HARPO

Characterization of a Gaseous TPC for High Angular Resolution Gamma-Ray Astronomy and Polarimetry from the MeV to the TeV

Denis Bernard

Laboratoire Leprince-Ringuet

On behalf of the HARPO project

- LLR @ Ecole Polytechnique, CNRS/IN2P3, FRANCE
- IRFU @ CEA Saclay, FRANCE
- NewSUBARU @ LASTI, University of Hyogo, JAPAN

TYL-FKPPL Worskhop 28-30 May 2012 Université Blaise Pascal, France

Presently in space : GLAST / Fermi

Fermi LAT : 2008 – 2013 \rightarrow 2018?

 Impressive harvest on vast programe : pulsars, active galactic nuclei (AGN), gamma-ray bursts (GRB), binary stars, supernova remnants
 ...

- E_{γ} range 20 MeV 300 GeV
- 16-plane **Converter/Tracker W/Si** $(1.1X_0)$
- 8-layer Csl :Tl Calorimeter Csl :Tl $(8.6X_0)$
- Segmented scintillator cosmic-ray veto
- $1.8m \times 1.8m \times 0.7m$, 2.8 ton.

Fermi

- Actually Fermi is publishing mostly in the range $0.1-300\,{\rm GeV}$
- Effective area $\approx 1~{\rm m}^2$ above 1 GeV

Fermi LAT Performance page

- Photon selection kills efficiency at low ${\cal E}$
 - Due to huge background at low ${\cal E}$
 - Due to larger angular resolution at low ${\cal E}$
- No polarimetry

Directions for a future next-to-Fermi mission

- Improve angular resolution
 - $\bullet \Rightarrow$ Improve background rejection of pointlike sources
 - Improve $A_{\mbox{eff}}$ at low E
- Enlarge $A_{\rm eff}$ but watch mass budget !
- Have polarization sensibility

Cosmic γ -ray polarimetry : Why?

- γ Rays produced in very violent events : (AGN, pulsars, GRB ..)
- γ polarization fraction key ingredient to understanding mechanism at work.
 - jets of relativistic matter impinging on intra galactic matter
 - hadronic interactions $\rightarrow \pi^0$'s $\rightarrow \gamma$'s : P = 0
 - Radiative processes (synchrotron, inv Compton) : P up to 70%
 - Synch : Turbulence of \vec{B} "dilutes" P : measurement of turbulence.

Linear Polarization !

Modulation of the azimutal angle of the debris

– ϕ azimuthal angle

$$\frac{\mathsf{d}\Gamma}{\mathsf{d}\phi} \propto (1 + \mathcal{A}P \cos\left[2(\phi - \phi_0)\right])$$

Photon interaction with matter

Compton

A number of hard X-Ray and soft- γ ray polarimeter projects , but

Low sensitivity for E > few MeV

"Nuclear" pair production

- Dominates cross section at high energy
- $\mathcal{A} \approx 0.2$ at high energy

In practice :

- At low E_{γ} , a lot of multiple scattering $\Rightarrow \phi$ badly measured.
- At high E_{γ} , tight pair $\Rightarrow \phi$ badly measured.

"Nuclear" pair conversion used for non-polarized γ astronomy

Triplet : $\gamma e^- \rightarrow e^- e^+ e^-$

- The recoiling electron is emitted at a large angle

- 6 additional Feynman diagram (wrt "Nuclear" pair production)
 - Dominated by the same two at high energy.
- Triplet/pair $\sim 1/Z$ and same asymmetry $\mathcal{A}\approx 0.2$, asymptotically at high energy.
- Intricated computation at low energy (Born, other electrons ...)
 To be validated experimentally

The only validation ..

Was performed :

- For nuclear pair production,
- and : at high Energy
- γ beam from Compton scattering of laser beam @ Spring-8

de Jager, et al., Eur.Phys.J.A19 :S275-S278,2004.

Satellite flight : Precision of P measurement

1 ton, 1 year, time fraction 50%, efficiency 100%, $\mathcal{A} \approx 0.2$

•
$$N_{int} = 1.5 \times 10^5$$
 on the Crab pulsar

• $2\%/\sqrt{year.ton}$

$$\sigma_P \approx \frac{1}{\mathcal{A}} \sqrt{\frac{2}{N}} \approx 0.0185$$

 $\approx Z$ -independant.

