High Precision Tracking based on CMOS Pixel Sensors

M. Winter (PICSEL team of IPHC-Strasbourg) Partnership between IPHC-Strasbourg & IHEP-Beijing

CEA - 23 March 2012

Contents

- Basic features of CMOS sensors :
 - * general remarks on highly pixelated and thin sensors
 - * generic aspects of existing MIMOSA sensors
- Project topic :
 - * BESIII Main Drift Chamber characteristics
 - * Potential added-value of CMOS pixel sensors to cope with lumi increase
 - * Development actions: CMOS sensors, ultra-light ladders
- Summary

CMOS Pixel Sensors: State of the Art

- Prominent features of CMOS pixel sensors:
 - * high granularity \Rightarrow excellent (micronic) spatial resolution
 - * very thin (signal generated in 10-20 μm thin epitaxial layer)
 - * signal processing μ -circuits integrated on sensor substrate
 - \Rightarrow impact on downstream electronics (\Rightarrow cost)

- Organisation of MIMOSA sensors:
 - * manufactured in 0.35 μm OPTO process
 - * signal sensing and analog processing in pixel array
 - * mixed and digital circuitry integrated in chip periphery
 - * read-out in rolling shutter mode
 - (pixels grouped in columns read out in //)
 - \Rightarrow impact on power consumption

CMOS Pixel Sensors: Established Architecture

- Main characteristics of MIMOSA sensor equipping EUDET BT:
 - * 0.35 μm process with high-resistivity epitaxial layer (coll. with IRFU/Saclay)
 - * column // architecture with in-pixel amplification (cDS) and end-of-column discrimination, followed by \emptyset
 - * binary charge encoding
 - * active area: 1152 columns of 576 pixels ($21.2 \times 10.6 \text{ mm}^2$)
 - st pitch: 18.4 $\mu m
 ightarrow$ \sim 0.7 million pixels
 - $Descript{charge sharing} \Rightarrow \sigma_{sp} \sim$ 3.-3.5 μm
 - * $t_{r.o.} \lesssim 100 \ \mu s$ (~10⁴ frames/s) suited to >10⁶ part./cm²/s
 - * JTAG programmable
 - * rolling shutter architecture
 - \Rightarrow full sensitive area dissipation \cong 1 row
 - $ho~\sim$ 250 mW/cm 2 power consumption (fct of N $_{col}$)

 - * various appli. : VD demonstr., NA63, oncotherapy, dosimetry, ...

State-of-the-Art: MIMOSA-28 for the STAR-PXL

- Main characteristics of ULTIMATE (\equiv MIMOSA-28):
 - * 0.35 μm process with high-resistivity epitaxial layer
 - * column // architecture with in-pixel cDS & amplification
 - * end-of-column discrimination & binary charge encoding
 - * on-chip zero-suppression
 - * active area: 960 colums of 928 pixels (19.9 \times 19.2 mm²)
 - st pitch: 20.7 $\mu m
 ightarrow$ \sim 0.9 million pixels
 - \hookrightarrow charge sharing $\Rightarrow~\sigma_{sp}\gtrsim$ 3.5 μm
 - * JTAG programmable
 - * t_{r.o.} \leq 200 μs (\sim 5×10³ frames/s) \Rightarrow suited to >10⁶ part./cm²/s
 - * 2 outputs at 160 MHz
 - $* \lesssim$ 150 mW/cm² power consumption
- $\triangleright \triangleright \triangleright$ Sensor almost fully evaluated : (50 μm thin)
 - * N \leq 15 e⁻ ENC at 30-35^oC (as MIMOSA-22AHR)
 - * CCE (55 Fe) similar to MIMOSA-22AHR
 - $-\infty$ Ionising rad. tolerance validated (150 kRad at 30 $^{\circ}$ C)
 - $-\circ$ NI rad. tol. validated for $3 \cdot 10^{12} n_{eq}/cm^2$ at $30^{\circ}C$
- **DDD** Start of data taking early 2013

Mimosa 28 - epi 20 um - NC

FCPPL Project Perspectives

Problematics addressed :

Future of **BESIII** Central Tracker

- BEPC-2 accelerator at IHEP
 is steadily increasing luminosity
- Will the beam-related background start deteriorating the detection efficiency of the BESIII central tracker ?

