La Physique des Particules

Catherine Biscarat (LPSC Grenoble)

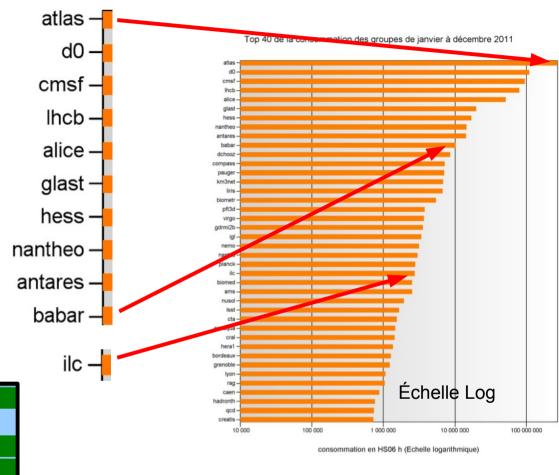
Pour le groupe de travail « Calcul »

Le groupe de travail "Calcul"

```
Nicolas Arnaud (LAL) - Edouard Audit (Irfu - SAp) – Volker Beckmann (APC) – Dominique Boutigny (CC-IN2P3) – Vincent Breton (LPC Clermont et IdG) – Sacha Brun (Irfu - SAp) – Jaume Carbonell - Frédérique Chollet (LAPP) - Cristinel Diaconu (CPPM) – Pierre Girard (CC-IN2P3) – Gilbert Grosdidier (LAL) - Sébastien Incerti (CENBG) – Xavier Jeannin (CNRS – Renater) - Edith Knoops (CPPM) Giovanni Lamanna (LAPP) – Eric Lançon (Irfu – SPP) – Fairouz Malek (LPSC) – Jean-Pierre Meyer (Irfu – SPP)) – Thierry Ollivier (IPNL) – Yannick Patois (IPHC) – Olivier Pène - Roman Pöschl (LAL) – Ghita Rahal (CC-IN2P3) – Patrick Roudeau (LAL) Frédéric Schaer (Irfu – SPP) – Olivier Stezowski (IPNL)
```

Remerciements à :

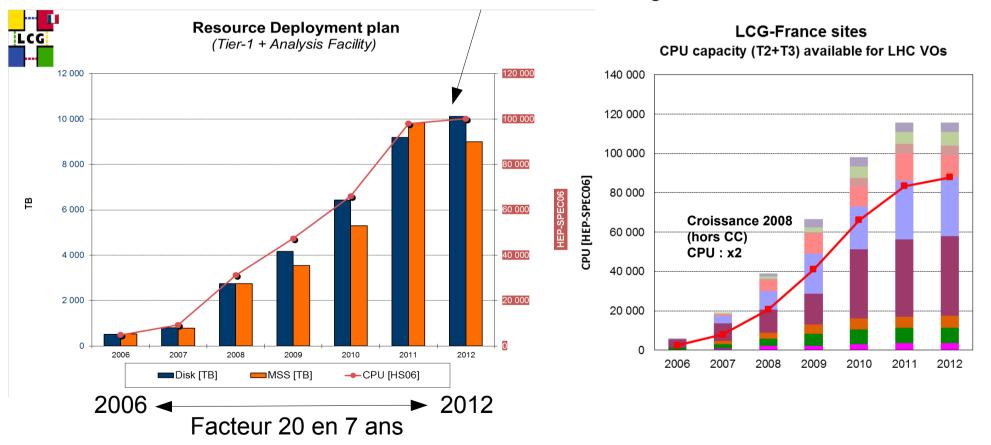
Claude Charlot (LLR), Sébastien Binet (LAL), Tibor Kurca (IPNL)


Les consommateurs de ressources

Une vue actuelle:

Classement des groupes par consommation de CPU en 2011 au CCIN2P3

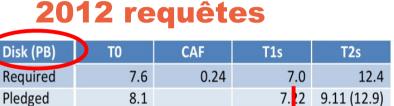
Les calendriers :



