LAL UR ()mega

Photon sensor system development platform & MPPC readout ASIC

FJPPL KEK/Orsay /Tohoku/Shinshu/Kyoto

S. Callier, N. Dinu, F. Dulucq, R. Kadono, C. de La Taille, G. Martin-Chassard, A. Koda, K. Miwa, I. Nakamura, T. Nakaya, K. Nishijima, V. Puill, N. Seguin-Moreau, M. Tanaka, T. Takeshita, T. Uchida, M. Yokoyama, <u>K.</u> Yoshimura

Orsay Micro Electronic Group associated

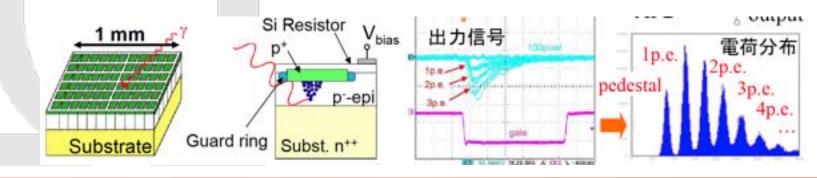
Outline

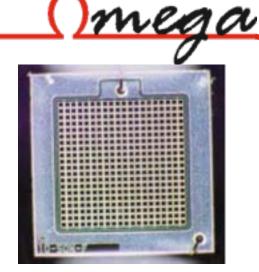
- History and Objective of the project
- SPIROC chip and readout system
 Read out for the specific (ILC) use.
- EASIROC chip and readout system
 - General applications.
- Summary
 - Report from the previous FY
 - Prospect of the coming FY

nega

History and Objective of the Project

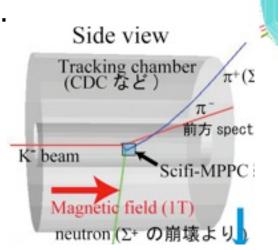
Orsay Micro Electronic Group associated

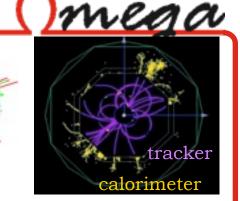

SiPM/MPPC


- PPD(Pixelated Photon Detector)
 - Array of Geiger-mode APDs
 - SiPM MEPhI/Pulsar, MPI, ITC-IRST
 - MPPC Hamamatsu
 - SMP SensL
 - G-APD JINR/Micron
- Features
 - Compact, High gain (10⁵~10⁶)
 - Magnetic field
 - Low cost but small

Many advantages over conventional PD

Low bias voltage 50~70V (need to be fine-adjusted)

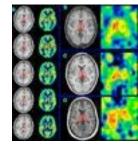




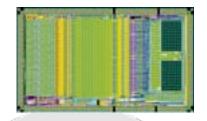
ASICs development within FJPPL activities FJPPL May 2012

Rapid growth of SiPM/MPPC applications

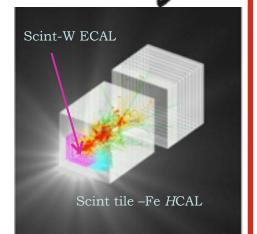
- High Energy physics : calorimetry, PID...
- Nuclear Physics
- Astrophysics



• Medical : imaging, PET..



3


ROC for SiPM/MPPC application : CALICE

- "imaging calorimetry" at ILC
 - 8000 SiPM for tiles readout for AHCAL
 - >Million MPPC for Scintillator ECAL
 - => Need of highly integrated readout chip

