Journées de Prospective IN2P3-IRFU Presqu'île de Giens, 2-5 avril 2012

G4 – Neutrinos: masses, oscillations. Désintégration du proton

- Introduction: physique du neutrino et signaux de Grande Unification Stéphane Lavignac (IPhT Saclay)
- Les anomalies dans les recherche d'oscillations: au-delà des 3 saveurs ? Guillaume Mention (IRFU/SPP)
- Les expériences futures pour les oscillations de neutrinos, la désintégration du proton et l'astrophysique Alessandra Tonazzo (APC)
- La désintégration double bêta sans émission de neutrino: un test de la violation du nombre leptonique global Laurent Simard (LAL)

Journées de Prospective IN2P3-IRFU Presqu'île de Giens, 2-5 avril 2012

G4 – Neutrinos: masses, oscillations. Désintégration du proton

Introduction: physique du neutrino et signaux de Grande Unification Stéphane Lavignac (IPhT Saclay)

Les neutrinos sont des fermions à part

- beaucoup plus légers que les quarks et leptons chargés

 $m_{\nu} \lesssim 1 \,\mathrm{eV}$ $m_e = 511 \,\mathrm{keV}$

- grand mélange leptonique versus petits angles de mélange quarks (CKM)

générations 1–2	$ V_{us} = 0.2253 \pm 0.0007$	$ U_{e2} ^2 = 0.308^{+0.018}_{-0.017}$
générations 2–3	$ V_{cb} = 0.0410^{+0.0011}_{-0.0007}$	$ U_{\mu3} ^2 = 0.51^{+0.06}_{-0.07}$
générations 1–3	$ V_{ub} = 0.00347^{+0.00016}_{-0.00012}$	$ U_{e3} ^2 = 0.013^{+0.007}_{-0.005}$

fit global PDG (2010)

Schwetz, Tortola, Valle, 1108.1376 (HN)

 produits comme superposition cohérente d'états propres de masse dans les désintégrations faibles => oscillations de saveur

$$\begin{array}{ccc}
& & & \\$$

Les neutrinos sont des fermions à part (suite)

- pas de charge électrique

- \Rightarrow peuvent être leur propre antiparticule
 - $\overline{\nu} \neq \nu$ Diracnombre leptonique conservé $\overline{\nu} = \nu$ Majorananombre leptonique violé
- ⇒ peuvent se mélanger (osciller) avec des fermions sans interactions (neutrinos stériles)

$$\nu_{e,\mu,\tau} \leftrightarrows \nu_s$$

- interagissent faiblement et difficiles à détecter

⇒ malgré les progrès expérimentaux, leurs propriétés sont moins bien testées que celles des quarks et des leptons chargés

Les neutrinos, fenêtre sur la nouvelle physique

<u>... à très haute échelle</u>

Théorie effective : $\frac{1}{\Lambda} LLHH \longrightarrow m_{\nu} = \frac{v^2}{\Lambda}$ (si Majorana)

 $m_{\nu} \sim 0.05 \,\mathrm{eV}$ suggère $\Lambda \sim 10^{15} \,\mathrm{GeV}$

proche de l'échelle d'unification des couplages de jauge

→ théorie de Grande Unification?

e.g. SO(10) – contient des neutrinos droits superlourds qui engendrent l'opérateur LLHH (mécanisme de seesaw)

 $\Lambda \sim M_R$

Seul signal observable (sauf <u>séénario</u> particulier): désintégration du proton $\frac{1}{M_{\nu}} = f_L v_L - \frac{1}{v_R} Y^T f_R^{-1} Y \equiv M_{\nu}^{T} + M_{\nu}^{T}$ $\frac{1}{\Lambda^2} qqql \quad \text{(échange de bosons de jauge / triplets de couleur superlourds)}$ $\Rightarrow \quad p \to \pi^0 e^{-M_R} = p f_R v_K + \bar{\nu} , \dots$

... à très haute échelle (suite)

Les neutrinos droits superlourds peuvent aussi engendrer l'asymétrie baryonique de l'Univers via le mécanisme de la leptogenèse

 $\begin{array}{c} \underline{...\,\dot{a}\,basse\,\acute{e}nergie}}{\text{Neutrinos stériles?}} & \underline{\nu_4\,?} & \underline{\nu_{e,\mu,\tau} + \nu_s\,?} & \bar{\nu_{e,\mu,\tau} + \nu_s\,?} & \underline{\nu_{e,\mu,\tau} + \nu_s$

<u>... possibilité de tester</u>

La symétrie CPT $\Delta m^2 = \Delta \overline{m}^2$? $\theta = \overline{\theta}$?

L'invariance de Lorentz: mesure de la vitesse des neutrinos

→ même si le résultat d'OPERA n'est pas confirmé, l'invariance de Lorentz restera moins bien testée dans le secteur des neutrinos que dans celui des leptons chargés

Oscillations de neutrinos

effets de matière

les diffusions élastiques vers l'avant créent un potentiel différent pour les ν_e , $\nu_{\mu,\tau}$ (ν_s) et pour les neutrinos vs les antineutrinos \Rightarrow oscillations modifiées dans la matière, résonances possibles...

