Development and application of a polarizable force-field for actinides in aqueous solution including cooperative charge-transfer terms

Challenges for theoretical modeling in actinide science

- Obtain information on radionuclide mobility in the environment
- Experimental data on radionuclides have some limitations
 - * Radioactivity
 - Scarce gas-phase data
 - Most data are in the condensed phase
 - Main goals of theoretical modeling is
 - Improve our understanding of existing compounds
 - Help the interpretation of current experimental data
 - Predict properties for unknown species or species difficult to manipulate experimentally (Plutonium,)

cf poster J. Champion et al.

"Combined experimental and theoretical investigations of the heavy highlight electromobility. (I⁻ and At⁻)."

Goals:

- System studied: Thorium(IV) and Curium(III)
- Establish a predictive model
- investigate the counter-ion effect
- Comparison to available experimental data:
 - ✤ X-Ray spectroscopy: EXAFS, HEXS
 - * NMR for structural properties and ligand exchange dynamics

Approach to the theoretical modeling in actinide science

Microscopic

Theoretical models for solvation

- Why not using ab initio MD (Car-Parinello MD)?
- too short time scales (~100 ps)
- problems with the accuracy of density functional theory (DFT) for
 - * water-water interactions
 - ion-water interactions (most functionals overestimate M-ligand interactions)

Why developing classical polarizable force-fields?

Solve the Newton's equations.

$$\vec{F} = -\sum g \vec{r} a d U_{int}$$

Parametrized Mⁿ⁺-L interaction potentials:

- \star repulsion
- ✤ electrostatic
- * polarization
- * metal-oxygen bond (covalency)

Why developing classical polarizable force-fields?

- Solve the Newton's equations.
- Parametrized Mⁿ⁺-L interaction potentials:
 - \star repulsion
 - ★ electrostatic
 - \star polarization
 - * metal-oxygen bond (covalency)
- No experimental data used to parametrize the force field
- Build a predictive force field using ab initio quantum-chemical reference data

$U = U_{rep} + U_{qq'} + U_{pol} + U_{HB}$

M. Masella and P. Cuniasse, J. Chem. Phys. 119, 1866 (2003)

$$U = U_{rep} + U_{qq'} + U_{pol} + U_{CT}$$

M. Masella and P. Cuniasse, J. Chem. Phys. 119, 1866 (2003)

$$U = U_{rep} + U_{qq'} + U_{pol} + U_{CT}$$

$$U = U_{rep} + U_{qq'} + U_{pol} + U_{CT}$$

$$U = U_{rep} + U_{elec} + U_{pol} + U_{CT}$$

Polarization

$$U = U_{rep} + U_{elec} + U_{pol} + U_{CT}$$

Polarization

- B.T. Thole, Chem. Phys., 59, 341-350 (1981)
- M. Masella and P. Cuniasse, J. Chem. Phys., **119** 1866 (2003)

$$U = U_{rep} + U_{elec} + U_{pol} + U_{CT}$$

Polarization

- B.T. Thole, Chem. Phys., 59, 341-350 (1981)
- M. Masella and P. Cuniasse, J. Chem. Phys., **119** 1866 (2003)

How to optimize force-field parameters?

Need of a large set of ab initio reference data computed with the highest accuracy:

Metal-ligand interaction curve

How to optimize force-field parameters?

Need of a large set of ab initio reference data computed with the highest accuracy:

Choice of the ab initio method

Table 3: Binding energies of the Th(IV)/water dimer in kcal/mol at 2.22 Å, computed with different multi-reference and single-reference correlated methods.

WFT				DFT					
HF	MP2	CCSD(T)	MRCI+DC	BP86	B3LYP	MX06-HF	MX06-L	MX06-2X	
145	155	155	156	173	165	163	167	161	

K. E. Gutowski, D. A. Dixon, J. Phys. Chem. A, **110**, 8840-8856 (2006)

P. Wahlin, et al. J. Chem. Theory Comput., 4, 569-577 (2008)

J. P. Austin, et al. Phys. Chem. Chem. Phys., 11, 1143 (2009)

Ab initio An³⁺-H₂O pair potential

15

Parameters adjusted on the clusters and accuracy of the fit

Adjustment of the many-body terms

Parameters adjusted on the clusters and accuracy of the fit

Adjustment of the many-body terms

For each parameter set, 10 ns molecular dynamics with starting points

 Th(IV) and Cm(III) embedded in 1000 water molecules with periodic boundary conditions

« POLARIsation and Simulations (Molecular Dynamics) »

(>60 000 lines, MPI/FORTRAN95)

Polarisable force field TCPEp Including short-range many-body term (J. Chem. Phys. 1997-2003)

Multiple time steps algorithm MD speed up up to x3 (Mol. Phys. - 2006)

M. Masella (CEA Saclay) **Polaris Code**

Ewald summation techniques NVT MD (GGMT thermostat) NPT MD (isotropic cell fluctuations) XIIIe journées nationales de radiochimie et de chimie nucléaire 17

Thorium (IV) and Curium(III) aqua ions

Coordination of Cm(III)

Parameter set	CN	r(Cm-O)		CN ₂
M _{nocoop}	9.0	2.41		20.9
<u>M</u> dens	8.9	2.49 stim		19.7
<u>M</u> 3body	8.8	Arbitrary		18.8
M _{dens}	8.4	2.49		20.4
M _{3body}	8.2	2.49	2 3 4 5 6 7 Distance in Å	20.3
Average MD	8.6 ± 0.3	2.49		19.8 ± 0.6
Average Exp	8-9	2.45-2.48		13(4)

