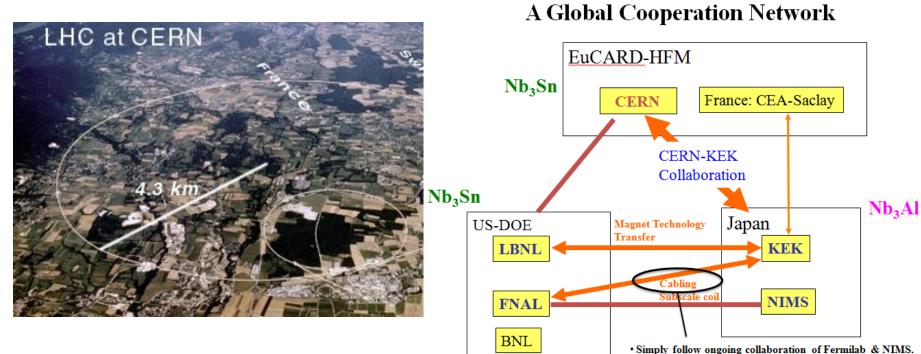


FJPPL workshop 2012 @ Université Blaise Pascal Clermont-Ferrand - 28-30 May 2012

LHC-3 Superconducting Magnets for the LHC Luminosity Upgrade

KEK : <u>N. Kimura</u>, T. Okamura, A. Yamamoto, T. Ogitsu,
T. Nakamoto, Y. Makida, K. Sasaki, T. Okamura,
S. Takada^{****}U. of Tsukuba

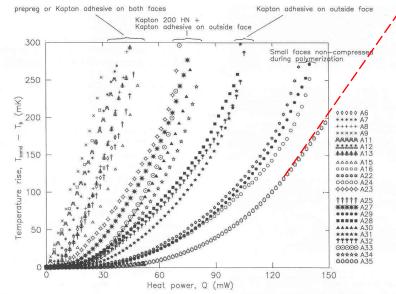

Irfu : <u>B. Baudouy</u>, S. Pietrowicz, A. Four, J. Rifflet, M. Durante, F. Rondeaux

KEK-CEA Superconducting Magnet Co-operation Program

Background (1/3)

For the LHC luminosity upgrade: Replacing the final focus system of the interaction regions with higher performance magnets Increasing the magnetic field from 9 T (NbTi) to beyond 12 T using Nb₃Sn or Nb₃Al

High Field Accelerator Magnet Development



• A compact cabling machine fits to small amount fabrication.

The goal is to construct a high field magnet with Nb₃Al or Nb₃Sn cable.

Background (2/3)

- Heat transfer viewpoint→ electrical insulation of the cable is the largest thermal barrier
- "Beam losses" for the LHC upgrade
 - 50 80 mW/cm³ or 2 3 W/m (cable) \rightarrow At least 5 times higher than for LHC
 - With NbTi LHC magnet polyimide insulation ΔT^{\sim} K (porous to helium)
 - New insulation developed at CERN AT~ 0,3 K

For Nb₃Sn Magnets

- Insulation=fiber glass tape impregnated with epoxy resin
- Dry insulation (no helium)

ΔT?

Background (3/3)

- Heat transfer study and material characterization are necessary
 - Thermal properties of Nb₃Sn magnets insulations
 - Effect of radiation has to be considered also for the lifetime of the magnet
 - Heat transfer in an insulation magnet coil
- Development of "innovative" ceramic insulation
 - Thermal treatment (insulation+Nb₃Sn, easier and less costly construction)
 - Fiberglass + ceramic precursor (CEA patent)
 - Higher heat transfer rate, larger He volume in the insulation (Cp) and heat exchange surface increase (matrix participation)
- Development of heat transfer codes
 - Thermal design and optimization of the cooling paths

Objectives

For the LHC luminosity upgrade, Cryogenic Science Center of KEK and SACM of Irfu have started a collaboration mainly on :

