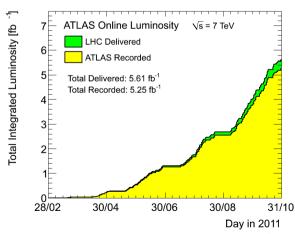
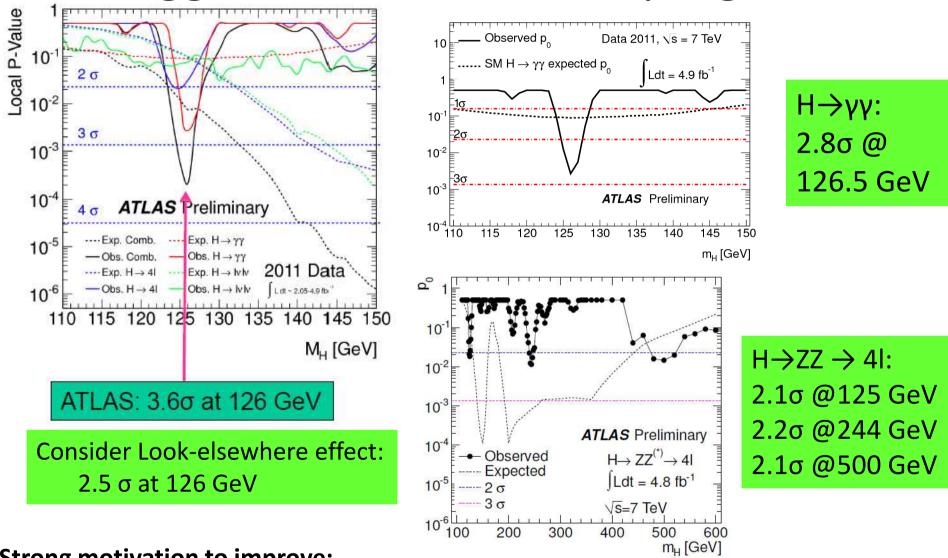


φ Inter Calibration on Photon Energy with ATLAS Detector

Liwen Yao

Supervisors: B. Laforge(LPNHE), S. Jin(IHEP)
On behalf of LPNHE group and IHEP Group
21/03/2012




Atlas Experiment on LHC

- In the year of 2011, LHC delivered 5.61 fb-1 of data from pp collisions at vs = 7 TeV, and 5 fb-1 is recorded by ATLAS
- More than 10 million single photons and electrons could be selected respectively.
- Over a million Z candidates are used within the di-electron mass window [80,100] GeV

Higgs Search and recent progress

Strong motivation to improve:

- H \rightarrow $\gamma\gamma$ -- Need for the best intercalibration of photons ($p_{t,V}>25GeV$)
- H \rightarrow ZZ \rightarrow 4l -- Need for the best intercal ibration of electrons ($p_{t,e} > 10 GeV$)

LAr calorimeter of ATLAS detector

Semiconductor tracker

Barrel: $|\eta| < 1.37$

Endcap : $1.52 < |\eta| < 3.2$

Theoretically, physics is ϕ -symmetric at a given η ,

Which could be reflected by the same energy distribution of each (η_{fixed}, φ) bin.

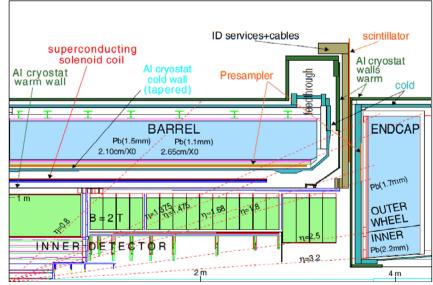
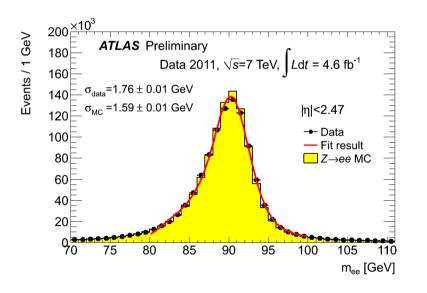
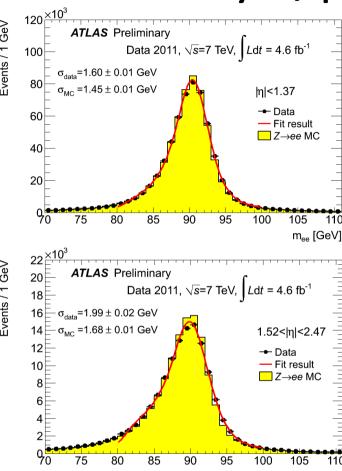




