Mesurer l'infiniment petit, Observer l'infiniment grand

- 3ème partie -

Les détecteurs pour L'astrophysique

David Attié

Rencontres de physique de l'infiniment grand à l'infiniment petit

Sommaire

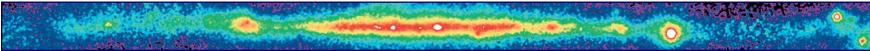
Introduction

- La lumière : spécificité de l'astrophysique
 - La lumière : observation multi-longueur d'onde
 - Spectre électromagnétique
 - Critère de performance des télescopes (pouvoir séparateur, sensibilité)
- Quelques exemples
 - La radioastronomie
 - La physique des hautes (et très hautes) énergies
 - La bolométrie

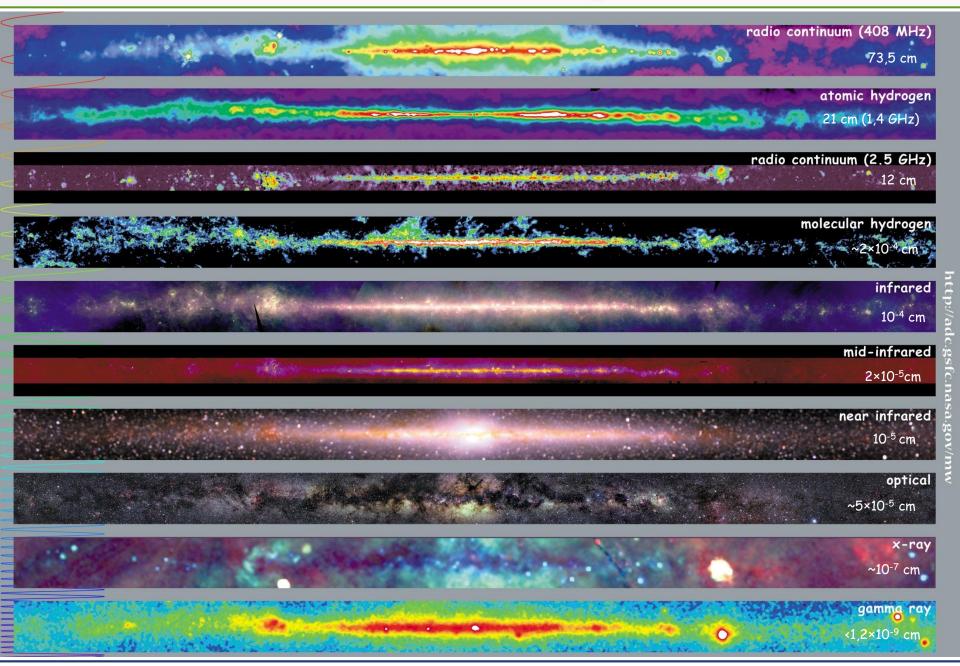

La lumière : spécificité de l'astrophysique

La voie Lactée vue par...

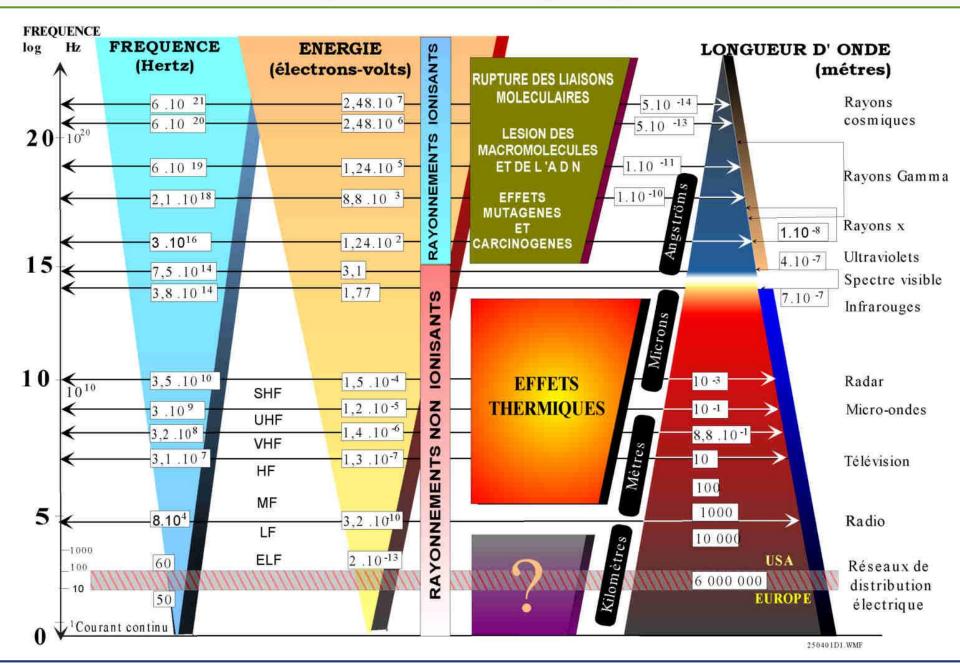
...les ondes radio - À 400 MHz, la plupart des émissions vient de la diffusion des électrons libres dans les plasmas interstellaires (gaz chaud ionisé interstellaire). Certaines émissions proviennent également des électrons accélérés dans de forts champs magnétiques. (Radio-télescopes : Jodrell Bank, Bonn 100 m, & Parkes 64 m)


... le rayonnement infra-rouge — Image composée de l'infrarouge lointain prises par le satellite Infrared Astronomical (IRAS) à 12, 60 et 100 μm. La plupart de l'émission est d'origine thermique, de la poussière interstellaire chauffée les étoiles, y compris les régions de formation stellaire dans les nuages interstellaires.