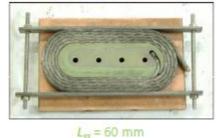
- Heat transfer through electrical insulation
 - Heat transfer in coil mock-up
 - Measurement of the thermal properties @ He II temperature
 - Development of He II heat transfer code
 - Thermal conductivity measurement @ low temperature

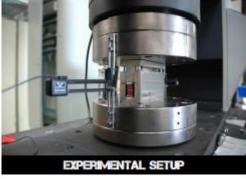
KEK-SACM/Irfu Exchanges

- Nobuhiro Kimura @ Saclay
 Oct. 10-Nov. 5; Porous insulation tests in pressurized He II
- •Takahiro Okamura
 - •Oct. 31st- Nov. 5; He II heat transfer code
- S. Pietrowicz, A. Four and B. Baudouy @ KEK
 - 10-18 of March; Porous insulation tests in supercritical He and He I
- •Funding FJPPL: 4 k€ per team

The porous ceramic insulation

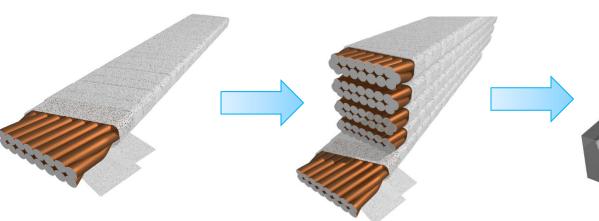
	Ceramic	Classic	Full Impregnation
Pore size (µm)	100	10 to 100	0
Porosity (%)	4.5 to 29	1	0
Conductivity (W/m.K)	4 10 ⁻²	10-2	10-2

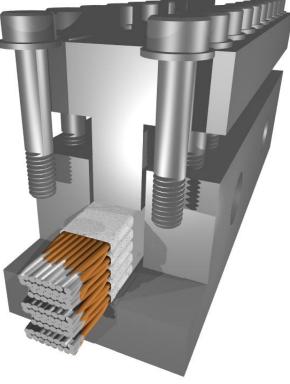

 Mechanical characterization on mini Race track magnet up to 60 MPa (Irfu/Sacm)



Courtesy of P. Manil (CEA)

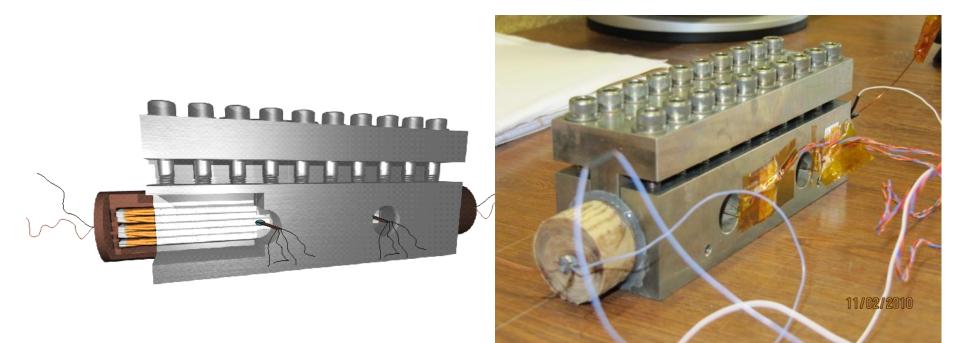
short Racetrack 'R'





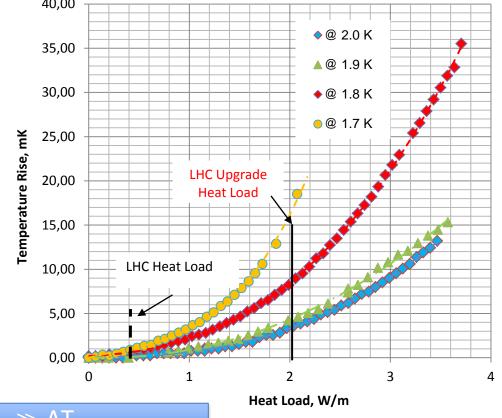
• Race track magnet with the porous insulation under construction (SMC program in collaboration with CERN and RAL)