Angular Resolution

• Black line is analytic prediction

Innes, NIM A 329, 238 (1993).

• Points are from Kalman-filter reconstruction

Frühwirth NIM A 262, 444 (1987).

Thin / Thick detectors

– Thick detector $(L \gg X_0)$

- the 3 processes (pair, triplet, Compton) are competing
 - avoid low Z (Compton dominant)
 - avoid high Z (Pair dominant over triplet)
- high conversion efficiency, $\epsilon \approx 1$, and $A_{eff} \approx S$
- important to optimize geometry (thickness) at given mass.
- Thin detector $(L \ll X_0)$:
 - the 3 processes (pair, triplet, Compton) are not competing
 - low conversion efficiency, $\epsilon \ll 1$, and $A_{eff} \approx \sigma \times M$
 - details of geometry don't matter to first order.

Effective Area

In a thin detector, $A_{\rm eff}\approx\sigma$ Ar :

@ 100 MeV : 3 m²/ton (Ar), 7 m²/ton (Xe);

Our project : HARPO

- Ground Phase :

- Characterize the TPC technology for γ astronomy and polarimetry
- 1rst measurement of ${\cal A}$ at low energy.

– Demonstrator :

- Need a homogeneous, finely, fully instrumented, 3D detector.
- 30 cm cubic TPC, 5 bar, Argon-based mixture (à la T2K)
- Pitch 1mm
- Trigger : scintillator + WLS + PMT.

Amplication – collection – sampling

- Signal collection by strips on PCB, pitch = 1 mm
- Sampling / acquisition performed by AFTER chip; 50 MHz, 12 bits, shaping 100 ns
 - P. Baron et al., IEEE Trans. Nucl. Sci. 55 (2008) 1744.

Micromegas and strip PCB from CERN workshop

The detector : being designed

The detector : being assembled

micromegas on PCB

electronics cards on vessel

Cosmic rays tests in progress

• At the moment the detector in vertical position : TPC calibration with thru tracks

One event

• P = 2 bar, $V_{\mu M} = 480$ V, $V_{drift} = 7560$ V, (252 V/cm)

• most likely a hard muon + a hard δ ray + a soft δ ray

Data acquisition / Reconstruction

- Two DAq modes :
 - "full" 608 kB / evt
 - "Zero suppress", pprox 15 kB / track (no optimization done yet)
- Reco (current status)
 - thresholding
 - clustering (row (channel), line(time bin))
 - track reconstruction (x, y, independently) : combinatorial Hough method.
 - multi track events : $x \neq y$ matching from t distributions

x / y matching : χ^2 from t distributions

• long. : cluster time size dominated by shaping (100 ns @ 50 MHz : 5 bins)

• transverse : diffusion $224 \mu m/\sqrt{cm}$ (Garfield : $225 \mu m/\sqrt{cm}$)

Gain homogeneity

- decently straight, X/Y matched tracks,
- vertical tracks excluded ($\theta > 0.1$ rad.

• same wiggles, same place, in all runs

• gain ratio X/Y = 1.07 (ie "continuous strips / linked pad strips")

Spatial resolution

- decently straight, X/Y matched tracks preselected
- 4 segments method :
 - tight straight-track selection by seg₁/seg₄ matching
 - measurement of seg₃-seg₂ difference at center of track

- c axis (either x or y) : $\sigma = 192/\sqrt{2} = 136 \mu \mathrm{m}$
- $t \, \text{axis}(z) : \sigma = 850/\sqrt{2} = 600 \mu \text{m}$

Schedule

- 2008-9 : Studies
- 2010 : Engineering design, 1rst funding.
- 2011 : Construction, Integration
 - 25 27 Aug : 1rst Collaboration meeting
- 2012 :
 - Presenlty cosmic-ray characterisation (charged tracks)
 - Summer : 2nd Collaboration meeting
 - Data taking, polarized γ rays, Hyôgo, Japan.
 - NewSUBARU 1.5 GeV e^- storage ring
 - 2 40 MeV γ rays Amano *et al.*, NIM A 602 (2009) 337
- 2013 Data analysis .. publication

γ beam line BL01 at NewSUBARU, U. of Hyogo

- Compton scattering of a 1.0 1.5 GeV e^- beam on linearly polarized laser
- Monochromaticity by collimation of forward scattering
- Linear polarization $P\approx 100\%$

• Pr. Miyamoto, U. of Hyogo, et al.