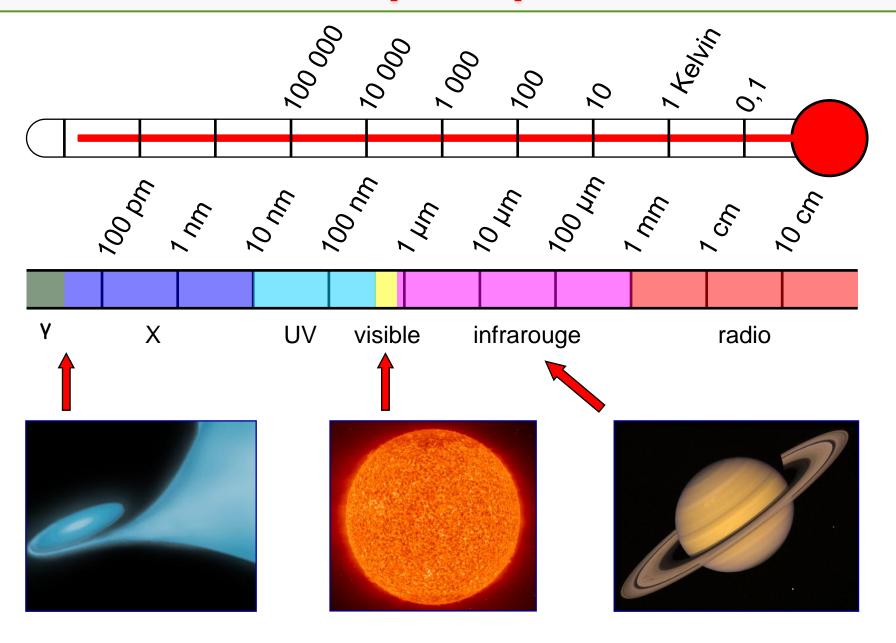
... la lumière visible – Photomosaïque composée de photos prises à très large champ par des observatoires nord et sud. En raison de la forte obscuration par la poussière interstellaire de la lumière des étoiles provient principalement des étoiles à quelques milliers d'années-lumière du Soleil. Les tâches sombres montrent les nuages de poussière absorbante.



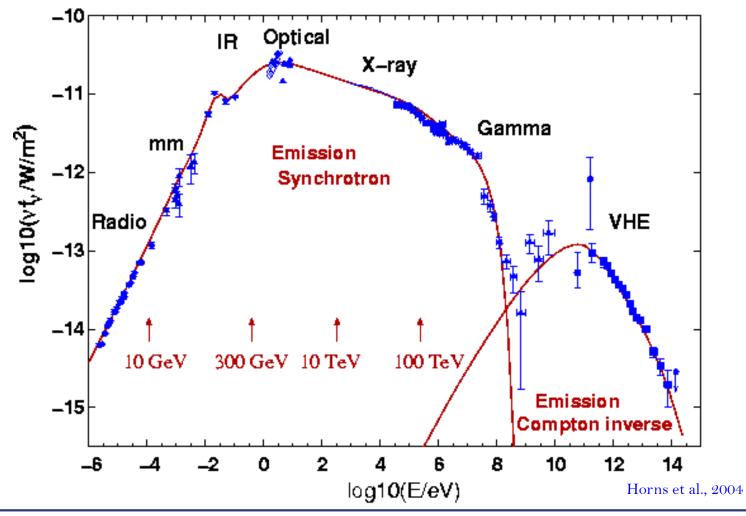
... les rayons X — Image composite d'un instrument sur le satellite Roentgen (ROSAT) dans trois bandes de rayons X centrées à 0,25 keV, 0,75 keV et 1,5 keV. Etendue aux rayons X mous provenant de gaz chaud. Aux énergies inférieures, du gaz froid interstellaire absorbe fortement les rayons X, et des nuages de gaz sont considérés comme des ombres sur fond émission de rayons X.



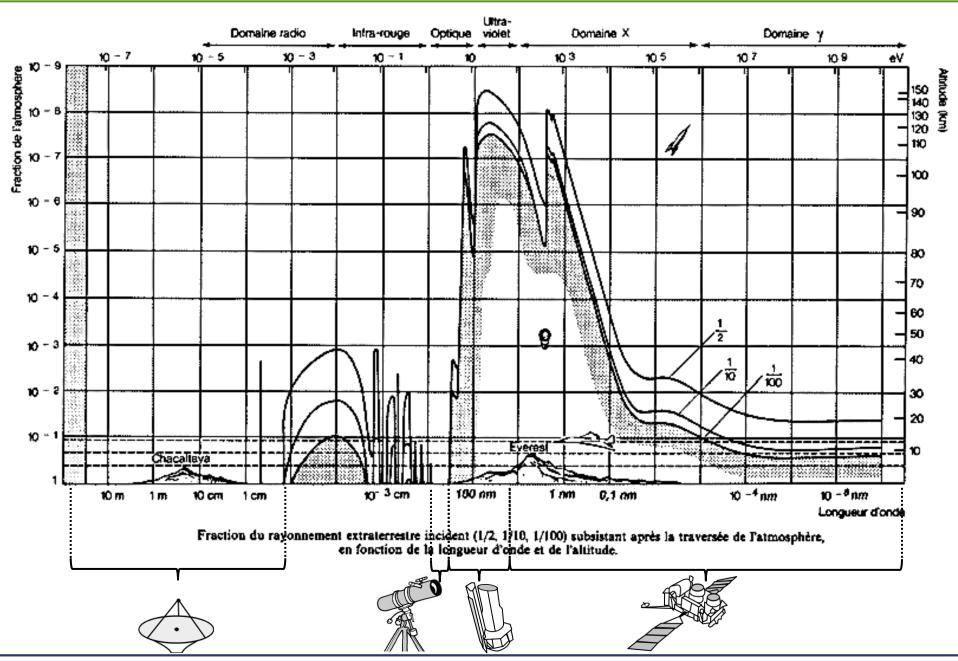
... les rayons gamma - Emission gamma (E > 100 MeV) observée par Energetic Gamma-ray Experiment Telescope (EGRET) instrument sur le satellite Compton Gamma-Ray Observatory (CGRO). A ces énergies extrêmes, la plupart des rayons gamma célestes proviennent de collisions de rayons cosmiques avec les noyaux dans les nuages interstellaires. La Voie Lactée est une source diffuse de rayons gamma. Superposée à la lumière diffuse de la Voie Lactée, des source de plusieurs pulsars gamma, par exemple, le crabe, Geminga, et les pulsars Vela le long du plan galactique sur le côté droit de l'image.