The Stack Experiment : Heat transfer in a coil


- Characterization of the thermal performance of the insulation
 - "real cable" geometry (CuNi cable)
 - Real electrical insulation
 - Mechanical constraints (compression)
 - Heat transfer configuration (Joule heating)

The Stack Experiment : Mock-up

Characterization of the thermal performance of the insulation
 Central cable instrumented with bare ship sensors

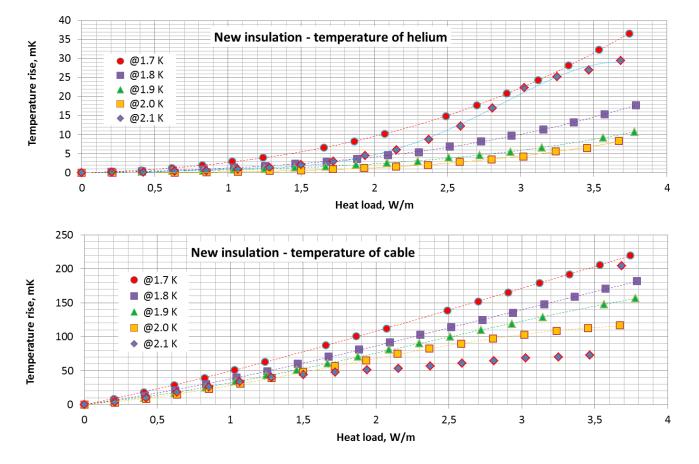


The Stack Experiment : Results (1/3)

□ Samples tested in pressurized He II from 1.7 to 2.1 K @ Saclay

Samples tested in He I at atmospheric pressure and in supercritical helium @ KEK 40,00

- ΔT <20 mK for the LHC upgrade heat load
- \Box Δ T <5 mK for the current LHC heat load
- 100 times more efficient than the current LHC insulation!

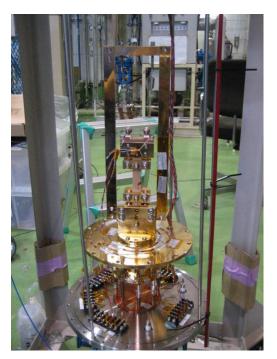


 $\Delta T_{\text{fully impregnated insulation}} > \Delta T_{\text{current insulation}} \gg \Delta T_{\text{porous insulation}}$

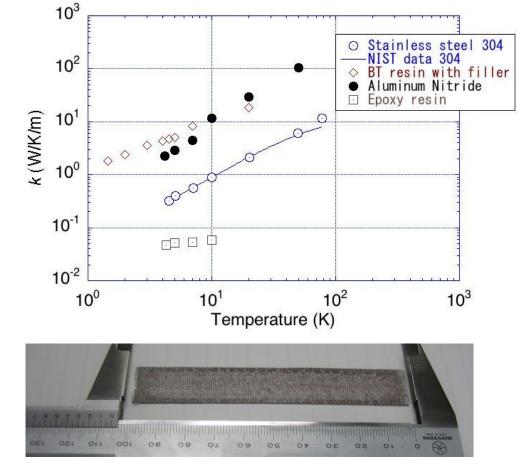
FJPPL workshop 2012 @ Université Blaise Pascal Clermont-Ferrand - 28-30 May 2012

The Stack Experiment : Results (2/3)

- Construction of a stack with a porous insulation under a 50 Mpa compression
- Test in He II @ Saclay in Nov. 2011
 - Two sensors: one in the fluid one on the conductor


The Stack Experiment : Results (3/3)

- Construction of a stack with a porous insulation under a 50 MPa compression
- Test in supercritical and normal helium @ KEK in March 2012

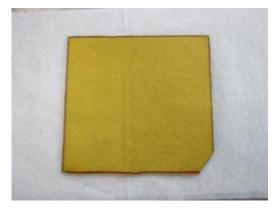


Thermal conductivity measurement @ KEK

- Measurement of radiation resistant materials (2 K 77 K)
 - BT resin*, Aluminum Nitride and Epoxy resin
 - To be measured
 - porous insulation from Saclay
 - Cyanate Esther