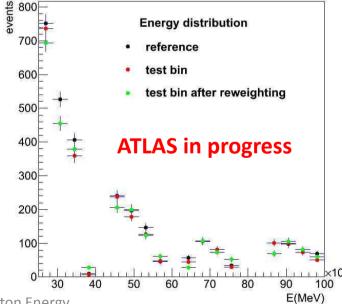
Figure 4-i Longitudinal view of a quadrant of the ATLAS EM Calorimeter

calibration of LAr calorimeter by e/γ

For electron calibration, particles are selected from Z→ee events, which have a high purity.

For photon calibration, since photon and electron have similar shower shapes in calorimeter, extrapolation from $Z\rightarrow$ ee of MC is considered, with cross check with $Z\rightarrow$ Ily

Φ Inter Calibration Method (1)

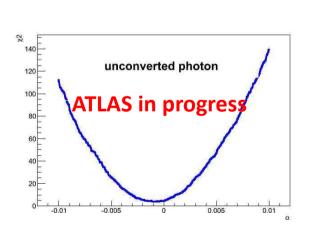

- The method is based on the expectation that energy distributions of a given particle in all ϕ bins to be the same when η is given.
- It is performed by comparing:
 - **test**: the distribution of total energy deposited in one φ bin *the energy is reweighted by the function :*

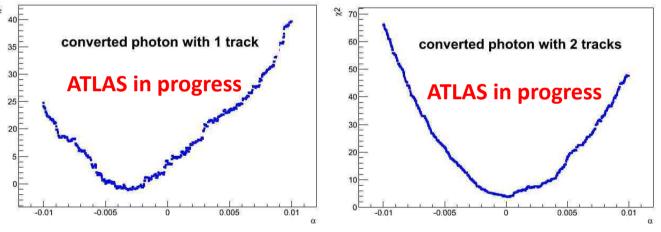
$$E' = E/(1+\alpha)$$

- reference: the mean distribution of total energy collected

from all ϕ at the same η $\,$ bin

An example from one (η, φ) bin: The energy distribution of reference, test bin and the one after reweighting


Φ Inter Calibration Method (2)


• the best α is chosen by looking at the $\chi 2$ distribution obtained from the comparison of the two spectra

$$\chi^{2} = \sum_{i}^{Nbins} \frac{(N_{test,i} - N_{ref,i})^{2}}{\sigma_{test,i}^{2} + \sigma_{ref,i}^{2}}$$

 $N_{test,i}$: γ ,e number in ith bin of the energy distribution histogram at given ϕ bin at fixed η bin $N_{ref,i}$: γ ,e number in ith bin of the energy distribution histogram at fixed η bin with global ϕ

 $\sigma_{test,i}$: the error of $N_{test,i} \approx \sigma_{ref,i}$: the error of $N_{ref,i} \approx 0.05$

An example of $\chi 2(\alpha)$ in one (η, φ) bin from three kinds of photons

conclusion

- calibration of photons and electrons is very important for the final physics results expected this summer.
- The work done in ATLAS calibration group during spring will be public in a few weeks .
- The inter calibration method that we have developed also applies to electrons and should improve the electron in situ calibration used in coordination with the usual Z->ee peak calibration. This will improve the EM scale global uncertainty.

Let's wait for summer result $(\cap_{-}\cap)$