La Voie Lactée à différentes longueurs d'onde

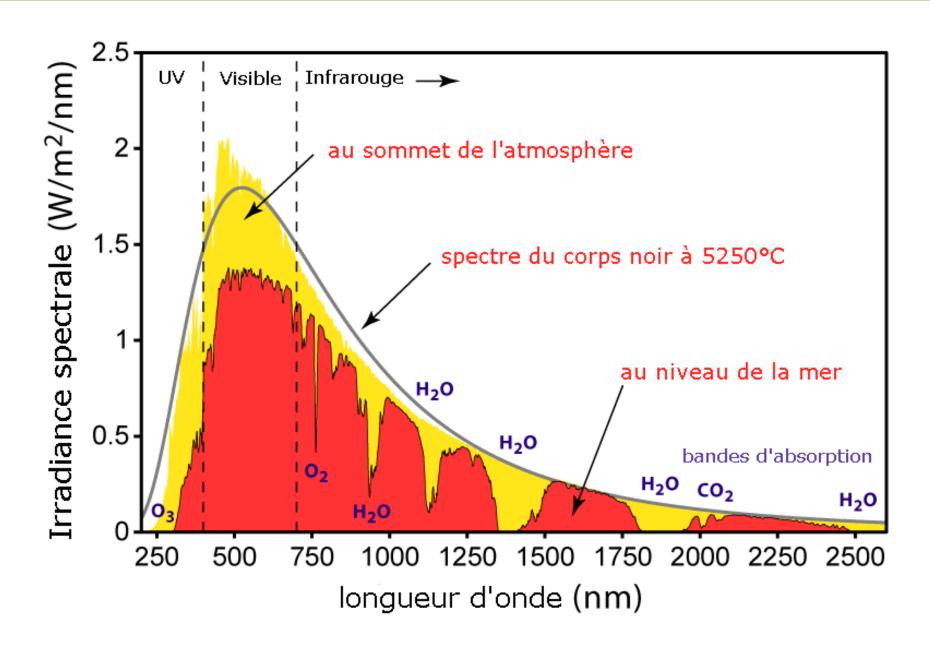
Spectre électromagnétique



La spectroscopie

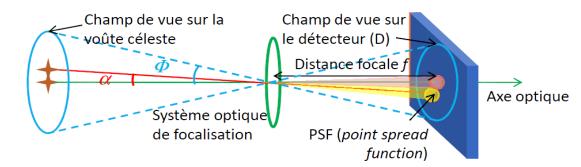


Observation multi-longueur d'onde nécessaire


- Crabe : nébuleuse synchrotron ≡ plérion
- Reste de supernova → pulsar jeune (< 2000 ans)
- Emission continue thermique et non-thermique (accélération)

Transparence atmosphérique aux rayonnements

Spectre du rayonnement solaire



Critères de performances d'un télescope

• Résolution angulaire α :

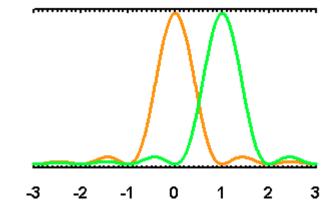
- distance angulaire minimale entre 2 sources que le télescope sépare
- Le détecteur doit avoir des pixels au moins 2 fois plus petits que le diamètre d de la PSF (théorème d'échantillonnage) : ~3-5 fois

$$d = f \cdot \tan \alpha \approx f \cdot \alpha$$
$$D = f \cdot \tan \Phi \approx f \cdot \Phi$$

Précision de localisation β :

– D'autant meilleure que la source est brillante : $\beta = \frac{\alpha}{\sqrt{n_{\sigma}}}$

• Champ de vue Φ :

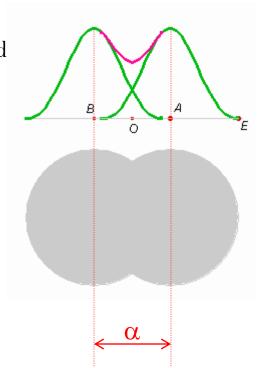

- Angle solide sous lequel le télescope observe le ciel (50% sensibilité sur l'axe).
- Le détecteur doit avoir une surface contenant tout le champ de vue.

• Surface efficace de collection A_c:

Voir sensibilité

Critère de Rayleigh

- Critère de Rayleigh: on peut encore distinguer 2 sources ponctuelles si le premier zéro de la figure de diffraction se trouve à la place du maximum de l'autre.
- Le rayon α du premier anneau sombre dépend de la longueur d'onde λ et du diamètre D :



$$\alpha = 1.22 \lambda/D$$

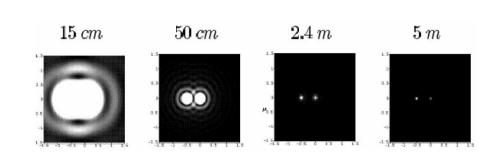
• On peut distinguer deux sources distinctes si leur écart angulaire d remplit la condition suivante :

$$d \ge 0.85 \alpha \approx \lambda/D$$

→ Pour augmenter le pouvoir de résolution il faut soit travailler à une longueur d'onde plus courte soit augmenter le diamètre de l'instrument!