* <u>B</u>ismaleimide-<u>T</u>riazine Resin

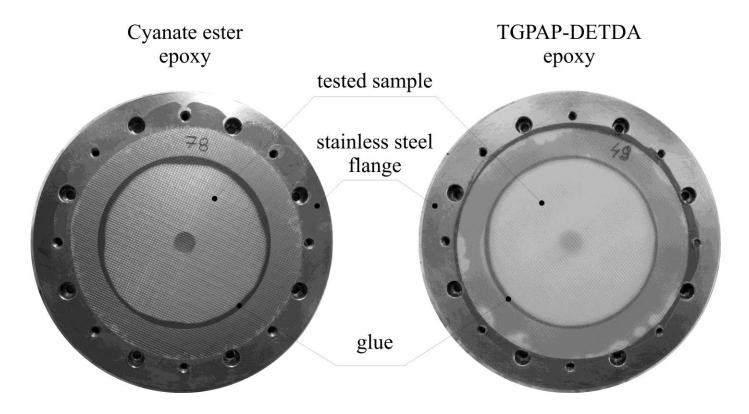
FJPPL workshop 2012 @ Université Blaisc Pascal Clermont-Ferrand - 28-30 May 2012


Thermal conductivity measurement @ KEK

- High radiation resistant materials such as Cyanate Ester resin are being developed for the Nb₃Al coil impregnation in KEK, and preparing sample for the thermal conductivity measurement
 - Candidate materials were already delivered to KEK
 - Preparing radiation resistant test under high radiation environment using gamma source in JAEA Takasaki is going on now.

Spec.

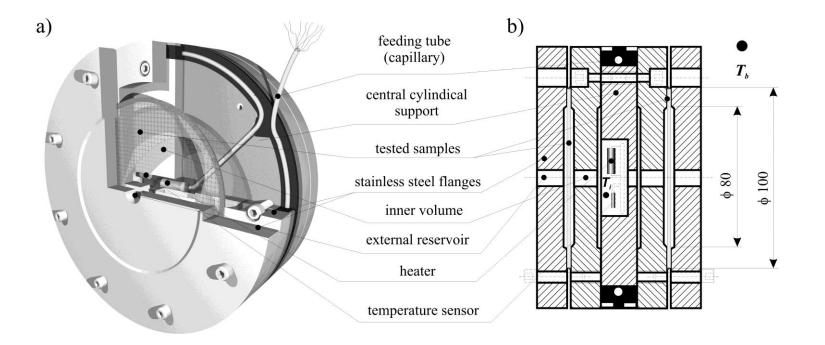
- low viscosity
- control of solidification
- mechanical strength

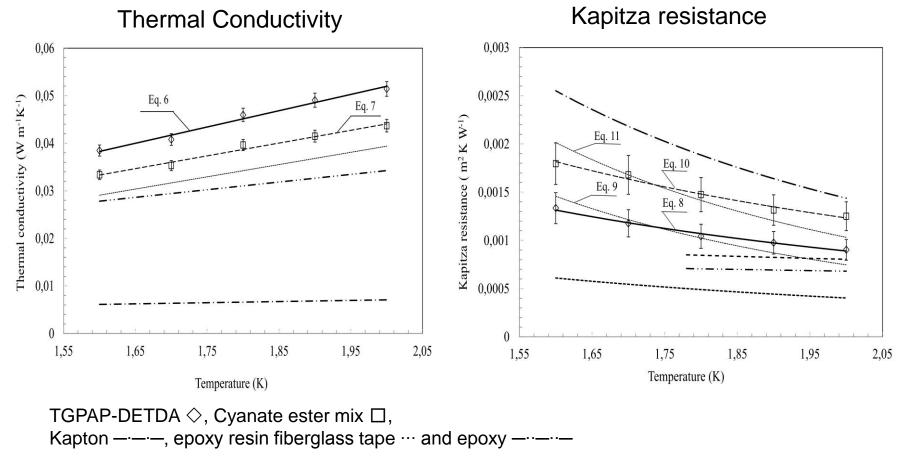


Newly developed CE resins for HF accelerator magnets

Cyanate Ester resin

Kapitza resistance and thermal conductivity @ Saclay


- Determination of the Kapitza resistance and thermal conductivity of radiation resistant material in He II:
 - Cyanate Esther
 - Tri-functional epoxy resin