SPIROC2 Analog HCAL

36 ch. 30mm²

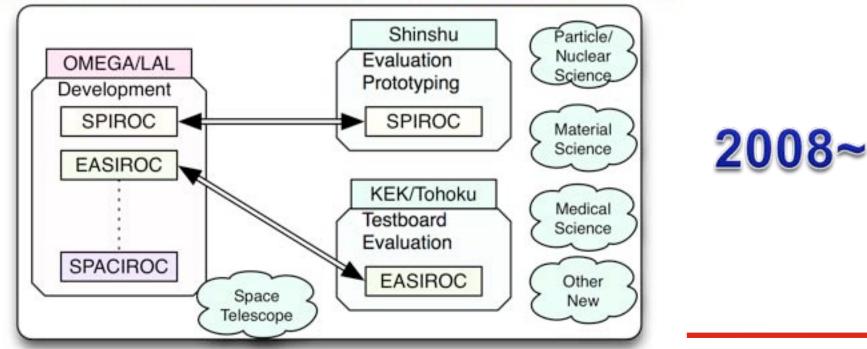
<u>()mega</u>

SiPM 1 mm²

Tuile plastique $3 \times 3 \text{ cm}^2$

ASICs development within FJPPL activities FJPPL May 2012

Demand of ROC for SiPM/MPPC


- SiPM/MPPC is now widely used in varieties of field.
- Readout Electronics is now urgent issue.
 - Small area (\sim mm2) \rightarrow Multi channel (Typically >100 ch)
 - Sensitive to bias voltage \rightarrow need to be controlled by 10mV.
 - Large temperature dependence
- Development of ASIC chip is essential!
 - Fine adjustment of bias voltage
 - Highly integrated
 - Low power
 - Various Trigger scheme

neaa

France Japan collaboration

- Objectives
 - ASIC chip development
 - SPIROC
 - EASIROC
 - Readout system for Photon sensors
 - Widen applications

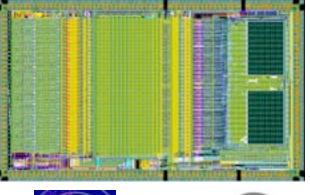
Photon sensor system development platform (FJPPL)

ASICs development within FJPPL activities FJPPL May 2012

()mega

IN 2 P 3

SPIROC

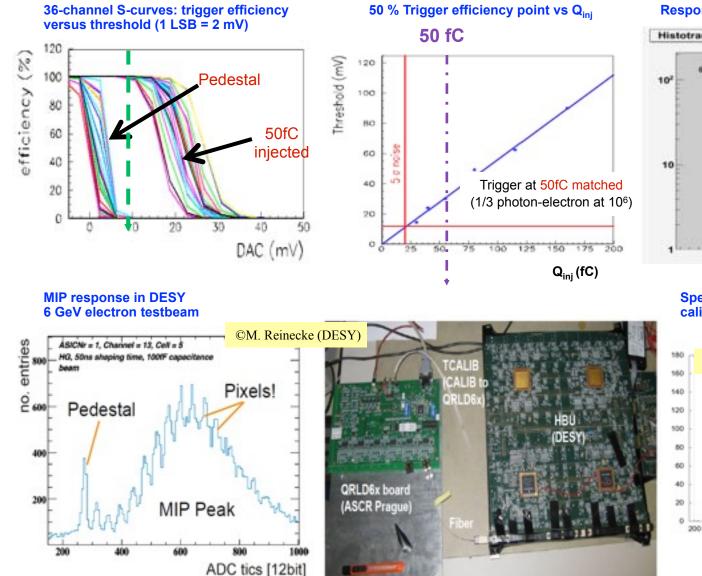

Orsay Micro Electronic Group associated

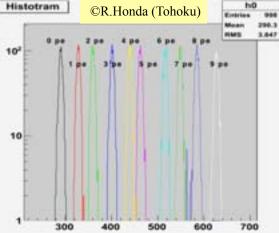
SPIROC main features

- 36-Channel ASIC
- Internal input 8-bit DAC (0-5V) for individual SiPM gain adjustment
- Energy measurement : 14 bits
 - 2 gains (1-10) + 12 bit ADC : 1 pe → 2000 pe
 - Variable shaping time from 25 ns to 175 ns
 - pe/noise ratio : ~11
- Auto-trigger on MIP or on single photo-electron
 - pe/noise ratio on trigger channel : ~24
 - Fast shaper : ~10 ns
 - Auto-Trigger on 1/3 pe (50fC)
- Time measurement :
 - 12-bit Bunch Crossing ID (coarse time)
 - 12-bit step~1 ns TDC->TAC (fine time)

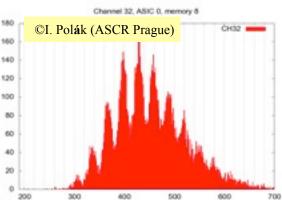
• Other features:

- Analog memory for time and charge measurement : depth = 16
- Low consumption : ~25 μW per channel (in power pulsing mode)
- Individually addressable calibration injection capacitance
- Embedded features (bandgap, 10-bit DAC, etc.)
- Multiplexed analog output for physics prototype DAQ
- 4kbytes internal memory and daisy chain readout



