

Etude Raman in-situ des processus d'endommagement et d'altération radiolytique d'UO₂

<u>G. Guimbretière¹</u>, A. Canizarès¹, F. Duval¹, L. Desgranges², R. Caraballo³, C. Jégou³, O.A. Maslova¹, M. R. Ammar¹, Y. A. Tobon¹, N. Raimboux¹, C. Corbel^{1,4}, R. Omnée¹, P. Desgardin¹, N. Clavier⁵, N. Dacheux⁵ M.F. Barthe¹, P. Simon¹

¹ CNRS UPR 3079, Conditions Extrêmes et Matériaux – Hautes Température et irradiation, 45071 Orléans Cedex 2, et université d'Orléans, 45067 Orléans Cedex2

² CEA/DEN/DEC Bat 352 Cadarache, 13108 Saint Paul les Durance

³ CEA/DEN/MAR/DTCD/SECM, Marcoule F-30207 Bagnols sur Céze

⁴ CNRS –CEA –Ecole Polytechnique UMR 7642, Laboratoire des Solides Irradiés, F-91128 Palaiseau

⁵ ICSM - BP 17171, 30207 Bagnols sur Céze

Motivations

Outil Raman pour la caractérisation des oxydes d'actinides (U, Th, Pu, O)

- 🔿 🛛 Raman « chaud » @ ATALANTE (CEA Marcoule)
- 🔷 🛛 Couplage Raman /cyclotron @ CEMHTI (CNRS Orléans)
- Cartographie Raman et hautes temperatures @ CEMHTI (CNRS Orléans)

Processus physico-chimique à l'origine de la mobilité de l'uranium dans la géosphère ?

Uranium naturellement présent sur la Terre

- 4 10⁷ t sous forme de minerais
- 5 10¹² t dans les océans

Dissémination par les activités humaines

- Stockage géologique de déchets radioactifs
- Usage militaire: uranium appauvri comme blindage de projectiles ...
- Accident nucléaire

UO₂ : Simulation des effets d'une auto-irradiation α bas flux et longue durée par une irradiation He²⁺ externe cyclotron haut flux et courte durée. →Environnement liquide – Environnement gazeux.

M. Amme et al. D. Wronkiewicz. J. Nucl. Mater. (1996) J. Nucl. Mater. (2002) Uraninite [U⁴⁺] Schoepite [U⁶⁺] Becquerelite Soddvite Uranophane Boltwoodite 2 5 3 6 4 Temps (années)

Minéraux formés par altération d'UO₂

Mesures spectroscopiques complexes

- Spectroscopie Raman et applications
- \succ UO₂ et Raman
- Caractérisation Raman in-situ de l'évolution d'une interface solide/liquide ou solide/gaz sous irradiation ionique externe

(i) Instrumentation

(ii) Etude du système UO_2/H_2O sous irradiation He^{2+}

(iii) Etude du système UO₂/Ar sous irradiation He²⁺

Conclusion et perspectives

Spectroscopie Raman et applications

Effet Raman :

Diffusion inélastique de la lumière par les liaisons interatomiques (vibrateurs isolés dans les molécules, phonons dans les solides)

Applications

- → Sonde la structure de la matière et sa dynamique
- ➡ Sonde la composition de l'échantillon

Traitement des données

Spectres ≡ Somme des signatures spectrales des vibrateurs (modèle lorentzien)

→ <u>Données multivariées</u>: Spectres = Somme des signatures spectrales des processus physicochimiques. (Séparation de sources)

> Spectroscopie Raman et applications

➢ UO₂ et Raman

Caractérisation Raman in-situ de l'évolution d'une interface solide/liquide, solide/gaz sous irradiation ionique

(i) Instrumentation

(ii) Etude du système UO₂/H₂O sous irradiation He²⁺

(iii) Etude du système UO₂/Ar sous irradiation He²⁺

Conclusion et perspectives

Signatures Raman des Phases Pures

- > Spectroscopie Raman et applications
- \succ UO₂ et Raman
- Caractérisation Raman in-situ de l'évolution d'une interface solide/liquide, solide/gaz sous irradiation ionique