F. Réal et al. accepted to J. Comput. Chem.

ie nucléa

Parameter set	CN	r(Cm-O)		CN ₂	
M _{nocoop}	10.0	2.43		17.5	
<u>M</u> dens	8.0	2.42	- 30 $ 30$ $ 30$ $ 30$ $ -$	20.0	
<u>M</u> 3body	8.0	2.44	20 vater mole	14.6	
M _{dens}	9.0	2.48		21.2	
M _{3body}	9.0	2.47	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16.3	
Average MD	8.5 ± 0.25	2.45 ± 0.02	1	8.0 ± 2.0	
Average Exp	8-12	2.45-2.51			
			F. Réal et al. accepted to J. Comput. Chem. XIIIe journées nationales de radiochimie et de chimie nuclé		

Temporal properties

Parameter set	<u>M</u> coop	<u>M</u> 3body	M _{coop}	M _{3body}	Average	Exp.	
Cm(III)							
D _{Cm} (10 ⁻⁵ cm ² s ⁻¹)	0.59	0.53	0.52	0.58	0.55 ± <mark>0.03</mark>	0.6	
mrt1 (ps)	140	510	240	670	520 ± <mark>200</mark>	830, 940 for Gd(III)	
mrt2 (ps)	7.7	8.7	7.5	9.9	8.5 ± 1.1	?	
Th(I∨)							
D _{Th} (10 ⁻⁵ cm ² s ⁻¹)	0.70	0.54	0.58	0.59	0.60 ± <mark>0.05</mark>	?	
mrt1 (ns)	> 10	> 10	> 10	> 10	-	< 20 ns	
mrt2 (ps)	17.7	15.6	18.6	29.6	20.5 ± 4.7	?	

Atta-Fynn et al. J Phys, Chem A. 2011

For Cm^{3+:}

• AIMD mrt1 = ? not computed due to lack of statistic

• CMD 3b or LJ (no MetOx Bond) ≈ 3ps.

F. Réal et al. accepted to J. Comput. Chem.

Water polarization near the cation

Modeling counter-ions effects(ex: halides)

Modeling counter-ions effects(ex: halides)

Accuracy the of Anion/Water polarisable potentials

Same procedure for halides: X-H₂O interaction

Enthalpy for gas-phase reactions $[X(H_2O)_{n-1}]^2 + H_2O \rightleftharpoons [X(H_2O)_n]^2$

F ⁻					Cl ⁻		Br ⁻		
n	QM	MM	exp.	QM	MM	Expt.	QM	MM	Expt.
1	27.9	26.8	23.3	14.4	13.7	13.1/14.7	12.4	12.4	12.6/11.7
2	19.3	20.0	16.6/19.2	12.9	12.5	12.7/13.0	11.9	10.9	12.3/11.6
3	16.9	17.0	13.7/15.3	13.4	12.9	11.7/11.8	13.1	12.8	11.5/11.4
4	13.2	13.2	13.5/13.9	11.3	12.0	11.1/10.6	12.6	12.0	10.9/11.0
5	10.1	9.9	13.2/12.3	7.6	8.5	9.5	8.0	7.9	10.8
6	9.9	8.2	10.9	8.8	5.4	8.8	6.8	7.0	10.3

M. Trumm et al. J. Chem. Phys. 136, 044509 (2012)

25

Anion hydration properties

Accuracy the of Anion/Water polarisable potentials

27

Classical force-fields allow for long-time dynamics

- Classical force-fields allow for long-time dynamics
- Strengths of our force-field model
 - Completely ab initio
 - * Adjusted to reproduce many different physical/chemical situations
 - * efficient MD code enables us to explore various models/parameter sets

- Classical force-fields allow for long-time dynamics
- Strengths of our force-field model
 - Completely ab initio
 - * Adjusted to reproduce many different physical/chemical situations
 - * efficient MD code enables us to explore various models/parameter sets

Uncertainties of the force-field models

- impact CN number (± 0.3)
- impact first-hydration shells distances (± 0.02 Å)
- * impact mean-residence times (± 0.10 ns)
- * do not impact diffusion coefficients

- Classical force-fields allow for long-time dynamics
- Strengths of our force-field model
 - Completely ab initio
 - Adjusted to reproduce many different physical/chemical situations
 - * efficient MD code enables us to explore various models/parameter sets

Uncertainties of the force-field models

- * impact CN number (± 0.3)
- impact first-hydration shells distances (± 0.02 Å)
- impact mean-residence times (± 0.10 ns)
- * do not impact diffusion coefficients
- Strong influence of second-shell Bromide counter ions
 - * We need to understand how Br influence the hydration shell around the anion

Acknowledgments & Financial Support

University of Lille

- Yansel Omar Guerrero Martinez (PhD student)
- Dr. Valérie Vallet, Dr. Jean-Pierre Flament

CEA, Centre de Saclay

Dr. Michel Masella

INE, Forschungszentrum Karlsruhe

- Dr. Michael Trumm
- Dr. Bernd Schimmelpfennig

Financial support:

- CNRS & Ministère de la Recherche et de la Technologie
- ACTINET-I3 european network