Kapitza resistance and thermal conductivity @ Saclay

 Measurement of the total thermal resistance and extraction of the two component : Kapitza resistance and the thermal conduction resistance

$$R_s = A_s \ \frac{\Delta T}{Q_s} \approx \frac{2}{n \ T_b^{n-1}} + \frac{l}{k}$$

Kapitza resistance and thermal conductivity @ Saclay

Kapton —·—·—, epoxy resin fiberglass tape ---, Stay cast coating on polished surface —··—, - - -

- Development of "heat transfer" code in He II for :
 - Calculation of the maximum temperature rise in the magnet during steadystate heat load due to beam losses or AC losses for slow ramp field
 - Calculation of magnet's thermal flow behavior during the quench detection event
- Two approaches
 - Direct DNS of the full system of equations
 - Implementation of a *simplified* model in commercial software ANSYS CFX

• The system: NVS equations + superfluide turbulence term

Definition of superfluid and normal fluid component

Mass conservation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$\rho = \rho_s + \rho_n$$

 $\rho \mathbf{u} = \rho_n \mathbf{u}_n + \rho_s \mathbf{u}_s$

Momentum Equation for the total fluid

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot \left(\rho_n \mathbf{u}_n \mathbf{u}_n + \rho_s \mathbf{u}_s \mathbf{u}_s\right) = -\nabla P + \mu \left(\nabla^2 \mathbf{u}_n + \frac{1}{3}\nabla (\nabla \cdot \mathbf{u}_n)\right)$$

Momentum Equation for the superfluid component

$$\frac{\partial \mathbf{u}_s}{\partial t} + (\mathbf{u}_s \cdot \nabla) \mathbf{u} = -\frac{1}{\rho} \nabla P + s \nabla T + \frac{\rho_n}{2\rho} \nabla |\mathbf{u}_n - \mathbf{u}_s|^2 + A\rho_n |\mathbf{u}_n - \mathbf{u}_s|^2 (\mathbf{u}_n - \mathbf{u}_s)^2$$

Energy Equation

Turbulent model of ST

$$\frac{\partial(\rho s)}{\partial t} + \nabla \cdot (\rho s \mathbf{u}_n) = \frac{A \rho_n \rho_s \left| \mathbf{u}_n - \mathbf{u}_s \right|^2}{T}$$

FJPPL workshop 2012 @ Université Blaise Pascal Clermont-Ferrand - 28-30 May 2012

- Direct DNS of the full system of equations approach
 - To perform this, treatment of total fluid momentum equation especially pressure term is important
 - Momentum equation for total fluid component = Kim Moin Method

Momentum equation for total fluid	
Convection term	2 nd order Adams-Bashforce Method
Viscosity term	Crank-Nicolson Scheme
Pressure term	1 st order implicit scheme

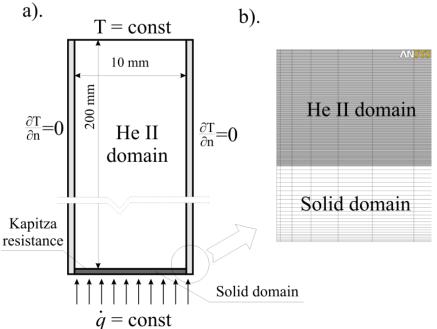
- Reduction of numerical viscosity (artificial viscosity) to obtain precise flow field
 - Compact Difference Scheme base on Pade expansion is employed
- Under development (more details @ takahiro.okamura@kek.jp)