Les ressources allouées au LHC en France

- Contribution de la France à l'effort mondial : 10%
 - Clé de répartition budgétaire : 15% (ALICE, LHCb), 45% (ATLAS), 25% (CMS)

Restriction budgétaire



Les ressources à venir LHC

Expression des besoins des expériences : 2 ans à l'avance

-36%

Pas de plan à long terme (modèles changent, luminosité)

2014 sera annoncée à la fin du mois

CPU (KHEP06)	T0	CAF	T1s	T2s
Required	90.0	35.0	95.0	207
Pledged	90		95	115 (194)
Difference	0%		0%	-80%

2013 requêtes

6%

+50% (accumulation des données)

(Disk (PB)	TO	CAF	T1s	T2s
	Required	13.2	0.24	10.9	19.4
	Pledged				
	Difference				

Chaque T1

CPU (KHEP06)	T0	CAF	T1s	T2s
Required	90.0	35.0	95.0	194.8
Pledged				
Difference				

[lan Bird, Overview Board WLCG, 9th mars 2012]

Ressources dans les sites (calcul grossier) :

- Budget constant + loi de Moore → augmentation des ressources de 30% / an
 - On compte 10 % / an lors des arrêts du LHC (2013, 2017)

Difference

ILC

Activités de calcul actuelles :

- Analyse données faisceaux tests
- Simulations détaillées

Technical Design Report ILCConceptual Design Report CLIC

Requêtes au CCIN2P3

	Année, scénario	Stockage [TB]	CPU [kHS06]	
	2011	50	2 000	
1	2012	60	12 000	
	2013	20	2 000	
	2014	Idem 2013		
	≥ 2014, ILC concretisé	3-4 x 2011		
	≥ 2014, ILC retardé	ldem 2013		

Modèle de calcul:

- Distribué (grille, VO ILC ; ouvert au cloud si cette technologie prédomine)
- Le CCIN2P3 sera sollicité pour jouer un rôle majeur (25% cette année)
- 2014-1016 : années charnières pour organiser le calcul

Requêtes:

- modestes vs LHC (2012 : 3% de la réquète ATLAS au CC)
- Mais besoin de services stables
- Développer la structure en France et l'intégrer dans une structure mondiale

SuperB

Très grandes quantités de données (ab⁻¹)

 Comparable à une expérience LHC au moment de SLHC

Modèle de calcul:

- Idem Babar (Données brutes : 2 copies)
- sur la grille (architecture LCG)
- TDR computing prévu en 2013
 - Avec MAJ du modèle/estimation

Estimation à long terme des besoins

 Souhaité : rôle majeur du CCIN2P3 (gd succès avec Babar)

)	Préconisé au CC	IN2P	3
Année	Données Stock	Stock	

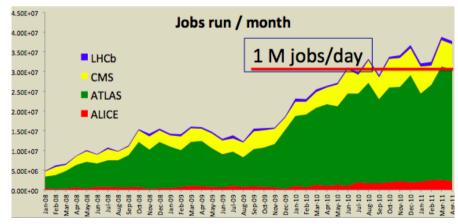
Année	Données Brutes [PB]	Stock. bande [PB]	Stock. disque [PB]	CPU [kHEP06
1 (mise en place)	0	0	0	0
2 (montée 1/2)	10	0.5	1	45
3 (montée 2/2)	40	2	3	175
4 (nominale 1/5)	80	4	5	360
5 (nominale 2/5)	120	7	7	550
6 (nominale 3/5)	160	9	8	750
7 (nominale 4/5)	200	12	9	940
8 (nominale 5/5)	240	14	11	1130

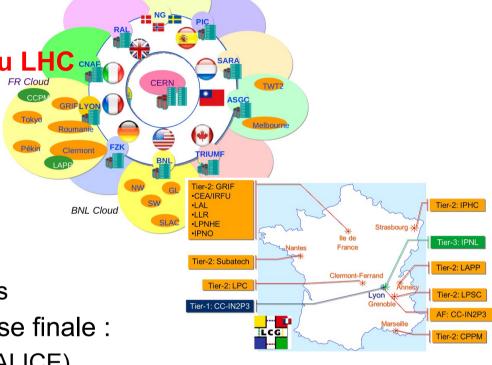
1 copie des données

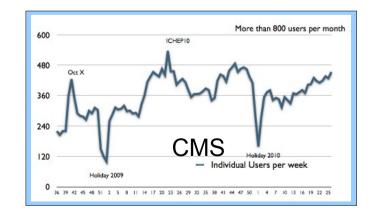
Participation de 10% au calcul et stockage