Sensibilité d'un télescope

- Sensibilité F_s dans une bande d'énergie : flux de la plus faible source détectable
- Unité : photons.cm-2.s-1.keV-1 ou erg.cm-2.s 1 ou crab
- Une source est détectée si son flux est mesuré avec un niveau de confiance $n_{\sigma}(3\sigma)$ après un temps d'exposition T.


$$n_{\sigma} = \frac{S}{\sqrt{S+B}} \sqrt{T} = \frac{F_{S} \cdot A_{C}}{\sqrt{F_{S} \cdot A_{C} + F_{B} \cdot A_{D}}}$$

- S et B taux de comptage de la source et du fond en coups.s⁻¹
- Incertitude due a la statistique de Poisson et au modèle du bruit de fond
- Le taux de comptage de la source dépend de la surface efficace de collection A_C.
- Le taux de comptage du fond dépend de la surface efficace de détection A_D.

Quelques exemples de pouvoir séparateur théorique

Instrument	Diamètre	Domaine	Pouvoir séparateur (")	Pomme à distance (km)
Œil	7 mm	Visible	18*	1,1
Petit télescope	12 cm	Visible	1	20
Satellite ISO	60 cm	IR	8	2,6
Very Large Telescope (Chili)	8 m	Visible	0,015	1400
Very Large Telescope (Chili)	8 m	IR	0,6	33

- En pratique le pouvoir de résolution est limité à 1" par la turbulence atmosphérique
 - →Optique adaptative ou télescope spatial
- Rappel:
 - -1' (minute d'arc) = 1/60 = 0.016 6...°
 - -1" (seconde d'arc) = 1/3600 = 0,000 277...°
- * : pour l'œil, la valeur vraie est de 60

La radioastronomie

Principe de la radioastronomie

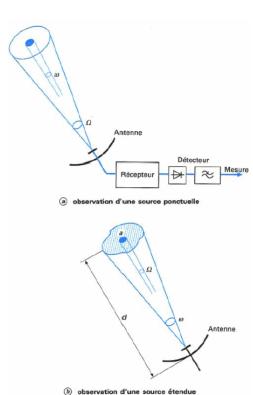
- L'antenne, supposée adaptée, est électriquement équivalente, vue du récepteur, à une résistance pure. Mais une résistance portée à une température T présente à ses bornes une tension de bruit, capable de délivrer dans une bande de fréquence de largeur B une puissance : P=kTB
- Une antenne est caractérisée par une surface A et un lobe principal d'angle solide : $\Omega = \lambda^2/A$ avec $\lambda(=c/v)$ longueur d'onde d'utilisation
- Deux cas se présentent lors de l'observation d'une radiosource :
 - Source ponctuelle (a):

la totalité du flux émis par la source est reçue sur l'antenne :

$$P_e = SAB$$

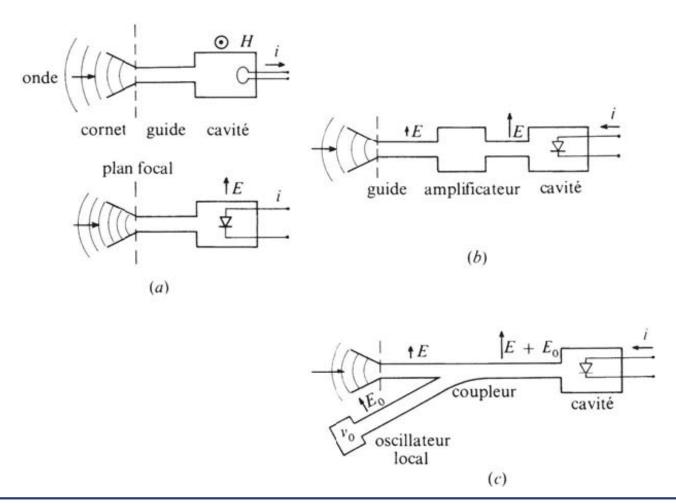
et la température d'antenne s'écrit :

$$T_A = \frac{1}{2} \frac{SA}{k}$$


- Source étendue (b):

L'antenne étant vue de la source sous un angle solide A/d², la puissance recueillie est :

$$P_{o} = 2kTBd^{2}/A$$


la température d'antenne :

$$T = T_A$$

Principe de la radioastronomie

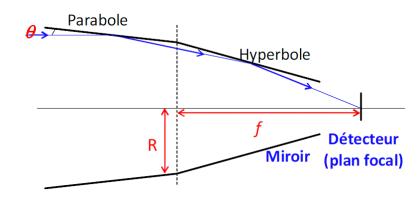
- Trois configurations de réception de l'onde électromagnétique :
 - Détection directe (a)
 - Détection directe après amplification (b)
 - Détection hétérodyne, pouvant comprendre un amplificateur en amont du détecteur (c)

Principales fréquences et radiotélescopes

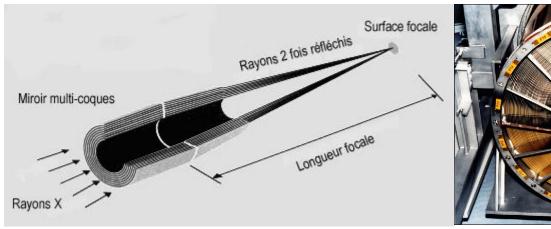
Allocation ITU RR	Types d'observation	
13.36 - 13.41 MHz	Soleil, Jupiter	
25.55 - 25.67 MHz	Boien, Jupiter	
37.5 - 38.25 MHz 73.0 - 74.6 MHz	Jupiter	
73.0 - 74.6 MHz	Soleil	
150.05 - 153.0 MHz	Continuum, pulsar, Soleil	
322 - 328.6 MHz	Continuum, deutérium	
406.1 - 410 MHz	Continuum	
608 - 614 MHz	VLBI	
1330 - 1400 MHz	Raie HI red-shiftée	
1400 - 1427 MHz	Raie HI	
1610.6 - 1613.8 MHz		
1660 - 1670 MHz	Raies OH	
1718.8 - 1722.2 MHz		
2655.0 - 2700.0 MHz	Continuum, HII	
3100.0 - 3400.0 MHz	Raies CH	
4800.0 - 5000.0 MHz	VLBI, HII, raies H ₂ CO et HCOH	
6650.0 - 6675.2 MHz	CH ₃ OH, VLBI	
10.60 - 10.70 GHz		
14.47 - 14.50 GHz	Quasar, raies H ₂ CO, Continuum	
15.35 - 15.40 GHz		
22.01 - 22.21 GHz	Raie H ₂ O red-shiftée	
22.21 - 22.5 GHz	Raies H ₂ O	
22.81 - 22.86 GHz	Raies NH ₃ , HCOOCH ₃	
23.07 - 23.12 GHz	Raies NH ₃	
23.6 - 24.0 GHz	Raie NH ₃ , Continuum	
31.3 - 31.8 GHz	Continuum	
36.43 - 36.5 GHz	Raies HC ₃ N, OH	
42.5 - 43.5 GHz	Raie SiO	
47.2 - 50.2 GHz	Raies CS, H ₂ CO, CH ₃ OH, OCS	
51.4 - 59.0 GHz		
76.0 - 116.0 GHz	Continuum, raies moléculaires	
123 - 158.5 GHz	Raies H ₂ CO, DCN, H ₂ CO, CS	
164.0 - 167.0 GHz 168.0 - 185.0 GHz	Continuum	
168.0 - 185.0 GHz	H ₂ O, O ₃ , multiples raies	
191.8 - 231.5 GHz	Raie CO à 230.5 GHz	
241 - 275 GHz	Raies C ₂ H, HCN, HCO ⁺	
275 - 1000 GHz	Continuum, Raies moléculaires	