- $\triangleright \triangleright \triangleright$ Could pixelated layers make the risk fade away ?
 - * IHEP-IPHC discussions going on since a few years exploring the question
 - \hookrightarrow 4 face-to-face meetings in the last 2 years & 2 seminars at IHEP & IHPC
 - * IPHC orienting its CMOS pixel sensor R&D towards large & thin tracker applications
 - * IHEP membres (2x2 people/week) testing CMOS pixels at IPHC
 - \hookrightarrow CMOS sensor being tested IHEP since \sim 1 year

The BESIII Experiment

Installed at BEPC-2 e⁺e⁻ collider:

★ E_{cm} = 2-4.6 GeV (tau-charm factory > 10 × L_{CESR})
★ L_{peak} ~ 10³³/cm²/s (2×1.89 GeV)
↔ 0.65·10³³/cm²/s already achieved

- * horizontal crossing angle = \pm 11 mrad
- Central tracker \equiv (Main) Drift Chamber \equiv MDC:
 - st Radiii : 59 810 mm st Maximal length \sim 2.6 m
 - * Conical end-caps to allow moving final focus quads near IP
 - * 43 wire layers : \sim 22.10³ field wires & 7.10³ sensing wires
 - * 1 T experimental solenoidal field
- MDC nominal performances:

* average momentum in most final states $\sim 300 \text{ MeV/c}$ $\hookrightarrow \sigma_{R\phi} \lesssim 130 \ \mu m \Rightarrow \Delta p/p \simeq 0.5\% \text{ at 1 GeV/c}$ * wire stereo angles (-3.4°, +3.9°) $\mapsto \sigma_Z^{IP} \simeq 2 \text{ mm}$

Ref: NIM A 614 (2010) pp 345-399

A Pixelated Upgrade of the MDC

- Goal of the project:
 - 3 innermost wire layers may be saturated at the higest machine luminosity
 - ⇒ replace with pixel sensors to cope with beam related background (e.g. $\gamma_{synch.}$)
 - $\, \ast \,$ total surface to cover \sim 1-2 ${\rm m}^2$
 - * single point resolution is not an issue : $\sigma_{sp}\gtrsim$ 10 μm all right
 - * particle rate is not an issue :
 - t_{int} \sim 100 μs all right

- Adapting CPS to tracker requirements raises 3 challenges:
 - $\, \ast \,$ keep \sim 100 % detection efficiency with large pixels
 - * keep power consumption low enough despite large area (> 1 m²)
 - * keep material budget compatible with $\Delta p/p \simeq$ 0.5% at 1 GeV/c

Adapting CPS to the MDC Inner Cells

- Sensing system :
 - st develop sensing system for pixels of 64imes64 to 80imes80 μm^2
 - \hookrightarrow avoid det. efficiency losses for impacts far from sensing diodes
 - * optimise the number and the size of the diodes
 - \hookrightarrow alleviate "capacitive" noise increase
 - * MIMOSA-29:
 - $-\!\circ$ pixels of 16, 32, 48, 64imes64 & 20, 40, 80imes80 μm^2
 - -- 1, 2 or 4 sensing diodes (2 sizes)
 - ---- some amplification variants
 - $-\infty$ fabricated in 2011 \Rightarrow tests under way
- Next steps: continue improving the low noise pixel design
 - * optimise balance between number and noise of sensing diodes
 - * minimise power consumption
 - * watch material budget (i.e. flex cable complexity, cooling, ...)
 - \Rightarrow MIMOSA-22THR (0.18 μm process)
 - to be fabricated in Q3-2012

Ultra-light 2-Sided Ladder

- 50 μm thin sensors mounted on 2-sided ladders:
 - * $PLUME \equiv Pixelated Ladder with Ultra-Light Material Embedding$
 - * prototype \equiv 6 MIMO-26 mounted on each side of mech. support
 - * mech. support \equiv 2 mm thick, low density, SiC foam
 - times total material budget of 2011 proto: \sim 0.6 % X $_0$

PLUME prototype-2010 tested at SPS in Nov. 2011:

- * Beam telescope: 2 arms, each made of 2 MIMO-26 sensors
- * CERN-SPS beam : \gtrsim 100 GeV " π^- "
- st BT (track extrapolation) resolution on DUT : \sim 1.8 μm
- * PLUME perpendicular & inclined (\sim 36 $^{\circ}$) wrt beam
- * Prelim. results on combined impact & pointing resolution

• Next steps

- * Next PLUME version (0.35 % X_0) under construction
- * Tests foreseen at CERN-SPS in Dec.'12 or DESY early '13
- * Alignment studies based on multi-ladder/layers set-up in 2014/15 (EU project AIDA)

SUMMARY

- IHEP-IHPC partnership studies the possibility of enhancing the capability of BESIII to face the highest luminosities achievable at BEPC-2
- Study addresses the possibility of complementing Main Drift Chambre :
 - st with 3 layers of 50 μm thin CMOS pixel sensors based on the architecture developed at IPHC
 - * layers may be double-sided, exploiting the concept developed within the PLUME collaboration
- Next steps :
 - * IHEP continues exploring added-value of CMOS pixel sensors
 - * IPHC continues prototyping large pitch sensors and ultra-light ladders
 - * Discussions aiming at final evaluation through 2012
- Partnership benefits from/to global effort towards pixelated large area trackers

 \hookrightarrow ALICE, ILC, ...