

B_c studies at LHCb

Jibo HE (on behalf of the LAL-Tsinghua collaboration)

LAL, Orsay

5th FCPPL Workshop @ Orsay/Saclay, 22/03/2012

Jibo HE (LAL, Orsay)

Bc studies at LHCb

5th FCPPL Workshop 1 / 23

LAL-Tsinghua collaboration

- Collaboration between the LHCb groups of LAL (Orsay) and Tsinghua University (Beijing) started end of 2004, support from FCPPL in 2007
- Collaboration members (status now)
 - LAL
 - * Marie-Hélène SCHUNE
 - Patrick ROBBE
 - ★ Jibo HE (Post-doc)
 - Tsinghua
 - ★ Yuanning GAO
 - ★ ZhenWei YANG
 - * Bo LIU (PhD student, to defend in June 2012), visited LAL in 2011, supported by CSC (China Scholarship Council)
- Former members
 - Wenbin QIAN, joint PhD student, defended in Sept 2010
- Supported / backed up by theorists from China and France

3 N K 3 N

Topics and outputs

- Topics
 - Early physics: J/ψ production
 - B_c physics, main focus now
- Journal papers
 - Measurement of the B^{\pm} production cross-section in *pp* collisions at $\sqrt{s} = 7$ TeV
 - arXiv:1202.4812, to appear in JHEP
 - Measurement of J/ψ production in pp collisions at √s = 7 TeV EPJC 71, 1645 (2011)
 - Experimental prospects of the B_c studies of the LHCb experiment CPL 27, 061302 (2010)
 - Nonleptonic charmless B_c decays and their search at LHCb with S. Descotes-Genon (LPT, Orsay) and E. Kou (LAL) PRD 80, 114031 (2009)

< ロ > < 同 > < 回 > < 回 > < 回 >

Topics and outputs (cont.)

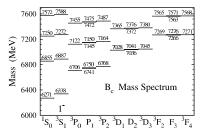
• Conference talks in 2011 (on behalf of the LHCb collaboration)

- B_c studies at LHCb
 J. He on QWG 2011, Darmstadt, Germany
- J/ψ production studies in LHCb P. Robbe on Quarkonium Production: Probing QCD at the LHC, Vienna, Austria
- Results on charmonium and charmonium-like production from the LHC
 Y. Gao on HADRON 2011, Munich, Germany
- Exotic spectroscopy and quarkonia at LHCb
 B. Liu on HADRON 2011, Munich, Germany
- J/ψ and B[±]_c production at LHCb
 J. He on BEAUTY 2011, Amsterdam, Netherlands

B_c spectrum

- B_c : Mesons formed by two different heavy flavor quarks, the \bar{b} quark and the c quark *
 - Unique in the Standard Model because the top quark is too heavy and decays before forming any bound states
- B_c spectrum
 - Estimated using potential models
- B_c^+ mass
 - Potential models: 6.2-6.4 GeV/c²

[CERN-2005-005], and refs. therein

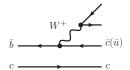

pQCD: 6326⁺²⁹₋₉ MeV/c²

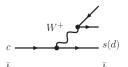
N. Brambilla & A. Vairo, [PRD 62, 094019 (2000)]

Lattice QCD: 6278(6)(4) MeV/c²

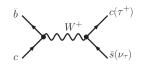
TWQCD, [arXiv:0704.3495]

PDG'10: 6277 ± 6 MeV/c²




*Charge conjugates implied in this presentation Jibo HE (LAL, Orsav) B_c studies at LHCb