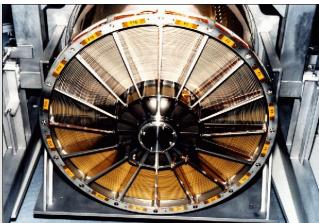
Dénomination et situation	Dimensions	Fréquence de travail maximale	Remarques
I. Antennes uniques			
Amherst (États-Unis)	Diamètre : 14 m	115 GHz	
Arecibo (Porto Rico)	Diamètre : 300 m	5 GHz	Fixe, zénithal
Crawford Hill (États-Unis)	Diamètre : 7 m	115 GHz	
Crimée (Russie)	Diamètre : 22 m	22 GHz	
CSO Hawai (États-Unis)	Diamètre : 10,4 m	690 GHz	ſ
Goldstone (États-Unis) Madrid (Espagne) Tidbinbilla (Australie)	Diamètre : 70 m	9 GHz	Deep Space Network de la NASA (poursuite des engins spatiaux, mais aussi radioastronomie)
Effelsberg (Allemagne)	Diamètre : 100 m	46 GHz	Plus grande antenne orientable
Green Bank (GBT) (États-Unis)	Diamètre : 100 m	110 GHz	En construction
Green Bank, 140' (États-Unis)	Diamètre : 42 m	22 GHz	
JCMT Hawai (États-Unis)	Diamètre : 15 m	350 GHz	
Jodrell Bank (Royaume-Uni)	Diamètre : 76 m	3 GHz	
Kitt Peak (États-Unis)	Diamètre : 11 m	230 GHz	
Nobeyama (Japon)	Diamètre : 45 m	115 GHz	
Onsala (Suède)	Diamètre : 20 m	115 GHz	
Parkes (Australie)	Diamètre : 64 m	43 GHz	
Pico Veleta (Espagne)	Diamètre : 30 m	350 GHz	
Plateau de Bure (France)	Diamètre : 2,5 m	230 GHz	
Nançay (France)	200 m × 35 m	3,3 GHz	Méridien
SEST (Chili)	Diamètre : 15 m	230 GHz	
Zelenchuk (Russie)	Anneau de 600 m	5 GHz	
II. Interféromètres	<u>(1)</u>		
Australian Telescope (Australie)	6 × 22 m de diamètre	115 GHz	Longueur 6 km
BIMA, Hat Creek (États-Unis)	9 × 6 m de diamètre	230 GHz	Longueur 300 m
Cambridge (Royaume-Uni)	3 × 25 m de diamètre	1,4 GHz	Longueur 1,6 km
• ,	(8 × 14 m de diamètre Dipôles sur 40 000 m ²	10 GHz	Longueur 5 km
Cambridge (Royaume-Uni)	34 × 45 m de diamètre	80 MHz 1.4 GHz	En construction
GMRT, Poona (Inde) Lanlherne (Australie)	40 000 m ²	1,4 GHz 32 MHz	En construction
Merlin (Royaume-Uni)	7 antennes diverses	22 GHz	Sur 240 km
Nancay (France)	43 antennes diverses	450 MHz	En forme de T. solaire
Nançay (France)	144 antennes hélicoïdales,	110 MHz	Zirioinio do 1, coldino
Nobeyama (Japon)	5 × 10 m de diamètre	115 GHz	Longueur 560 m
Ootacamund (Inde)	17 000 m ²	300 MHz	Cylindre parabolique
Owens Valley (États-Unis)	6 × 10 m de diamètre	230 GHz	
Plateau de Bure (France)	4 × 15 m de diamètre	230 GHz	Longueur 300 m
Université de Floride (États-Unis)	30 000 m ²	26 MHz	
UTR2, Kharkov (Ukraine)	100 000 m ²	35 MHz	
VLA, Socorro (États-Unis)	27 × 25 m de diamètre	22 GHz	En forme de Y, branches de 19 km
VLBA (États-Unis)	10 × 25 m de diamètre	22 GHz	Réseau VLBI
Westerbork (Pays-Bas)	14 × 25 m de diamètre	5 GHz	Longueur 3 km

⁽¹⁾ Nombre d'antennes x valeur du diamètre.
BIMA Berkeley Illinois Maryland Array.
CSO Caltech Submillimeter Observatory.
GMRT Giant Meter wave Radio Telescope.
JCMT James Clerk Maxwell Telescope.
UTR2 Ukrainian T-shaped Radiotelescope, Mark 2.
VLA Very Large Array.


VLBA Very Long Baseline Array.