- Implementation of a *simplified* model in ANSYS CFX
 - The momentum equations for the superfluid component are simplified to the form

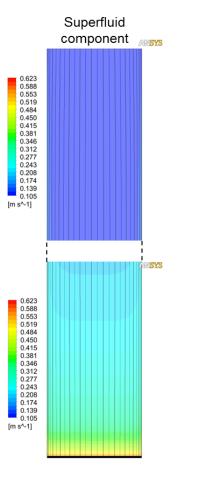
$$s\nabla T = -A\rho_n |u_n - u_s|^2 (u_n - u_s)$$

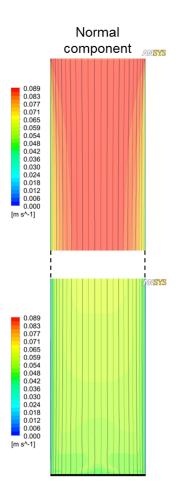
The thermo-mechanical effect term and the Gorter-Mellink mutual friction term are larger than the other

1 /2

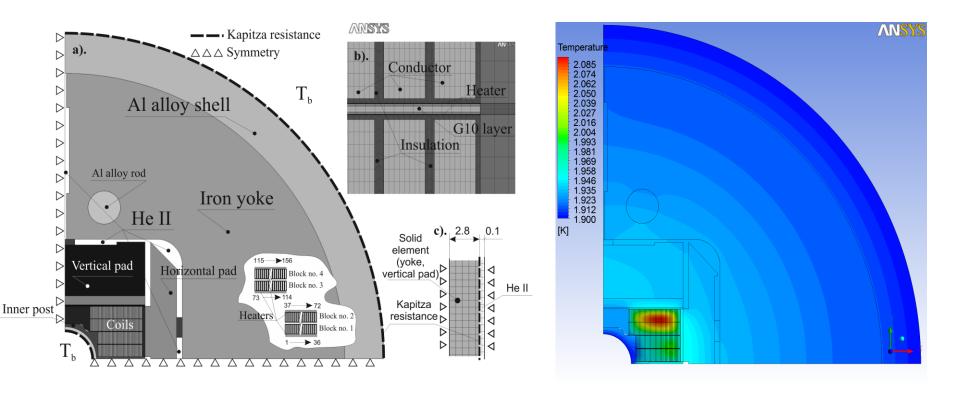

4 10

• Superfluid component:
$$u_s = u - \frac{\rho_n}{\rho} (u_n - u_s) = u + \left(\frac{\rho_n^3 s}{A \rho^3 \rho_n |\nabla T|^2}\right)^{1/3} \nabla T$$


• Normal component:
$$u_n = u + \frac{\rho_s}{\rho}(u_n - u_s) = u - \left(\frac{\rho_s^3 s}{A \rho^3 \rho_n |\nabla T|^2}\right)^{1/3} \nabla T$$


• Two-fluid model reduce into one fluid model

- Implementation of a *simplified* model in ANSYS CFX
 - Validation of the model



Applied	Maximum temperature		Error
heat flux	Analytical	Numerical	Enor
W/m ²	K	K	%
20877	2,1500	2,1371	0,602
13918	1,9823	1,9823	0,002
6959	1,9540	1,9540	0,000

- Implementation of a *simplified* model in ANSYS CFX
 - Calculation for the Fresca 2 magnet (Eucard HFM)

Future work

- Construction and tests of a stack experiment with Cyanate Ester insulation in He II (Saclay) and He I and HeS (KEK)
 - Irradiation using JAEA/Takasaki facility
- Measurement of the thermal conductivity (2 K 77 K) (KEK)
 - Ceramic insulation
 - Cyanate Ester resin
- Measurement of the thermal conductivity and Kapitza resistance (2 K) (Saclay)
 - Cyanate Ester resin irradiated (50 MGy)
- Development of the DNS code

FJPPL workshop 2012 @ Université Blaise Pascal Clermont-Ferrand - 28-30 May 2012