5th FCPPL Workshop 5 / 23


B_c decays

- *B_c* mesons' decays
 - Excited states (below *BD* threshold), decay through the Strong or EM interactions into *B*⁺_c
 - Ground state B⁺_c: decay only weakly
- B_c^+ decay modes
 - $ar{b}
 ightarrow ar{c} W^+$ (~ 20%), e.g., $J\!/\psi \pi^+$, $J\!/\psi \ell^+ v_\ell$
 - $c \rightarrow sW^+$ (~70%), e.g., $B_s^0 \pi^+$, $B_s^0 \ell^+ v_\ell$
 - $c\bar{b}
 ightarrow W^+$ (~ 10%), e.g., $ar{K}^{*0}K^+$, $au^+ v_{ au}$
- B_c^+ lifetime predictions
 - Inclusive rates or ∑(exclusive rates)
 - $au(B_c^+)_{
 m SR} = 0.48 \pm 0.05$ ps
 - V. V. Kiselev, et. al, [NPB 585, 353 (2000)]
 - ▶ PDG'10: 0.45±0.04 ps

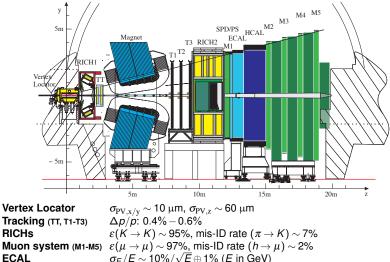
B_c production

- *B_c* production
 - Difficult to generate at e⁺e⁻ colliders
 - At hadron colliders, B_c generated mainly through $gg \rightarrow B_c + b + \bar{c}$
- B_c^+ production rate
 - Theoretical prediction C.-H.Chang, et al., [PRD 71, 074012 (2005)]

	b
A CON	c c
	τ _c
Coor >	b

-

				-				
-	$ ({}^{1}S_{0})_{1}\rangle$	$ ({}^{3}S_{1})_{1}\rangle$	$ (^1S_0)_{8}g\rangle$	$ (^3S_1)_8g\rangle$	$ (^{1}P_{1})_{1}\rangle$	$ (^{3}P_{0})_{1}\rangle$	$ (^{3}P_{1})_{1}\rangle$	$ (^{3}P_{2})_{1}\rangle$
LHC [†]	71.1	177.	(0.357, 3.21)	(1.58, 14.2)	9.12	3.29	7.38	20.4
TEVATRON	5.50	13.4	(0.0284, 0.256)	(0.129, 1.16)	0.655	0.256	0.560	1.35


- * $\sigma({}^3S_1)/\sigma({}^1S_0) \sim 2.5$
- * Color octets and 1st P-wave contributions are small
- * $\sigma(B_c^+)_{
 m LHC}/\sigma(B_c^+)_{
 m Tevatron} \sim O(10)$
- $\sigma(2S)/\sigma(1S)$ would be $|R_{2S}(0)/R_{1S}(0)|^2 \approx 0.6$
- Considering the contributions of the decays of these states, $\sigma(B_c^+) \sim 0.9 \ \mu b$ for $\sqrt{s} = 14$ TeV; or $\sim 0.4 \ \mu b$ for $\sqrt{s} = 7$ TeV

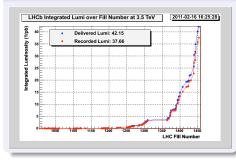
 $^{\dagger}\sqrt{s} = 14 \text{ TeV}$

< ロ > < 同 > < 回 > < 回 > < 回 >

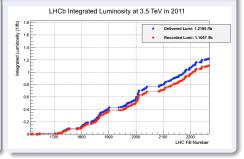
The LHCb experiment

• Forward spectrometer (2 < η < 5) to study heavy-quark physics

- $\sigma_E/E\sim 10\%/\sqrt{E}\oplus 1\%$ (*E* in GeV) $\sigma_F/E\sim 70\%/\sqrt{E}\oplus 10\%$ (*E* in GeV)_
- Jibo HE (LAL, Orsay)