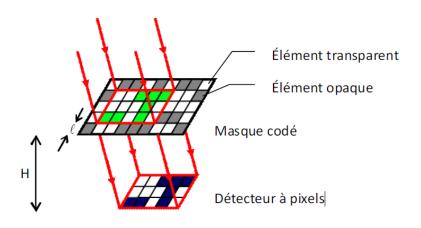
L'astrophysique des hautes énergies


L'imagerie directe avec des miroirs


- Focalisation des rayons X par des miroirs en incidence rasante :
 - Configuration de Wolter I : $\tan 4\pi = \frac{R}{f}$
 - Surface efficace d'un miroir :

$$A_{Coll} = \pi \eta_R^2 (f \sin 4\theta_C)^2$$

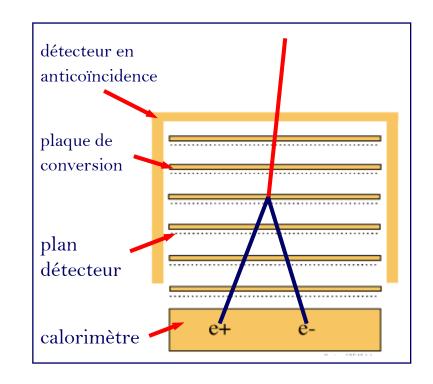
- η_R : réflectivité nécessite un polissage extrême
- θ_C : angle critique au-delà duquel la réflectivité n'est pas totale, décroit avec l'énergie (0,25° à 20 keV; 0,1° à 50 keV)



Imagerie indirecte à masque codé

- Technique de collection et de localisation des rayons gamma :
 - la focalisation n'est pas possible à haute énergie.
 - Système à masque codé : la source a l'infini projette sur le détecteur une « ombre » caractéristique de sa position dans le ciel.

$$\alpha = \tan^{-1}\left(\frac{l}{H}\right)$$

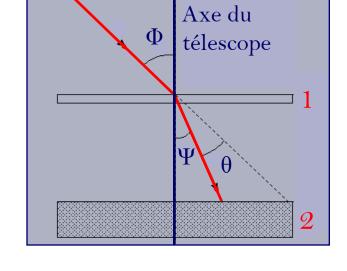


- Les masques pseudo-aléatoire permettent de reconstruire par déconvolution la position des sources de manière unique en minimisant l'influence du bruit de fond
- Eléments opaques doivent arrêter le rayonnement

Les télescopes à effet de paire

• Un photon incident d'énergie $E_{\gamma} > 2 m_e c^2$ soit $E_{\gamma} > 1,02$ MeV, produit une paire e⁻-e⁺ dans le champ électrique qui règne au voisinage d'un noyau atomique

• La trajectoire des particules s'écarte peu de la direction du photon incident si $E_{\gamma} >> 2 m_e c^2$


• Déviation moyenne :

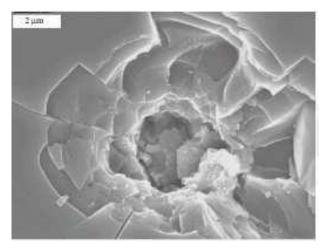
$$(\langle \theta^2 \rangle)^{\frac{1}{2}} = q(E_{\gamma}, E_{e}, Z) \frac{m_{e} c^2}{E} \ln \left(\frac{E}{m_{e} c^2} \right)$$

Pour $E_{\gamma} = 100$ MeV, la déviation moyenne $\theta \sim 1.5^{\circ}$

Les télescopes Compton

- Ils mettent en jeu deux plans détecteur sensibles à la position
- Plan 1 : fait d'un matériau à petit Z pour diffuser le photon gamma
- Plan 2 : fait d'un matériau à grand Z pour absorber le photon diffusé

• L'angle d'incidence Φ et l'énergie E_0 sont déduits des dépôts d'énergie E_1 et E_2 mesurés dans les plans 1 et 2 et de l'angle Ψ du photon diffusé


$$E_0 = E_1 + E_2$$

$$\Phi = \psi + \theta$$

$$\cos \theta = 1 - \frac{E_1 m_e c^2}{E_0 E_2}$$

Contraintes de l'instrumentation spatiale

- Pendant le lancement :
 - Chocs, vibrations
- L'environnement spatial :
 - Variations thermiques :
 - fatigue des matériaux
 - Panne des mécanismes, rupture

Particules Fe, $r = 0.3 \mu m$; v = 10 km/s crateres dans le silicium de 0.1 a $10 \mu m$

- Radiations:

- particules ionisantes ou énergétiques
- Vieillissement accéléré des détecteurs, panne des électroniques

- Contamination:

- dépôt de particules, réactions de surface...
- Dégradation des propriétés optiques
- Micrométéorites, débris spatiaux

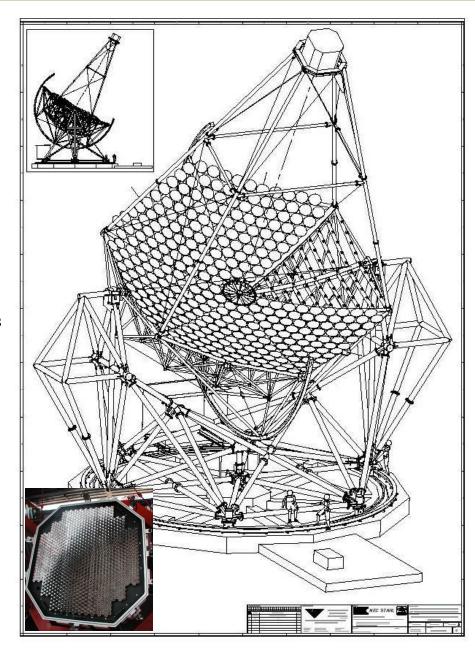
L'astrophysique des très hautes énergies

Le détecteur H.E.S.S.

