G5 accélérateurs cosmiques et photons de haute énergie

Isabelle Grenier M. Punch, R. Terrier, A. Goldwurm, D. Bernard, D. Barret et al.

Giens 2/4/2012

télescopes X et y

télescopes X et y

Athena

IRFU-IN2P3

autre

aujourd'hui XMM Chandra Suzaku

INTEGRAL

Swift (nuStar)

Fermi

HESS Magic Veritas Milagro...

accrétion-éjection

lois d'échelles accélération-éjection-jets spin et croissance des trous noirs relation sursaut γ supernova équation d'état des étoiles à neutrons nature et évolution des binaires γ histoire de Sgr A* sonder les champs grav. forts demain Athena? Loft? e-Rosita Astro-H Astrosat

SVOM? (Eclairs?)

Gems R&D polarisation X et γ

Fermi

HESS-II CTA Hawc

aujourd'hui XMM

Chandra Suzaku

INTEGRAL

Swift (nuStar)

Fermi

demain Athena? Loft? e-Rosita Astro-H Astrosat

Gems R&D polarisation X et y

Fermi

HESS-II CTA

HESS Magic Veritas Milagro...

induction unipolaire

accélération dans magnétosphère des pulsars transfert Poynting → vent de paires reconnection magnétique évolution MHD du vent

aujourd'hui XMM Chandra Suzaku

INTEGRAL

Swift (nuStar)

Fermi

HESS Magic Veritas Milagro...

accélération par onde de choc

énergie maximale efficacité d'injection proportion e/p réelle et observée rétroaction sur le choc et le champ B évasion du choc comparaison avec les novae demain Athena? Loft? e-Rosita Astro-H Astrosat

Gems R&D polarisation X et γ

Fermi

HESS-II CTA

HESS Magic Veritas Milagro...

demain Fermi

HESS-II CTA

cosmologie & matière noire

champ de lumière extragalactique annihilation de WIMPS γ(monopoles magnétiques) évaporation de trous noirs primordiaux invariance de Lorentz (sursauts+AGN+psr)

IRFU-IN2P3 autre

demain: Fermi + HESS-II

🥥 Fermi

2FGL = 1873 sources tout le ciel en 3 h alerte pour autres observatoires extension ≤ 2014 probable

🥥 HESS-II

en construction, opération ≥ 2012

CTA: le grand observatoire γ futur

grande priorité internationale (Aspera 2011, Astronet, ESFRI)

US decadal survey: recommandation parmi 4 observatoires au sol

maturité technologique

vents de pulsars

restes de supernova

Low-energy section: 4 x 23 m tel. Parabolic reflector FOV: 4°-5° E > 10 GeV

Core-energy array: 23 x 12 m tel. Davies-Cotton reflector FOV: 7°-8° 0.1-10 TeV mCrab sensitivity Ce

one possible configuration

High-energy section:

32 x 5-6 m tel.

Davies-Cotton reflector

(or Schwarzschild-Couder)

FOV: ~10°

10 km² area at multi-TeV

centre Gal.

bulles de Fermi

amas galaxies

matière noire

CTA: performances

- ~ 1000 sources prédites au TeV
- 🥥 buts:
 - gamme: 30 GeV 100 TeV
 ⇒ contraintes processus rayt
 - fov = 6° - $8^{\circ} \Rightarrow$ survey
 - résolution spatiale ~ 1'-2'
 - sensibilité x 10
 - ⇒ spectro-imagerie de sources étendues
 - \Rightarrow variabilité < mn

CTA: performances

- ~ 1000 sources prédites au TeV
 buts:
 - gamme: 30 GeV 100 TeV
 ⇒ contraintes processus rayt
 - fov = 6° - $8^{\circ} \Rightarrow$ survey
 - résolution spatiale ~ 1'-2'
 - sensibilité x 10
 - ⇒ spectro-imagerie de sources étendues
 - ⇒ variabilité < mn

uniform exposure

CTA: sites & contributions

- 2 sites, 1 consortium
- 🥪 calendrier
 - design concept (Exp. Astron. 2011, 32, 193)
 - sélection site 2013
 - FP7 phase préparatoire \leq automne 2013
 - déploiement partiel \geq 2014
 - opérations ≥ 2019

IN2P3 (95 pers.) APC, CPPM, LLR, LUPM, LPNHE, LAPP + demande CENBG

IRFU (23 pers.) AIM, SPP 3 labos

INSU (36 pers.) IRAP, IPAG, LUTH

Athena: un grand observatoire X

I'après XMM-Chandra: Athena = XMS (spectro-microcalo) et WFI (imageur grand champ)
Sompétition mission L avec Juice et Ngo pour lancement ≥ 2022

spectro-imagerie à haute résolution + timing

Athena: un grand observatoire X

Surface efficace @ 1 keV

Surface efficace @ 6 keV

Champs de vue (WFI)

Mode timing rapide

Orbite (Ariane 5)

Masse

Puissance

Résolution spectrale à 6 keV (XMS)

1.13 m²

0.54 m²

3 eV (2.5 eV)

24' x 24'

32 µs (16)

4100 kg

5 kW

L2

D Hydro Simulation Ferrand et al. (201		2000 3000 4000 5000
		velocity (km/s)
30"	80"	O ^{30"}

Athena: charge utile & contribution France

Maturité technologique élevée contributions françaises
Forte visibilité pour l'Europe et pour la France

+ participation au segment sol scientifique (type XMM-Newton survey science
 + participation-segment sol (Strasbourg+IRAP+Irfu)ns de suivi des performances en vol des instruments

Loft: l'univers X pulsant

- suite de RXTE: transitoires à 2-30 keV
- Spectro dE/E < 260 eV FWHM, résolution spatiale 5'</p>
- en compétition ESA/M3 avec 4 autres projets (mi-2013)

sursauts γ : SVOM \rightarrow Eclairs ?

BAT

100

Peak energy (keV)

10³

10

R&D y

