

Effet de la température sur le comportement de ¹⁴N et ¹⁴C dans le graphite nucléaire

<u>G.Silbermann^{1,2}</u>, N.Moncoffre¹, N.Toulhoat^{1,3}, N.Bererd^{1,4}, G. Laurent²,

A. Perrat-Mabilon¹, L. Raimbault⁵, P.Sainsot⁶

- ¹ Institut de Physique Nucléaire de Lyon France
- ² EDF CIDEN
- ³ Commissariat à l'Energie Atomique et aux Energies Alternatives. CEA/DEN.
- ⁴ Institut Universitaire de Technologie. Université Claude Bernard Lyon 1.
- ⁵ Ecole des Mines de Paris à Fontainebleau
- ⁶ Institut National des Sciences Appliquées de Lyon.

XIIIème Journées Nationales de Radiochimie et Chimie Nucléaire 04-05/10/2012

SOMMAIRE

Contexte

• Objectif

• Mesures de ¹⁴N constitutif dans le modérateur graphite

Comportement thermique du ¹⁴C

Contexte

Démantèlement des 9 réacteurs 1^{ère} génération « UNGG »

□ Combustible: Uranium naturel sous forme métallique (0,7% at. d'²³⁵U)

Modérateur: graphite

 \square Caloporteur gazeux: CO₂ (H₂ - O₂ - CH₄ - CO)

S 23 000 tonnes de graphite irradié

Sonstruction d'un centre de stockage spécifique (Loi Juin 2006)

Contexte

Inventaire radiologique:

¹⁴C (A_i= $5x10^{15}$ Bq et T_{1/2}= 5730 ans)

Activation neutronique de 2 précurseurs

¹⁴ N(n,p) ¹⁴ C	¹³ C(n, γ) ¹⁴ C
$\sigma_{ m c}$ = 1,93 barn	<i>σ</i> _c = 14x10 ⁻⁴ barn
? ppm at.	1,11 % at.

Principal contributeur à l'activité totale du déchet sur le long terme

Contexte

Objectif

Consolider l'inventaire radiologique en ¹⁴C (fait par EDF)

Nouvelles données sur:

✓ la quantité de ¹⁴C produite par l'activation neutronique de ¹⁴N

✓ le comportement de ¹⁴N et ¹⁴C (relâchement, distribution, …) pendant la phase de fonctionnement du réacteur

SOMMAIRE

Contexte

Objectif

Mesures de ¹⁴N constitutif dans le modérateur graphite

Comportement thermique du ¹⁴C

Contexte

Objectif

Mesure de ¹⁴N constitutif $\sim 14N(n,p)^{14}C$: voie prédominante pour la production du ^{14}C si $[^{14}N]_i > 8 ppm$

Littérature : 10 ppm < [¹⁴N]_i < 200 ppm</p>

La majorité du ¹⁴C est formé par l'activation neutronique de ¹⁴N

> L'inventaire EDF, réalisé sur le modérateur graphite, irradié montre que:

- ¹⁴C restant est principalement issu de l'activation neutronique de ¹³C
- une très faible quantité (voire nulle) de ¹⁴C provient de l'activation neutronique de ¹⁴N

Questions importantes :

Est-ce que les concentrations d'azote sont faibles dans le modérateur graphite français? Ou Est-ce que ¹⁴N et/ou ¹⁴C sont relâchés pendant le fonctionnement du réacteur ?

Contexte

Objectif

Mesure de ¹⁴N constitutif $\sim 14N(n,p)^{14}C$: voie prédominante pour la production du ^{14}C si $[^{14}N]_i > 8 ppm$

Littérature : 10 ppm < [¹⁴N]_i < 200 ppm</p>

La majorité du ¹⁴C est formé par l'activation neutronique de ¹⁴N

> L'inventaire EDF, réalisé sur le modérateur graphite, irradié montre que:

- ¹⁴C restant est principalement issu de l'activation neutronique de ¹³C

 - une très faible quantité (voire nulle) de ¹⁴C provient de l'activation neutronique de ¹⁴N

Questions importantes :

Est-ce que les concentrations d'azote sont faibles dans le modérateur graphite français? ou Est-ce que ¹⁴N et/ou ¹⁴C sont relâchés pendant le fonctionnement du réacteur ?