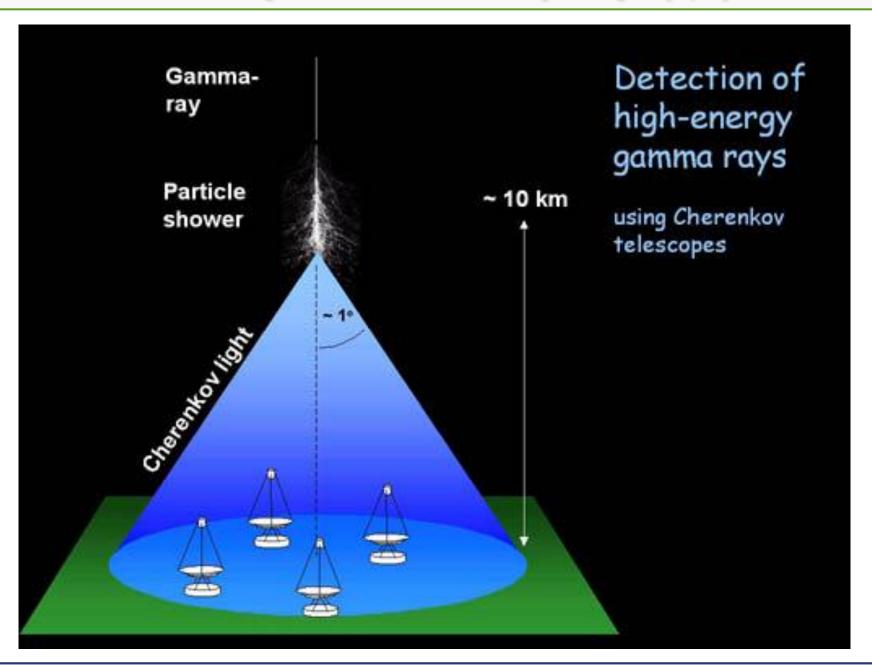
• Système :

- Situe en Namibie, 1800m d'altitude
- 4 télescopes séparés de 120m

• Télescope:


- Miroir de $\simeq 107 \text{ m}^2$
- Longueur focale: 15 m (f/d \sim 1.2)

• Camera:


- $-960 \text{ PMs} (0.16^{\circ})$
- Champ de vue de 5°
- Electronique intégrée dans la camera
- Echantillonnage a 1GHz, intégration en 16 ns

Trigger central :

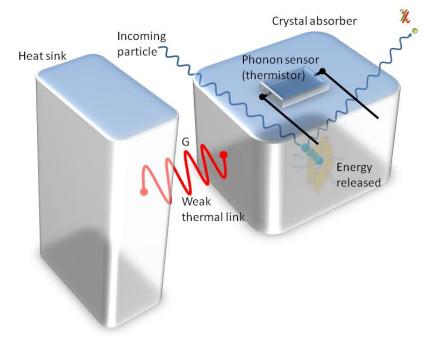
- Permet de sélectionner le nombre minimal de télescopes
- Hémisphère sud
- Grand champ de vue
- Opérationnel depuis Déc. 2003
- Optimisé pour 100 GeV 20 TeV

La technique Cherenkov atmosphérique [1/2]

La technique Cherenkov atmosphérique [2/2]

Les bolomètres

Principe du bolomètre

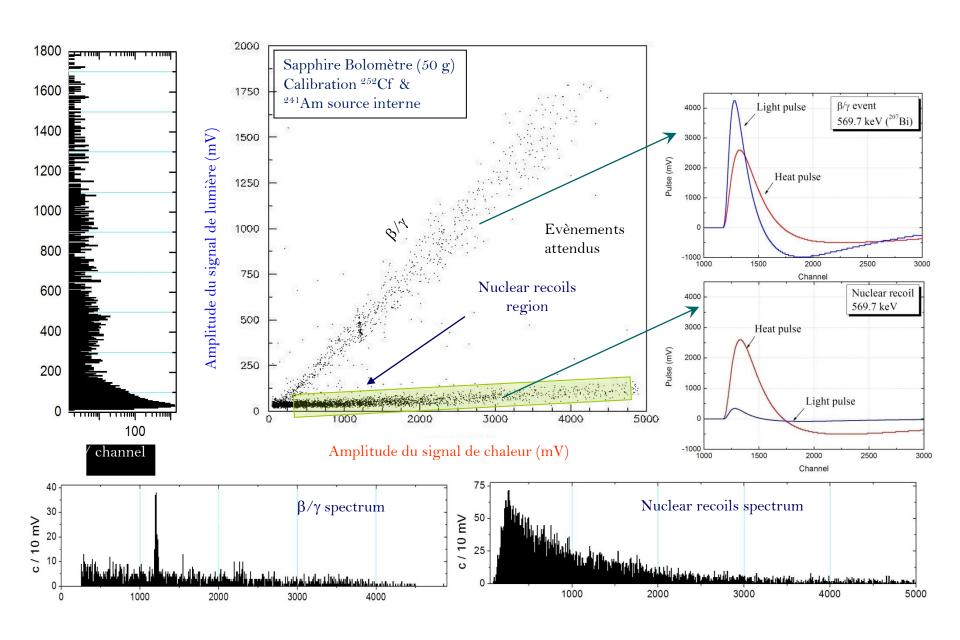

- Un bolomètre (du grec bolè, « radiation », et metron, « mesure ») est un détecteur développé par Samuel Pierpont Langley en 1878 afin d'étudier le rayonnement électromagnétique solaire.
- Principe : convertit l'énergie du rayonnement électromagnétique incident en chaleur au sein de l'absorbeur. Le signal observé est la variation de conductivité électrique du matériau en fonction de sa température (thermistance)

