

Muon Final State Radiation

Meng Xiao CEA-Saclay

FCPPL 21/03/2012

Outline

- Past works
 - MET muon term optimization
 - Muon-jet overlap issue
 - fake muon study
- Study of Final State Radiation in the Z/Drell-Yan muon channel
 - Data/MC comparisons
 - FSR tool efficiciency and purity
 - Impact on Z mass
 - Muon Isolation
 - Effect of the FSR on the calorimeter and track muon isolation
- Effect of the FSR on $H{\rightarrow}4\mu$

• Summary

Final State Radiation in Z/DY->µµ

- Final State Radiation (FSR) affects the shape of the di-muon mass spectrum, as well as the signal acceptance
- Motivation of the study :
 - Check if the FSR are well modelled in MC using both pythia and Alpgen
 - Verify how well the FSR tool is describing the data/MC

(details about FSR tool can be found in https:// indico.cern.ch/contributionDisplay.py? contribId=7&confId=155819)

3. Check the effect of the FSR on the muon resolution and muon isolation calculation

FSR tool

- It provides FSR photon candidates around a given muon. This algorithm is developed by S. Paganis, T.C. Donszelmann and D.Xu.
- The tool can be used at the AOD et D3PD level.
- More information can be found at <u>https://twiki.cern.ch/twiki/bin/viewauth/Atlas/FSRStudy</u>
- The candidates are required to be inside a ΔR cone around the muon, passing Et cut and f1 cut. (f1= fraction of energy in first calorimeter layer)
- The Fsr candidates can come from three categories:

 TopoSeededPhotons when Et<=10GeV;
 Standard Egamma Photons when Et>10GeV;
 Standard Egamma Electrons when Et>10GeV.
- The three input variables are (ΔR , Et, f1>0.15)

FSR in data/MC : $\Delta R_{v,u}$

lrfu

Blue: photon is true muon (mainly photons reconstructed as electrons and linked to truth muon because sharing the same ID track)

inmatcher

FSR from Z

0.45 0.5

 $\Delta R(\mu,\gamma)$

0.45 0.5

 $\Delta R(\mu,\gamma)$

natched

FSR from Z

- Yellow: photon from FSR (true photon, parent Z)
- Red: photon from underlying events(true photon, no parent or parent other than Z)
- Green: pile-up or misidentified object (no corresponding truth particle)

Purity of FSR candidates

lrfu

saclay

- Purity definition = True FSR Photon/ All photons found by the tool
- High purity can be achieved for with $\Delta R_{\nu,\mu} < 0.1$ and $E_{\tau_{\nu}} > 3 GeV$

FSR tool efficiency

- (Left)Efficiency definition = FSR candidate (with a given pt, ΔR cuts) normalized to truth FSR photon with pt>3, without any truth ΔR cut.
- (Right)Efficiency definition = FSR candidate (within a given pt range, ΔR cut) normalized to truth FSR photon within the given pt range, without any truth ΔR cut.

Effect of FSR on Calorimeter Isolation after applying Track Isolation

- The Calo isolation is shown after applying the track isolation (ptcone30/pt < 0.14)
- The dip is well modelled by MC
- The loss in efficiency is reduced to (~10%) below Z peak caused by FSR

FSR effects on H->41 signal and background

	Signal (130)	ZZ	Zmumubb	Zmumujet	Ttbar	data
Z1_mass	1,00501	1,00054	0,998293	1	1,10629	1,155
Z2_mass	1,00312	1,00144	0,98777	1	1,16845	1,141
DeltaR	1,00314	1,00142	0,994245	1	1,11873	1,0588
track_iso	1,0032	1,00123	1,00162		1	1
calo_iso	1,0001	1,00011	1,00178		1	1
d0_sig	1,00011	1,00015	1,00419		1	1

	128-132 GeV	125-135 GeV	120-140 GeV
S/VB default	1,5255	1,3713	1,0101
S/VB adding FSR	1,5290	1,3744	1,0112

- The numbers in the first table are the ratio between results before and after adding FSR
- Small effect on the final significance

Summary

- Good data/MC agreement is obtained using FSR tool
- Adding the FSR improves the Z mass
- The calorimeter isolation affects the Drell-Yan spectra
- FSR has small impact on H->4mu result in low mass region

- The Fsr candidates can come from three categories:
- i) TopoSeededPhotons when Et<=10GeV;
- ii) Standard Egamma Photons when Et>10GeV;
- iii) Standard Egamma Electrons when Et>10GeV.

data dR<0.2

ItoK

Μ

dR<0.5

staco cb cb

Muid cb cb

unmatched

underlying event

underlying event

Data staco, cb

Data muid, cb