HCAL

The LHCb data flow

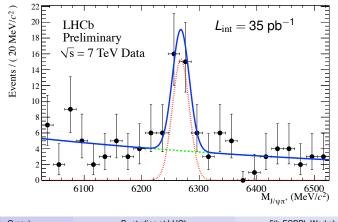

- $L \sim 3 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$, cross-sections @ $\sqrt{s} = 7 \text{ TeV}$ $\sigma_{pp}^{\text{inel}} \sim 60 \text{ mb}$ $\sigma(pp \rightarrow c\bar{c}X) \sim 6 \text{ mb}$ $\sigma(pp \rightarrow b\bar{b}X) \sim 0.3 \text{ mb, c.f. } \sigma(e^+e^- \rightarrow b\bar{b}) \sim 1 \text{ nb} @ \Upsilon(4S)$ $\sigma(pp \rightarrow J/\psi X) \sim 0.06 \text{ mb}$ • Data flow LHCb detector $\xrightarrow{\sim 10 \text{ MHz}}$ L0 $\xrightarrow{\sim 1 \text{ MHz}}$ HLT1 $\xrightarrow{\sim 30 \text{ KHz}}$ HLT2 $\xrightarrow{\sim 3 \text{ KHz}}$ Storage (Raw Data)
 - $\longrightarrow \fbox{Stripping} \xrightarrow{10\%} (\mu) DST \longrightarrow Physics analysis$
- Hardware Trigger, Level-0
 - Based on information from the calorimeter and muon systems
- Software Trigger, High Level Trigger (HLT)
 - Full event reconstruction
 - $\blacktriangleright\,$ Runs ${\sim}26$ K processes, ${\sim}\,20$ ms/event per process
- Stripping, also referred as HLT3
 - Pre-selections of all decay channels under study

The LHCb data-taking

2010 (37 pb⁻¹ recorded)

2011 (1.1 fb⁻¹ recorded)

- 2010 data
 - B⁺_c mass and production
 - B⁺ production

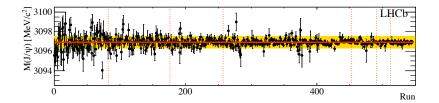

- 2011 data (ongoing analysis)
 - B_c^+ mass, production and lifetime

< ロ > < 同 > < 回 > < 回 > < 回 >

- $B_c^+
 ightarrow J/\psi K^+, \, B_c^+
 ightarrow \psi(2S)\pi^+$
- $B_c^+ \rightarrow B_s^0 \pi^+$
- b-hadrons production

B_c^+ mass measurement

- $\bullet\,$ Based on $\sim 35\ \text{pb}^{-1}$ of data collected in 2010
- Cut based selection. Signal yield, 28 ± 7
- Fit Model
 - Signal: Gaussian
 - Background: Exponential

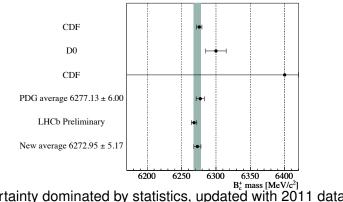

11/23

CERN-LHCb-CONF-2011-027

B_c^+ mass measurement, momentum scale calibration

PLB 708 (2012) 241

- Momentum scale calibrated using large sample of $J/\psi(\mu^+\mu^-)$. After calibration, J/ψ mass stable, better than 0.02%
- Checked with Υ , D^0 , $K^0_{
 m S}$, and $\psi(2S) o J/\psi \pi^+\pi^-$


Source of uncertainty	Value [MeV/c ²]		
Mass fitting:			
Background model	0.32		
Signal model	0.07		
Momentum scale calibration:			
Average momentum scale	0.23		
η dependence of momentum scale	0.44		
Detector description:			
Energy loss correction	0.11		
Detector alignment:			
Vertex detector (track slopes)	0.06		
Quadratic sum	0.61		

B_c^+ mass measurement, result

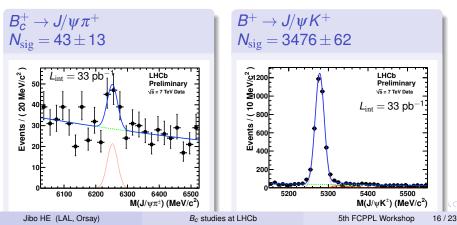
Preliminary result

 $M(B_c^+) = 6268.0 \pm 4.0(\text{stat}) \pm 0.6(\text{syst}) \text{ MeV}/c^2$

Comparison with PDG

 Uncertainty dominated by statistics, updated with 2011 data, under internal review

Jibo HE (LAL, Orsay)