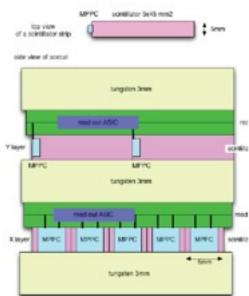


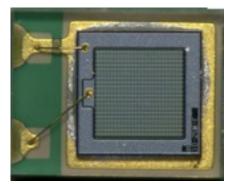
SPIROC: trigger efficiency measurements



Response with different injected charge

Spectrum obtained with the LED calibration system

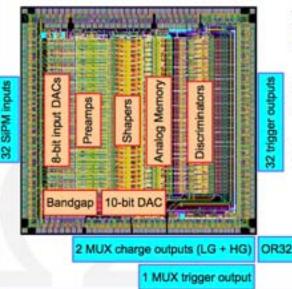



SPIROC for Sc ECAL(CALICE)

- Granular ECAL using Pixelated Photodetector (PPDs) and scintillator strips with orthogonal directions for fine segmentation (5 mmx 5 mm lateral granularity)
- Tungsten absorbers
- Physics prototypes tested in testbeam
 - 30 layers, 72 strips per layer
- Current development for finer granularity:
 - Sensor layer on printed circuit board (EBU boards):
 - 4 rows of 18 scintillator strips
 - 1 SPIROC2b for 1 row
 - Beam test: Fall 2012

@K. Kotera, T. Takeshita

mega

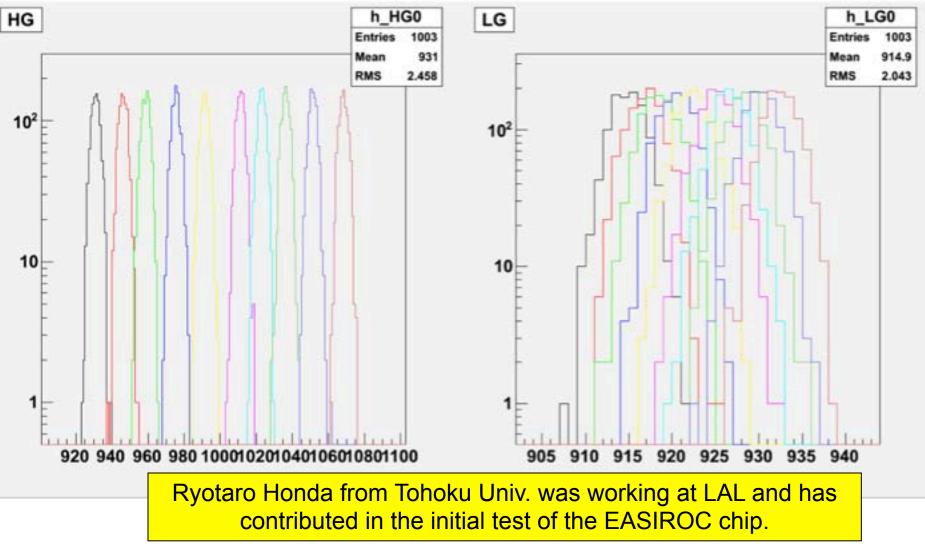

IN 2 P 3

EASIROC

Orsay Micro Electronic Group associated

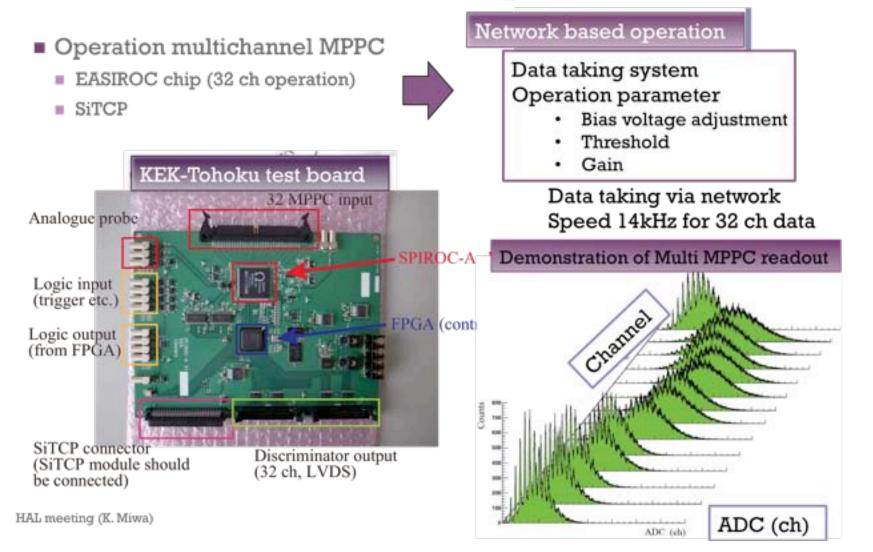
EASIROC: SIMPLEST VERSION OF SPIROC CHIP