(i) Instrumentation

(ii) Etude du système UO_2/H_2O sous irradiation He^{2+}

(iii) Etude du système UO₂/Ar sous irradiation He²⁺

Conclusion et perspectives

Instrumentation

A. Canizarès et al., J. Raman Spec. (2012)

G. Guimbretière et al. Spectroscopy Letters (2011)

Couplage cyclotron CEMHTI / système Raman Renishaw RA100

Instrumentation – Radiolyse

Cellule Radiolyse

Etude du système UO_2/H_2O sous irradiation He^{2+} – *Post mortem*

He²⁺ - 45MeV – 3.10¹¹ He²⁺.cm⁻².s⁻¹

Etude du système UO₂/H₂O sous irradiation He²⁺

He²⁺ - 45MeV – 8h 1.10¹¹ He²⁺.cm⁻².s⁻¹

540 spectres - pas de 2 min

Couleur ≡ Intensité Raman

Etude du système UO₂/H₂O sous irradiation He²⁺

He²⁺ - 45MeV – 8h 1.10¹¹ He²⁺.cm⁻².s⁻¹

Solide UO₂ à ≈ 50°C

Création de défauts dans le solide UO₂ durant l'irradiation: désordre et surstochiométrie locale qui semble relaxer partiellement après l'irradiation

Etude du système UO₂/H₂O sous irradiation He²⁺

He²⁺ - 45MeV – 8h 1.10¹¹ He²⁺.cm⁻².s⁻¹

G. Guimbretière et al. Spectroscopy Letters (2011)

Dynamique de croissance des éléments majeurs de la couche d'altération

Dynamique secondaire couche d'altération + espèces moléculaires

Croissance d'une couche d'altération composée de Studtite et Schoepite Production d'espèces moléculaires en solution: H_2O_2 ; $(UO_2)_2(OH)_2^{2+}$?

(i) Nettoyage des spectres

- (ii) Séparation des sources Plasma vs UO₂
- (iii) Analyse T2g, bandes de défauts et raie plasma

He²⁺ - 45MeV Etude du système UO₂/Ar sous irradiation α 5.10¹¹ He²⁺.cm⁻².s⁻¹ Intensité Plasma (u. a.) Plasma d'Ar permet de sonder la présence des ions (chambre d'ionisation) irradiation $UO_{2}T_{2g}$ - Nombre d'onde (cm⁻¹) 445.5 445.0 Décalage de la position de la T_{2g} 444.5 uniquement durant l'irradiation : ≈ 170°C effet thermique (≈ 170°C) 444.0 443.5 Bandes de défauts -Intensité (u. a.)

Saturation de l'endommagement, stable hors irradiation

100

0

200

Temps (min)

300

400

500

- > Spectroscopie Raman et applications
- \succ UO₂ et Raman
- Caractérisation Raman in-situ de l'évolution d'une interface solide/liquide, solide/gaz sous irradiation ionique

(i) Instrumentation

(ii) Etude du système UO_2/H_2O sous irradiation He^{2+}

(iii) Etude du système UO₂/Ar sous irradiation He²⁺

Conclusion et perspectives

Conclusions

Développement technique

- Raman in-situ irradiation en température
- Raman in-situ irradiation interface solide/liquide
- Raman in-situ irradiation interface solide/gaz

Travail en amont des mesures in-situ

- Spectres de phases de références
- Caractérisation post-mortem -> identification de signatures Raman d'intérêt (Température, Bandes de défauts ...)
- Procédure de traitement des données spectroscopiques complexes ...

Sous irradiation He²⁺

- Cinétique de formation de studtite et schoepite pendant et aprés l'irradiation
- Cinétique de création de défauts dans UO₂ durant l'irradiation stable aprés l'irradiation (Phénomène de saturation)
- Interface UO_2/H_2O à ≈ 50°C ; interface UO_2/Ar (à ≈ 170°C)

Perspectives

Couplage cyclotron pulsé/mesures de luminescence résolue en temps

Exemple : SiO₂

Lifetime \approx 10 µs

Merci pour votre attention

<u>Financial Supports</u>: ANR (French National Research Agency), GDR Matinex (French Research Network on Materials in Extremes Conditions), EMIR (French network of accelerators), GDR verres, Region Centre, ...

Contacts :

- guillaume.guimbretiere@cnrs-orleans.fr
- marie-france.barthe@cnrs-orleans.fr
- simon@cnrs-orleans.fr
- emir-cemhti@cnrs-orleans.fr

ACP Raman addition H₂O₂– la couche d'altération

Croissance d'une couche d'altération composée de Studtite corrélée à une consommation de H₂O₂

Instrumentation