Futur:

- SuperB ouvert aux progrès dans les modèles des expériences LHC
- SuperB est engagé dans R&D (parallélisme et IO stockage)


Le LHC computing : la grille


La grille WLCG en bref


- La solution au défit informatique du LHC
- Des centres de calculs distribués
- Un intergiciel commun, des VO

Depuis le démarrage du LHC

- La grille marche vraiment
 - Production MC, traitement des données
- De nombreux utilisateurs pour l'analyse finale :
 - ~800 (ATLAS, CMS); ~250 (LHCb, ALICE)

Leçons apprises LHC

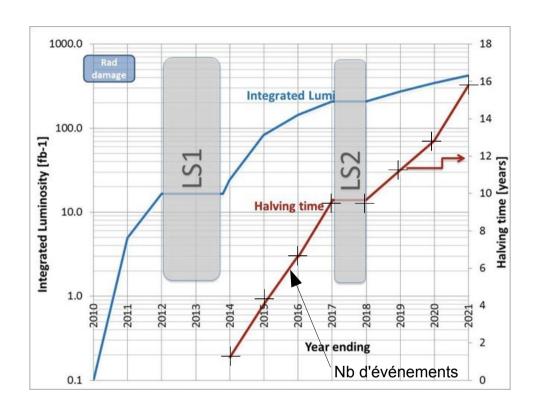
La grille est complexe

- Beaucoup de travail sous-jacent (sites)
- Beaucoup d'effort pour cacher la complexité aux utilisateurs

Modèle hiérarchique des débuts (2002)

- Jobs envoyés aux données
- Données résidentes et pré-placées MAIS ne tient pas compte de la popularité
- Inquiétude vis-à-vis du réseau à l'époque MAIS réseau très stable
- Services distribués → nouvelle tendance à centraliser (simplification)

Evolutions passées des modèles

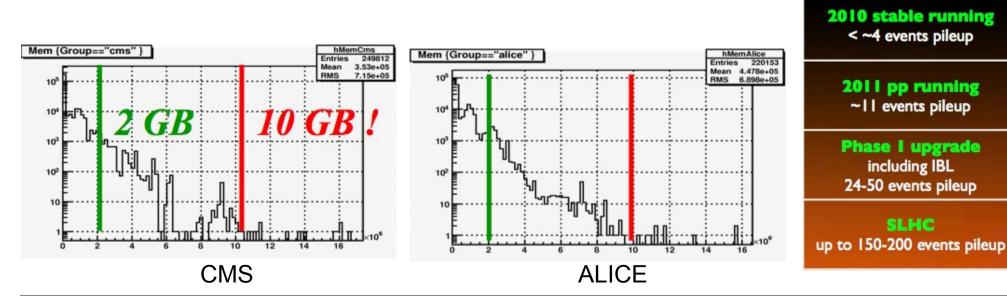

- Placement dynamique des données
- Distribution des software sur les sites (CVMFS)