- $\bullet\,$ Based on $\sim 33\ pb^{-1}$ data collected in 2010
- Use fully reconstructed $B_c^+ \rightarrow J/\psi(\mu^+\mu^-)\pi^+$, relatively clean. Large control sample $B^+ \rightarrow J/\psi K^+$ available.
- Measure

$$\frac{\sigma(B_c^+) \times \mathcal{B}(B_c^+ \to J/\psi\pi^+)}{\sigma(B^+) \times \mathcal{B}(B^+ \to J/\psi K^+)} = \varepsilon_{\rm rel} \times \frac{N(B_c^+)}{N(B^+)}$$

for $p_{\mathrm{T}}(B)$ > 4 GeV/c and $\eta \in$ (2.5, 4.5)

Extraction of $N(B_c^+)$ and $N(B^+)$

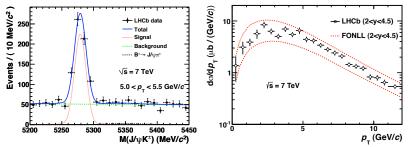
- Lifetime unbiased event selection (& trigger), as similar as possible between $B_c^+ \rightarrow J/\psi \pi^+$ and $B^+ \rightarrow J/\psi K^+$
- Cabibbo suppressed background $B^+ o J/\psi \pi^+$ considered for $B^+ o J/\psi K^+$
- 43 \pm 13 $B_c^+
 ightarrow$ $J/\psi(\mu^+\mu^-)\pi^+$ signal

- Total efficiencies computed from MC, binned in (*p*_T, η) to reduce the dependence on theoretical model
- Systematics dominated by B_c^+ lifetime (0.453 ± 0.041) ps, will be reduced after a better lifetime measurement
- Preliminary result

 $\left(\frac{\sigma(B_c^+) \times \mathcal{B}(B_c^+ \to J/\psi\pi^+)}{\sigma(B^+) \times \mathcal{B}(B^+ \to J/\psiK^+)} = (2.2 \pm 0.8|_{\text{stat.}} \pm 0.2|_{\text{sys.}})\%\right)$

for $p_{\mathrm{T}}(B) > 4$ GeV/c and $\eta \in (2.5, 4.5)$

Updated with 2011 data, under internal review

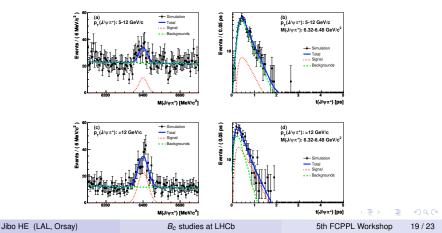

Measurement of B^+ production cross-section

Powerful test of pQCD

arXiv:1202.4812, to appear in JHEP

- 35 pb⁻¹ (2010), both *dσ/dp*_T and total cross-section measured σ(*pp* → *B*[±]*X*, 0 < *p*_T < 40 GeV/*c*, 2.0 < y < 4.5) = 41.4±1.5|_{stat.}±3.1|_{syst.} μb
- Good agreement with FONLL prediction

M. Cacciari et al., JHEP. 9805 (1998) 007; JHEP. 0103 (2001) 006


• Extended to $b \rightarrow J/\psi X$ with 2011 data

- $\blacktriangleright \ B^0 \to J/\psi \{ K^{*0}, K^0_S \}, \ B^0_s \to J/\psi \phi, \ \text{and} \ \Lambda^0_b \to J/\psi \Lambda$
- Extracting b hadronization fractions

(日)

Prospects Lifetime measurement with $B_c^+ ightarrow J/\psi \pi^+$

- Based on MC studies, measured with 1 fb⁻¹ of data, under internal review (not shown today)
- Acceptance extracted from MC, two $p_T(B_c^+)$ bins (5-12, > 12 GeV/c) to reduce dependence on $p_T(B_c^+)$ distribution
- Uncertainty below 30 fs achievable(ed) with 1 fb⁻¹ of data

