 2012 hamilton@apc.univ-paris7.fr

Signal in QUBIC

Signal on bolometer d_P (HWP modulation) :

 $R(\vec{d_p}, t) = S_I(\vec{d_p}) \pm \cos(4\omega t)S_Q(\vec{d_p}) \pm \sin(4\omega t)S_U(\vec{d_p})$

+ for X focal plane- for Y focal plane

where S_X is the «synthesized image» : our observable

- FFT of visibilities in traditional interferometry
- Sky convolved with the «synthetic beam»

 $S_X(\vec{d_p}) = \int X(\vec{n}) B_s^p(\vec{n}) \mathrm{d}\vec{n}$

Synthetic beam formed by the set of baselines

★ (x_i = locations of primary horns, D_f = focal length of the combiner) $B_s^p(\vec{n}) = B_{\text{prim}}(\vec{n}) \int \int B_{\text{sec}}(\vec{d}) \times \left| \sum_i \exp\left[i2\pi \frac{\vec{x}_i}{\lambda} \cdot \left(\frac{d}{D_f} - \vec{n}\right)\right] \right|^2 J(\vec{\nu}) \Theta(\vec{d} - \vec{d}_p) d\nu d\vec{d}$

QUBIC QU Bolometric Interferometer for Cosmology

Signal in QUBIC

Signal on bolometer d_P (HWP modulation) :

 $R(\vec{d_p}, t) = S_I(\vec{d_p}) \pm \cos(4\omega t)S_Q(\vec{d_p}) \pm \sin(4\omega t)S_U(\vec{d_p})$

+ for X focal plane- for Y focal plane

where S_X is the «synthesized image» : our observable

- FFT of visibilities in traditional interferometry
- Sky convolved with the «synthetic beam»

 $S_X(\vec{d_p}) = \int X(\vec{n}) B_s^p(\vec{n}) \mathrm{d}\vec{n}$

Synthetic beam formed by the set of baselines

★ (x_i = locations of primary horns, D_f = focal length of the combiner) $B_s^p(\vec{n}) = B_{\text{prim}}(\vec{n}) \int \int B_{\text{sec}}(\vec{d}) \times \left| \sum_i \exp\left[i2\pi \frac{\vec{x}_i}{\lambda} \cdot \left(\frac{d}{D_f} - \vec{n}\right)\right] \right|^2 J(\vec{\nu}) \Theta(\vec{d} - \vec{d}_p) d\nu d\vec{d}$

QUBIC is an imager where the pupil has been filled with holes in order to filter the sky in Fourier space

An imager with the synthesized beam

↔ An interferometer performing direct synthesis imaging

QUBIC QU Bolometric Interferometer for Cosmology

QUBIC QU Bolometric Interferometer for Cosmology

J.-Ch. Hamilton - FCPPL Workshop - March 22nd 2012 <u>hamilton@apc.univ-paris7.fr</u>

QUBIC QU Bolometric Interferometer for Cosmology

J.-Ch. Hamilton - FCPPL Workshop - March 22nd 2012 <u>hamilton@apc.univ-paris7.fr</u>

QUBIC QU Bolometric Interferometer for Cosmology

J.-Ch. Hamilton - FCPPL Workshop - March 22nd 2012 <u>hamilton@apc.univ-paris7.fr</u>

Single detector beam - 400 horns 25% BW - 3 mm detectors

0.0 (0.0, 90.0) Galactic

(0.0, 90.0) Galactic

J.-Ch. Hamilton - FCPPL Workshop - March 22nd 2012 <u>hamilton@apc.univ-paris7.fr</u>

Unique possibility to handle systematic errors

- Use horn array redundancy to calibrate systematics
 - In a perfect instrument redundant baselines should see the same signal
 - Differences due to systematics
 - Allow to fit systematics with an external source on the field
- Unique specificity of Bolometric Interferometry !

★ Example: exact horns locations (figure exagerated !!)

QUBIC QU Bolometric Interferometer for Cosmology

Unique possibility to handle systematic errors

- Use horn array redundancy to calibrate systematics
 - In a perfect instrument redundant baselines should see the same signal
 - Differences due to systematics
 - Allow to fit systematics with an external source on the field
- Unique specificity of Bolometric Interferometry !

Example: exact horns locations (figure exagerated !!)

QU Bolometric Interferometer for Cosmology

Unique possibility to handle systematic errors

- Use horn array redundancy to calibrate systematics
 - In a perfect instrument redundant baselines should see the same signal
 - Differences due to systematics
 - Allow to fit systematics with an external source on the field
- Unique specificity of Bolometric Interferometry !

Example: exact horns locations (figure exagerated !!)

QU Bolometric Interferometer for Cosmology

Redundant baselines : same Fourier Mode

Unique possibility to handle systematic errors

- Use horn array redundancy to calibrate systematics
 - In a perfect instrument redundant baselines should see the same signal
 - Differences due to systematics

QU Bolometric Interferometer for Cosmology

- Allow to fit systematics with an external source on the field
- Unique specificity of Bolometric Interferometry !

Example: exact horns locations (figure exagerated !!)

jeudi 22 mars 2012

Unique possibility to handle systematic errors

- Use horn array redundancy to calibrate systematics
 - In a perfect instrument redundant baselines should see the same signal
 - Differences due to systematics
 - Allow to fit systematics with an external source on the field
- Unique specificity of Bolometric Interferometry !

Example: exact horns locations (figure exagerated !!)

same Fourier Mode

	RMS before	RMS after
Horns location	0.072	0.011
Individual beams	0.090	0.005
TES Intercalibration	0.029	0.007
	•••	•••

QU Bolometric Interferometer for Cosmology

QUBIC timeline

- 2012: Partially funded by french ANR
 - Construction starts for the 1st module
 - 400 horns 150 GHz 2048 TES bolometers
- 2013: Integration of the 1st module at APC
- 2014: First light at Dôme C, Antarctica
 ★ Data taking : one to two years with one module
- 2015...: Full QUBIC construction
 ★ 6 modules at 90, 150 and 250 GHz

QUBIC QU Bolometric Interferometer for Cosmology

B-mode sensitivity

J.-Ch. Hamilton - FCPPL Workshop - March 22nd 2012 <u>hamilton@apc.univ-paris7.fr</u>

tensor/scalar ratio sensitivity

hamilton@apc.univ-paris7.fr

jeudi 22 mars 2012

QU Bolometric Interferometer for Cosmology

Summary

• QUBIC is a novel instrumental concept

- ★ Dedicated to CMB polarimetry and inflationary physics
- ★ High sensitivity with TES bolometers
- ★ Interferometer optimized to handle systematics (self calibration)
- ★ Target : r < 0.01 at 90% C.L. in one year

• New collaborators welcome !!

- \star Some aspects still need to be covered for the 1st module
 - Telescope Alt-Az-Phi Mount
 - In-the-Field Calibration setup (balloon or tower)
- ★ Dome A site would as good as Dome C for future modules
- ★ Huge need for data analysis and simulations
 - Map-making significantly different from classical imagers
 - Power spectrum extraction, E/B separation
 - Foregrounds removal
 - Nice opportunity to get involved in such a hot topic

QUBIC QU Bolometric Interferometer for Cosmology

谢谢

Thank you ...

QUBIC QU Bolometric Interferometer for Cosmology

J.-Ch. Hamilton - FCPPL Workshop - March 22nd 2012 <u>hamilton@apc.univ-paris7.fr</u>