Un déluge de données

Halving time : date où il y a un doublement des données

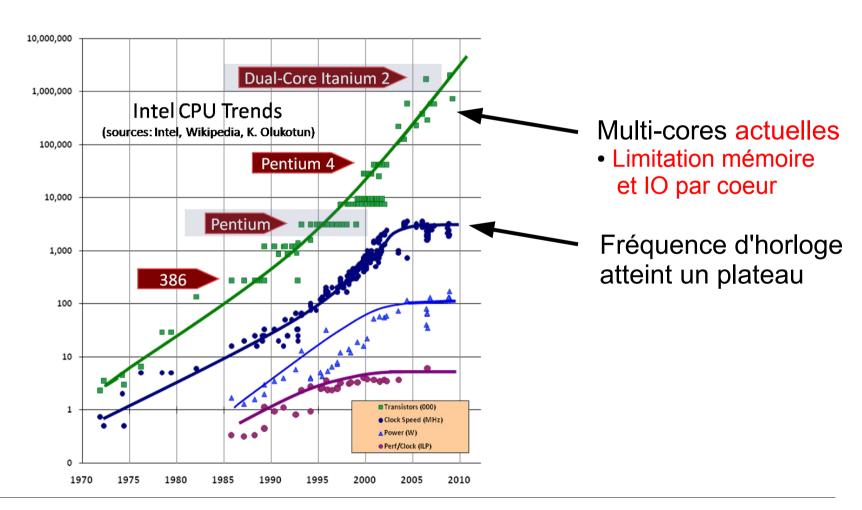
Doublement du dataset chaque année

- Stockage, accès et traitement des données
- Traitement des données
- Passage à l'échelle avec les technologies actuelles ?
- Problème qui n'est plus propre à notre communauté (sciences, e-commerce, réseaux sociaux, ...)


Travail en cours:

- Fédération de stockage (un point d'entrée unique, xRootd)
 - Condition d'un bon réseau (LHCOne)
- Développements dans les bases de données (rapidité d'accès)
 - Investigations de produits issus du web (Hadoop)
- Passage au cloud (« self-service », élasticité)

cf. Dominique Boutigny


La consommation de mémoire

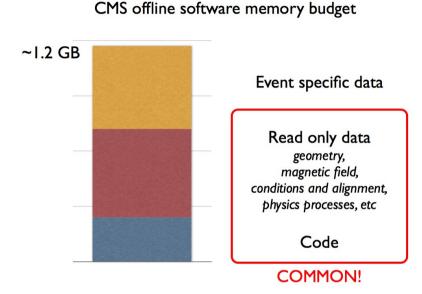
- Cahier des charges pour les sites : 2 GB/ core de mémoire
- Flot d'informations à traiter
 - Eg: ATLAS MC event avec trigger et « truth » dépasse 3GB
 - → demande aux sites d'augmenter les limites des queues
- Le pile-up en 2012 devrait excéder les prévisions initiales
 - Eg : CMS pourraient être limité en mémoire pour le *reprocessing* en 2012
 - → augmentation de la mémoire par core
- Pas en adéquation avec les machines modernes

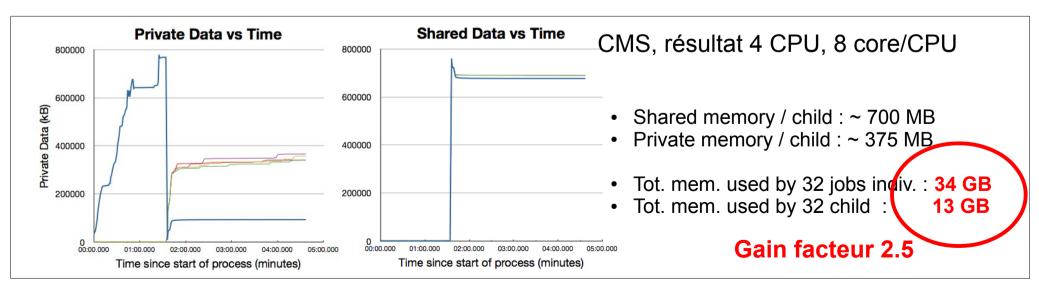
2005: « The free lunch is over »

- Les performances des CPUs conventionnelles ne progressent plus
- Si les besoins en HEP augmentent, il faut s'adapter aux nouvelles architectures : multi-cores, many-cores, GPU (console de jeux)

Solutions

Thread = fil d'exécution


- La technique HEP ne marche plus
 - 1 processus et un thread sur 1 core ; n cores indépendants