oscillations à 3 saveurs (dans le vide)

$$\begin{split} & \bigvee \qquad l_{\alpha} \quad [\alpha=e,\mu,\tau] \qquad \text{matrice de mélange leptonique (PMNS)} \\ & \nu_{\alpha}=\sum_{i=1}^{i=3}\,U_{\alpha i}\,\nu_{i} \\ & \text{états propres de saveur} \end{split}$$

$$P_{\nu_{\alpha} \to \nu_{\beta}(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta})} = -4 \sum_{i < j} \operatorname{Re} \left(U_{\alpha i} U_{\beta i}^{\star} U_{\alpha j}^{\star} U_{\beta j} \right) \sin^{2} \left(\frac{\Delta m_{j i}^{2} L}{4E} \right) \pm 2J \, \epsilon^{\alpha \beta \gamma} \sum_{i < j} \epsilon^{i j k} \, \sin \left(\frac{\Delta m_{j i}^{2} L}{4E} \right)$$
$$J = \frac{1}{8} \, \cos \theta_{13} \sin 2\theta_{23} \sin 2\theta_{13} \sin 2\theta_{12} \sin \delta \qquad \Delta m_{j i}^{2} \equiv m_{j}^{2} - m_{i}^{2}$$

2 Δm^2 indépendants: Δm^2_{32} (« atmosphérique ») et Δm^2_{21} (« solaire ») U contient 3 angles de mélange $\theta_{12}, \theta_{23}, \theta_{13}$ et une phase δ [+2 si Majorana]

$$U \equiv U_{23}U_{13}U_{12} \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $\delta \neq 0, \pi \Rightarrow \text{violation de CP dans les oscillations: } P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right) \neq P\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}\right)$

Une période récente riche en succès expérimentaux...

Observations d'oscillations de saveur avec des sources (neutrinos solaires, atmosphériques, d'accélérateurs, de réacteurs) et des techniques (détecteurs Cerenkov, scintillateurs liquides...) indépendantes

Disparition de $\overline{\nu}_e$ (KamLAND) Phys. Rev. Lett. 100 (2008) 221803 Data - BG - Geo ve Expectation based on osci. parameters determined by KamLAND Survival Probability 0.8 0.6 0.2 $\langle L \rangle = 180 \, \mathrm{km}$ 20 40 50 90 100 30 60 70 80 $L_0/E_{\overline{v}}$ (km/MeV)

Expériences d'apparition en cours: OPERA ($\nu_{\mu} \rightarrow \nu_{\tau}, L = 730 \,\mathrm{km}$) T2K ($\nu_{\mu} \rightarrow \nu_{e}, L = 295 \,\mathrm{km}$)

0

Une période récente riche en succès expérimentaux... (suite)

Mesure de deux angles de mélange (θ_{12} et θ_{23}) et des deux différences de masses au carré Δm^2_{32} et Δm^2_{21}

Confirmation des oscillations comme source principale des transitions de saveur observées: autres effets (stériles, interactions non standard, moments magnétiques...) sous-dominants

Sensibilité aux effets d'oscillations à 3 saveurs:

- effet de $\theta_{13} \neq 0$ dans les oscillations de neutrinos solaires et atmosphériques,
- effet de θ_{13} dans les expériences de disparition à grande distance (KamLAND, MINOS, T2K);
- effet de δ dans les expériences d'apparition $\nu_{\mu} \rightarrow \nu_{e}$ (T2K, MINOS)

Une période récente riche en succès expérimentaux... (suite)

Premières indications que $\theta_{13} \neq 0$ en juin 2011 (T2K, MINOS) Confirmation des indications par Double Chooz en décembre 2011 Mesure de $\theta_{13} \neq 0$ à 5 σ par Daya Bay en mars 2012

 $\sin^2 2\theta_{13} = 0.092 \pm 0.016 \,(\text{stat.}) \pm 0.005 \,(\text{syst.})$ [arXiv:1203.1669]

 θ_{13} grand \Rightarrow important pour détermination de la hiérarchie de masse et pour la recherche de la violation de CP

... mais encore de nombreuses questions ouvertes

- I) Le mélange leptonique reflète-t-il une symétrie sous-jacente?
 e.g. l'angle θ₂₃ est-il maximal? (sin² 2θ₂₃ = 1)
 → mesures de précision (expériences long baseline)
- 2) Quelle est la hiérarchie de masse?

→ distinguées par effets de matière (expériences long baseline)

- 3) Quelle est l'échelle absolue de masse des neutrinos?
- → désintégration bêta tritium, cosmologie, (double désintégration bêta)

4) La symétrie CP est-elle violée dans le secteur des leptons?

i.e. a-t-on $P(\nu_{\alpha} \rightarrow \nu_{\beta}) \neq P(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta})$ dans le vide?

condition nécessaire pour la leptogenèse

→ expériences long baseline car *L*P due à termes d'oscillation sous-dominant

5) Les neutrinos sont-ils des fermions de Dirac ou de Majorana?

Majorana: double désintégration bêta sans emission de neutrino Aussi information sur la hiérarchie et l'échelle absolue de masse

 \Rightarrow importantes conséquences théoriques (leptogenèse, GUT...)

6) Existe-t-il plus de 3 neutrinos?

Certaines données expérimentales ne peuvent s'expliquer avec 3 neutrinos (LSND, anomalie des réacteurs...) \Rightarrow suggèrent neutrino(s) stérile(s) de masse de l'ordre d' 1eV

 $N_{\nu} = 4$ compatible avec nucléosynthèse

7) Le proton est-il stable?

Test de l'hypothèse d'unification – une sensibilité de 10^{35} années sur certains modes ($p \rightarrow \pi^0 e^+$, $K^+ \bar{\nu}$) permettrait de tester les modèles SU(5) non minimaux, ainsi que d'autres groupes d'unification comme SO(10)

Programme de recherche proposé par la communauté française

- exploration des anomalies / recherche de neutrinos stériles
 → Guillaume Mention
- mesures de précision, détermination de la hiérarchie de masse, recherche de la violation de CP dans le secteur leptonique, désintégration du proton
 Alessandra Tonazzo
- nature des neutrinos / recherche de la double désintégration bêta sans émission de neutrino
 - → Laurent Simard