- 32-channel front-end readout (analogue part of SPIROC)
- Individual 8-bit DAC for SiPM Gain adjustment
- Energy measurement from 160fC to 320pC (1pe to 2000pe @ SiPM gain = 10^6)
 - 1 pe/noise ratio ~11
 - Variable gain preamplifier
 - Variable time constant CRRC² shaper (25 to 175ns)
 - Common 10-bit DAC for threshold adjustment
 - 2 multiplexed analog outputs
 - (high gain, low gain) [tri state outputs]
- Trigger output
 - 1 pe/noise ratio ~24
 - Trigger on 1/3 pe (50fC)
 - <u>32 Trigger outputs</u>
 - OR32 output
 - <u>Trigger multiplexed output</u> (latch included) [Tri state output]
- Individually addressable calibration capacitance
- Low power : 4.84mW/channel, 155mW/chip
 - Unused feature can be disabled to reduce power consumption
 - Power pulsing facility (idle mode with external signal)



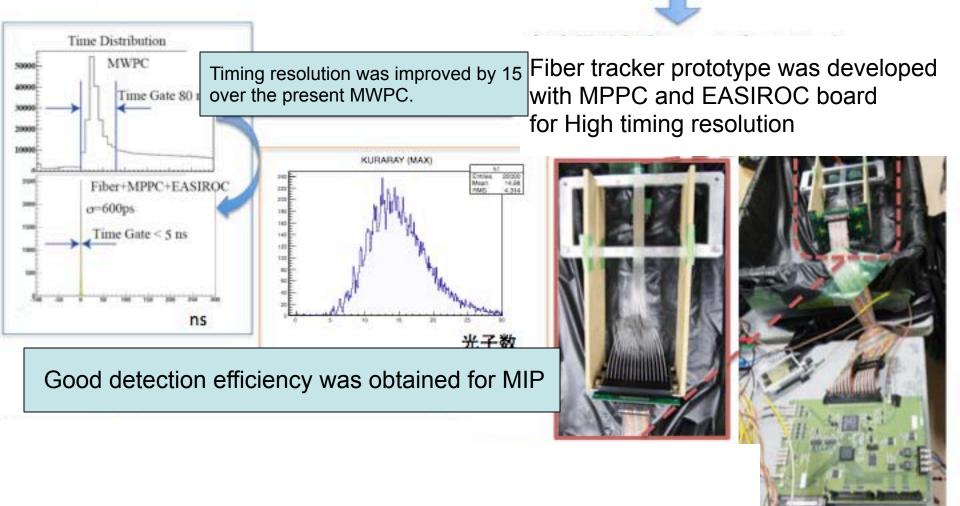
nega

ANALOG OUTPUT


• Histogram for 1 to 10 pe- on both gains

Test Circuit Board with EASIROC

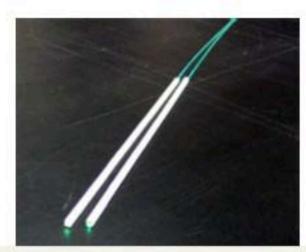
EASIROC board development

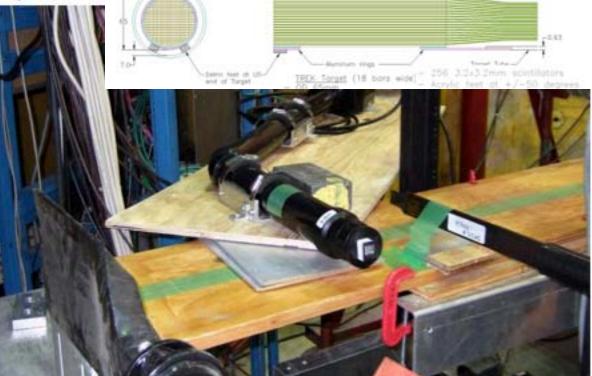


- E40 experiment and application for fiber tracker
- Muon spectrometer
- Active target for TREK experiment
- Cerenkov telescope (Tokai)
- Beam defining counter
- etc.....
- 10 groups are now testing and evaluating ~ 20 test boards
- Some of them were used as MPPC readout systems for realistic beam tests.
- Various new functions were added (e.g. Multihit TDC)by custom FPGA programming

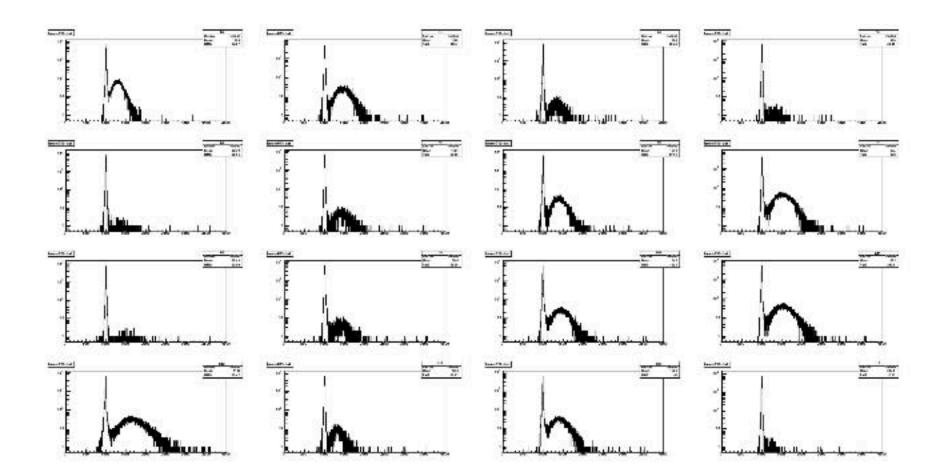
Fiber Tracker with EASIROC Readout

Using high intensity J-Parc beam (2x10⁷ Hz)


Event identification with high resolution TOF


Active Target for TREK (J-PARC) Prototype beam test on TRIUMF M11 • Test of the thin plastic scintillator (3mmx3mm) with the wave length shifter fiber using MPPC and EASIROC readout TREK Active target