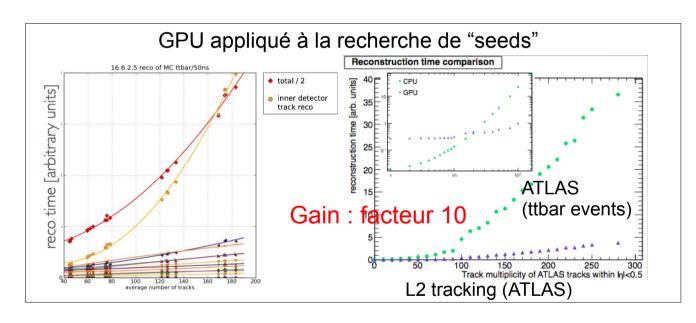

- Obligation de paralléliser
 - Les événements (relativement facile)
 - Les algorithmes (difficile et peu de gain en mémoire actuellement)

Court terme: multi-cores

Le Fork(): partage la mémoire entre parent et enfants

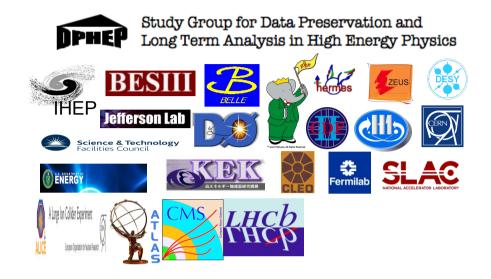
- fourni par Unix
- facile à adapter
- Toutes les expériences l'exploitent.
- Queues de batch de tests en place.

Moyen-Long terme

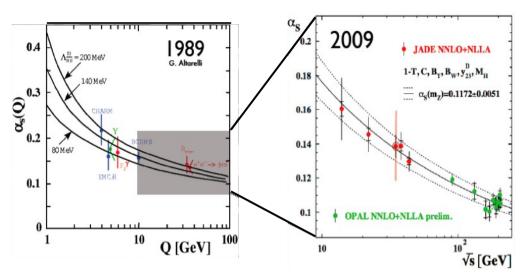

Multi-cores: parallélisation des algorithmes (*multi-threading*)

- Taille des événements
- Ré-écriture du software → effort global des collaborations
- Échelle de temps : 2014-2015

GPUs


Many-cores

Cf. Dominique Boutigny


Prédire à long terme sur les technologies est difficile. Mais les besoins sont immenses.

DPHEP: International Study Group on Data Preservation (ICFA Panel)

Buts initiaux (2009)

- Confronter les modèles de données
- Clarifier les concepts, mettre en place un langage commun
- Investiguer les aspects techniques
- Comparer et créer des liens avec les autres champs
 - astrophysique, sciences de la vie, librairies

Achèvements et plans

- Première publication du concept: arXiv:0912.0255
- 5 w-shops: DESY, SLAC, CERN, KEK, FNAL
- 2 projets dédiés
 - SLAC/Babar and DESY/HERA
- **>** 2012:
 - Status Report Document: mai 2012
 - Session à CHEP2012, w-shop automne Europe
 - Consolider la collaboration internationale

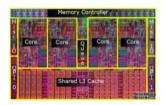
En guise de conclusion

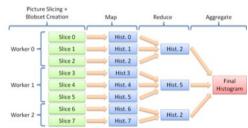
La grille est à peine née : elle a montré ses limites

- Nous sommes à un tournant
- Difficile de faire des projections

Sur les 10 prochaines années :

- tout une richesse d'expériences à soutenir dont 6 projets phares
- la physique a besoin de plus en plus de calcul


Pendant que nous développions le grille, d'autres idées sont nées



Les risques

Nos besoins sont en très forte croissance

- LHC: soutenir l'augmentation du taux de pile-up, luminosité, ecm
- Multiplication des projets très gros consommateurs de ressources informatiques
- Il faut <u>budgétiser</u> l'informatique en amont d'un projet.

« End of the free lunch », la loi de Moore ne marche plus

- L'industrie a des parades mais notre software doit suivre
- Il faut <u>préparer</u> les futurs achats et investissements

Passage vers le cloud

- Le stockage est le problème délicat.

Et tout ce qui n'est pas spécifique à l'informatique :

- Budget plat au mieux
- Perte d'expertise par mouvements de personnels
- Gestion par projets de courte durée (EGI et budgets)