$$\Delta T = \frac{\Delta E}{C}$$

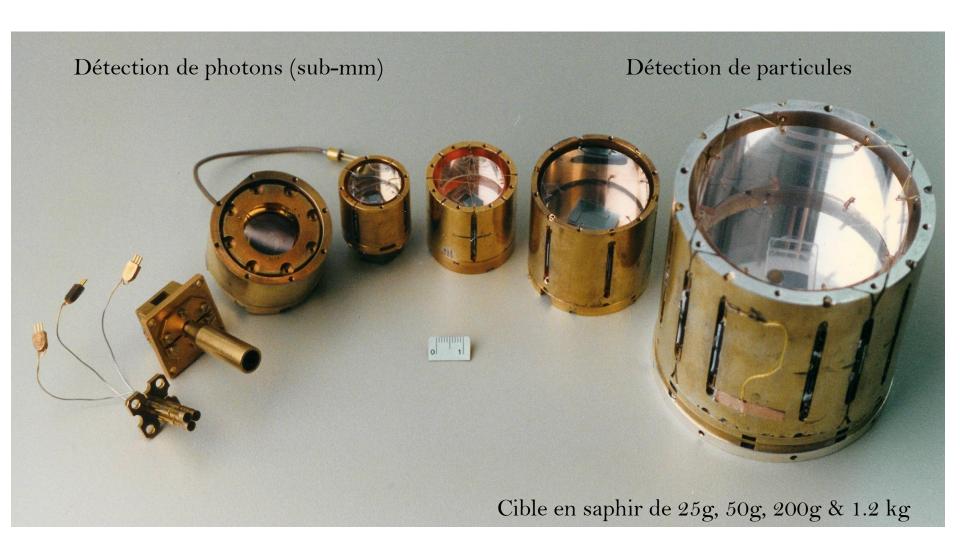
- Pour un cristal diélectrique en diamagnétique :

$$C = \alpha \left(\frac{T}{\theta_D}\right)^3$$

- proportionnalité directe $\Delta T \& \Delta E$
- intérêt de T↓:
 - sensibilité ΔT ↑
 - compense l'utilisation de cibles massives (recherches d'événements très rares)


Le succès des bolomètres, une histoire de quanta

- Propriétés des bolomètres :
 - Grand choix de différents absorbeurs
 - Excellente résolution en énergie
 - Aptitude de détecter des particules de faibles énergies
 - Pouvoir d'identification des particules (bolomètre scintillant) avec mesures des chaleurs provenant de la lumière ou de l'ionisation

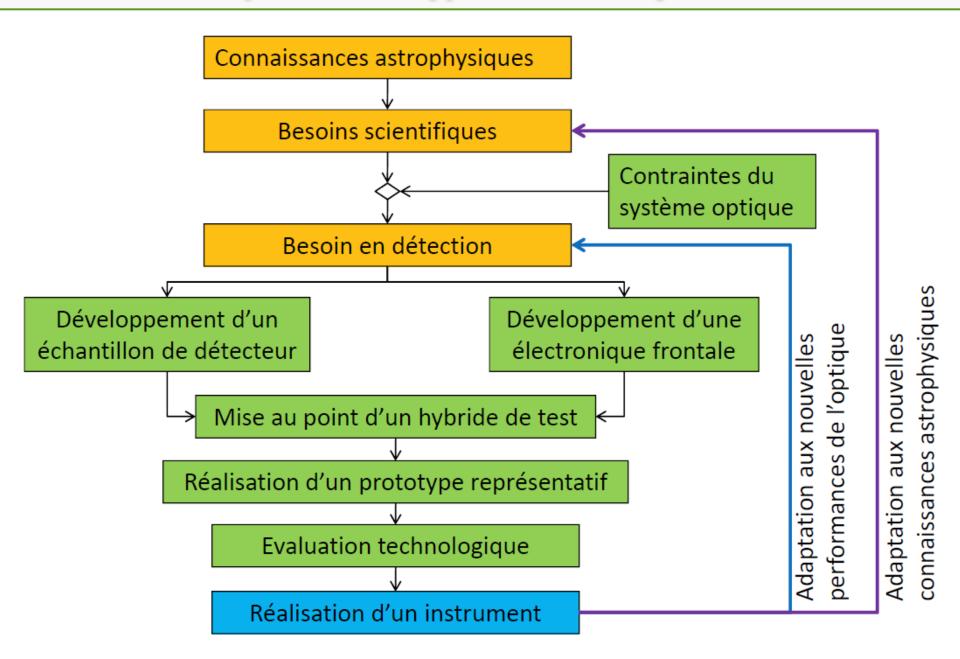

Détecteur	Produits de l'interaction	Dépense énergétique par quantum d'information (QE)
Scintillateur	Photons visibles	100 eV → 1keV
Compteur proportionnel	Ions	$10 \text{ eV} \rightarrow 30 \text{ eV}$
Semi-conducteur	Paires électrons-trous	3 eV – 4 eV
STJ: jonstion tunnel supra	Quasi-particules Paires de Cooper brisées	10 ⁻³ eV
Bolomètre à cible isolante	Phonons	10 ⁻⁵ eV à 10 ⁻⁴ eV
Bolomètre à cible métallique	Excitation d'électrons de conduction	<< 10 ⁻⁵ eV

Détecteurs refroidis

Identification de particules

Exemple de bolomètres

Pierre de Marcillac IAS, Orsay


Bolomètre HPGe de l'expérience Edelweiss

- Edelweiss : « Experience pour Détecter les Wimps en sIte Souterrain »
 - WIMPS (Weakly Interacting Massive Particles)
 - Il signaux induits par les WIMPs serait de très faible énergie (quelques dizaines de keV) et très rares
 - Détecteur : cristaux de germanium ultra pur (HPGe) à 20 mK
 - But : différencier le signal de Wimps, constitué par des reculs nucléaires, du bruit de fond majoritaire, constitué par la radioactivité, qui conduit principalement à des reculs électroniques

Cycle du développement d'un dispositif

Fin!

Commentaires/questions

- David Attié (Physicien)
 - <u>CEA Saclay</u>:
 Intitut de Recherche sur les Lois Fondamentales de l'Univers (Irfu)
 - <u>Email</u>: david.attie@cea.fr
 - <u>Tél</u>: 01 69 08 11 14