Contexte

- La concentration de ¹⁴N est la somme de 3 contributions:
 - ✓ Apporter par les entrées d'air pendant les cycles de maintenance
 - ✓ Impureté du gaz caloporteur
 - ✓ impureté constitutive du graphite

Objectif

Mesure de ¹⁴N constitutif

Contexte

Objectif

Mesure de ¹⁴N constitutif • La concentration de ¹⁴N est la somme de 3 contributions:

✓ Apporter par les entrées d'air pendant les cycles de maintenance
✓ Impureté du gaz caloporteur

⇒ ¹⁴N est adsorbé sur les surfaces accessibles (pores ouverts)

Mais il est difficile d'estimer la quantité d'azote adsorbée parce que

- 1) Dans la littérature, pas de données sur l'adsorption de l'azote sur le graphite irradié
- 2) La corrosion radiolytique et la température peuvent induire un relâchement de l'azote adsorbé

Donc, nous nous sommes concentrés sur l'étude de l'azote constitutif (impureté) du graphite

Protocole expérimental

-				
50	m	m	niro	
50			UIIC	

conclusion

Contexte Ces fortes concentrations d'azote constitutif dans le graphite indiquent que ¹⁴C est principalement formé par l'activation neutronique de l'azote ⇒ Cependant, l'inventaire en ¹⁴C de EDF montre que **Objectif** \rightarrow une très faible quantité (voire nulle) de ¹⁴C provient de l'activation neutronique de ¹⁴N Mesure de ¹⁴N Est-ce que les concentrations d'azote sont faibles dans le constitutif modérateur graphite francais? Est-ce que ¹⁴N et/ou ¹⁴C sont relâchés pendant le fonctionnement du réacteur ? **Perspectives:** - Comportement thermique de l'azote (en cours) - Comportement de l'azote sous irradiation et corrosion radiolytique

SOMMAIRE

Contexte

Objectif

• Mesures de ¹⁴N constitutif dans le modérateur graphite

Comportement thermique du ¹⁴C

Contexte

Protocole expérimental

1- Implantation ionique

Logiciel SRIM

L'implantation de ¹³C est utilisé pour simuler le ¹⁴C déplacé par recul de son site structural initial pendant l'irradiation en réacteur

Objectif

Mesure de ¹⁴N constitutif

Comportement thermique du 14**C**

```
E=150 keV \rightarrow Rp= 300 nm
\oint = 6x10^{16} \text{ at/cm}^2 \rightarrow [^{13}C]_{RP} = 5\% \text{ at.}
```


Température ambiante (15°C) \rightarrow Graphite très déstructuré (microspectroscopie Raman) Ou

> → Graphite moins déstructuré (microspectroscopie Raman) 600°C

Conditions expérimentales choisies pour évaluer l'influence du désordre structural du modérateur graphite, tel qu'il peut exister dans le graphite irradié, sur la migration du ¹³C

Protocole expérimental

Contexte

1- Implantation ionique

2- Profilométrie du ¹³C sur les échantillons tels qu'implantés

Objectif

Mesure de ¹⁴N

constitutif

Comportement thermique du ¹⁴C Les profils en profondeur sont mesurés par microsonde ionique (SIMS)

Protocole expérimental

Contexte

Objectif

Mesure de ¹⁴N constitutif

Comportement thermique du ¹⁴C

1- Implantation ionique

- 2- Profilométrie du ¹³C sur les échantillons tels qu'implantés
- 3- Recuit en atmosphère inerte
 - 500°C pendant 3h
 - 1300°C pendant 7h

Protocole expérimental

Contexte

Objectif

Mesure de ¹⁴N constitutif

Comportement thermique du ¹⁴C

1- Implantation ionique

- 2- Profilométrie du ¹³C sur les échantillons tels qu'implantés
- 3- Recuit en atmosphère inerte
- 4- Profilométrie du ¹³C sur les échantillons recuits

Comparaison des profils obtenus sur les échantillons tels qu'implantés et recuits pour mettre en évidence un éventuel mécanisme de migration (relâchement, diffusion, transport)

conclusion

Contexte

Objectif

Mesure de ¹⁴N constitutif La température seule n'induit pas de relâchement du ¹⁴C présent dans le graphite, quand celui-ci est recuit à une température proche de celle de fonctionnement du réacteur (500°C) et même à plus haute température (1300°C)

Perspectives:

Pour comprendre l'inventaire en ¹⁴C

- → Etudier les effets de l'irradiation et de la corrosion radiolytique sur le relâchement du ¹⁴C
- → Synergie avec la température

Comportement thermique du ¹⁴C

Contexte

Objectif

Mesure de ¹⁴N constitutif

Comportement thermique du ¹⁴C

Merci pour votre attention

Contexte

Objectif

Mesure de ¹⁴N constitutif

Comportement thermique du ¹⁴C

ANNEXES

∞ *Le graphite nucléaire*: Evolution en réacteur

Contexte

Calculation-measurement Identification

Contexte

Objectif

Mesure de ¹⁴N constitutif

Comportement thermique du ¹⁴C 1) Develop a 3D mapping of neutron flux [TRIPOLI code]

2) Build an inventory of radioactivity produced by this flow [DARWIN/PEPIN code]

- Values of impurity used are adjusted, by least squares method, to a value derived from measurements

3) Obtain confidence interval for each radionuclide inventory

- Each measured radionuclide has a standard deviation