Prospects $B_c^+ \rightarrow J/\psi \mu^+ X$

•
$$B_c^+ \rightarrow J/\psi(\mu^+\mu^-)\mu^+\nu_\mu$$
, compared to $B_c^+ \rightarrow J/\psi\pi^+$,

- ► Pro
 - * O(10) larger branching ratio, ~1.9%
 - * 3 μ in the final states, easier (relatively) to reduce background. Lifetime unbiased selection possible
- Contra
 - Missing energy caused by neutrino, partially reconstructed. Not easy to use MC-free method to estimate background
- \sim 5 K signal events can be selected from 1 fb⁻¹ @ \sqrt{s} = 7 TeV
- Extensive study of estimating background using data-driven methods
 - ▶ Studied mis-ID rates of $\{\pi, K, p\} \rightarrow \mu$ using $D^{*+} \rightarrow D^0(K^-\pi^+)\pi_s^+$, $\Lambda \rightarrow p\pi^-$, and $K_S^0 \rightarrow \pi^+\pi^-$
- Developed dedicated Hlt2 trigger line to keep enough mass sidebands
- Analysis ongoing to measure B_c^+ lifetime, and $\frac{\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_{\mu})}{\mathcal{B}(B_c^+ \to J/\psi \pi^+)}$

Prospects More topics

- $B_c^+
 ightarrow J/\psi K^+, \, B_c^+
 ightarrow \psi(2S)\pi^+$
 - Measurements with 2011 data ongoing
- $B_c^+ o B_s^0 \pi^+$
 - ▶ Self-tagged channel, $\mathcal{B}(B_c^+ \to B_s^0 \pi^+)$ up to 16%
 - With $B_s^0 o J/\psi\phi$ and $B_s^0 o D_s^-\pi^+$
 - Search with 2011 data ongoing
- Annihilation
 - Possible channel, e.g, B⁺_c → K̄^{*0}K⁺, with branching ratio of O(10⁻⁶), c.f., S. Descotes-Genon, et al., [PRD 80, 114031 (2009)]
- Excited states
 - ► $B_c^{*+} \rightarrow B_c^+ \gamma$ is difficult, $\Delta M = M(B_c^{*+}) M(B_c^+)$ only 60-70 MeV c^2 , very soft γ , difficult for LHCb
 - ► $B_c(2^1S_0) \rightarrow B_c^+\pi^+\pi^-$, and $B_c(2^3S_1) \rightarrow B_c^{*+}\pi^+\pi^- \rightarrow (B_c^+\gamma)\pi^+\pi^-$, possible to see them with 2011/2012 data
 - P-wave states, low cross-section, small mass differences among four states

イロト イポト イヨト イヨト 二日

- Primary goal, study *B_c* mesons systematically
 - Measure B⁺_c mass, lifetime, production rate as precisely as possible
 - Search for new decay modes of B_c^+ , and measure their branching ratios
 - Search for excited states
- New members
 - Yiming LI (Post-doc of Tsinghua)
 - Xuhao YUAN (Post-doc of Tsinghua)
- Moderate amount of money for travelings and short visits
- Approval of this project will strengthen our leading role in experimental studies of *B_c* physics

- Measured B_c^+ mass and cross section using $B_c^+ \rightarrow J/\psi \pi^+$ with 2010 data collected by LHCb
- Measured B^+ cross-section using $B^+ \rightarrow J/\psi K^+$ with 2010 data, to be published
- Prospects with 2011 data (\sim 1 fb⁻¹)
 - ► ~ 600 $B_c^+ \rightarrow J/\psi \pi^+$ signals, B_c^+ mass, production rate measurements updated, lifetime measured, under internal review
 - ► Yield of $B_c^+ \rightarrow J/\psi \mu^+ X$ one order of magnitude higher, lifetime measurement ongoing
 - ► Search for $B_c^+ \to J/\psi K^+$, $B_c^+ \to \psi(2S)\pi^+$, and $B_c^+ \to B_s^0\pi^+$ ongoing
 - b hadrons cross-section measurements nearly completed
- Supports from FCPPL very helpful and highly acknowledged!

(日)