180 MeV P, π, μ, e⁺



Scintillator and WLS fiber transmission

ADC spectrum by EASIROC board

Summary 2011~2013

Orsay Micro Electronic Group associated

Omega/KEK collaboration in 2011-2012

- Collaboration very active between Orsay and KEK/Tohoku/Shinshu
- Several subject of interests for MPPC readout
 - CALICE
 - HN diffraction
 - Medical imaging
 - ...
- SPIROC for Sintillator ECAL within the CALICE collaboration
- EASIROC for many applications
 - Many joint measurements on Easiroc
- Visit of M. Tanaka in Paris in February 2012,
- Visit of S.Callier and L. Raux in Tohoku and Shinshu in March 2012 http://kds.kek.jp/conferenceDisplay.py?confId=9261

nega

Omega/KEK project in 2012-2013

- New Chip development
 - Feedback from the further field tests.
 - Next version of EASIROC2 will be submitted in 2013.
- New Circuit boards
 - Tohoku Experiment ~5000 channels
 - VME based 32ch or 64 ch / board
 - High Throughput
 - General Easy Use
 - NIM module
 - High Voltage by Charge pumping
 - Thermometer to compensate temperature drift
- New Applications

()mega

- Keep pin-to-pin compatibility ?
- Add a radiation Hard Slow Control (triple voting) with read back capability
- Set default value for Slow Control
- Individual PA gain setting with smaller steps
- Individual threshold adjustment
- Adding a 2nd threshold ?
- Adding an internal analogue TDC ?
- Power consumption improvement on SCA
- Add internal pipeline ADC ?
- Change trigger output polarity by Slow Control ?
- Open Collector output for OR32 output ?

Anyway, EASIROC2 will not be submitted before 2013

Any other suggestion is welcome & can be discussed

Will be included Should be included Minor change Difficult to add