New (larger) experimental Hutch

- The hutch was constructed under the collaboration between Konan University and University of Hyogo
- 5.6 (L) \times 2.4 (W) \times 2.6 (H) m
- Building completed (JFY2011)

Available γ ray energies (MeV)

Laser	λ (µm)	$E_{e^-} = 1 \mathrm{GeV}$	$E_{e^-} = 1.5 \mathrm{GeV}$
Nd :YVO $_4~(\omega)$	1.064	17.6	39.1
Nd :YVO $_4~(2\omega)$	0.532	34.5	76.3
CO_2	10.6	1.8	4.0
Er(fiber)	1.55	12.1	27.1
TiSaf	0.72	21.5	24.2

scan of the energy range of interest.

Conclusion : 1

- Characterization of detector with cosmic rays (charges tracks) in progress
- Excellent performances, appropriate for intended use.
- # of dead / noisy channels : 0 (zero).
- Good ageing properties : able to work with the same fill for 2 months (no recirculation / purification).
- Reconstruction software being further developped (vertexing ..)
- Beam line fits specs, Large hutch completed.

Conclusion: 2

- A thin detector, a TPC, can be a telescope and a polarimeter :

- With angular resolution 1/10 better than the W/Si technology,
- That is, a background rejection factor lower by 2 order of magn.
- An effective area $A_{\rm eff}$ of several m²/ton.
- A 4π detector (2π if used in low orbit)
- Rejection of the (huge at low energy) γ albedo is obvious from tracking
- A dead-time free GRB detector (but watch electronics deadtime!)
- Fermi might be the last thick and polarization-blind γ mission ...
- Expect going on beam at the end of the year!

Thanks for your kind attention

A 10 MeV γ photon undergoing triplet conversion in argon at 5 bar (EGS5 simulation).

Back-up slides

Cosmic γ -ray polarimetry : AGN's

Example : 3C279

Rept. Prog. Phys. 71, 116901 (2008)

 10^{14} 10^{13} 10^{13} 10^{13} 10^{12} 10^{11} 10^{10} 10^{9} 10^{11} 10^{10} 10^{9} 10^{11} 10^{13} 10^{15} 10^{17} 10^{19} 10^{21} 10^{23} 10^{25} v[Hz]

From left to right :

- synchrotron
- thermal from accretion disk
- SSC synchrotron-self Compton
- Compton on accreation disk photons
- Compton on photons from gas clouds

- ESC : *P* low (3 − 4 %)
- SSC : P 65 70 %
- Mon. Not. R. Astron. Soc. 395, (2009) 1507.

Cosmic gamma ray polarimetry : pulsars's

- Prediction for P model dependent. (Polar Cap 0, Outer gap medium, Slot Gap "caustic" high)
 Kaspi et al. arXiv :astro-ph/0402136.
- Here : Outer gap model

Takata et al. ApJ 670 (2007) 677

Cosmic gamma ray polarimetry : GRB's

- Origin of γ -Ray bursts : unknown (supernovae? mergers?)
- Most models involve 2 relativistic jets.
- γ emission ?
 - Synchrotron Radiation : P low ("efficient shock acceleration needs highly disordered magnetic fields")
 - Inverse Compton Scattering : P high

Dado, Dar, De Rujula, arXiv :astro-ph/0403015.

Our 3 preferred sources

Are pulsars

		$\begin{array}{l} F(E_{\gamma} > 100 MeV) \\ , ph cm^{-2} s^{-1} \end{array}$	Γ	δ	Flux COMPTEL $ph cm^{-2} s^{-1}$
South :	Vela	$(834 \pm 11) \times 10^{-8}$	1.7	-45	$(1-30) MeV : 8 \times 10^{-5}.$
North :	Geminga Crab	$(353 \pm 6) \times 10^{-8}$ $(226 \pm 5) \times 10^{-8}$	1.7 2.2	$+17\\+21$	$(2-10) MeV : 6 \times 10^{-5}.$ $(2-10) MeV : 9 \times 10^{-5}.$

Typical target : $\Gamma = 2$, $f = 1 \text{ MeV} / m^2 s$.

$$\frac{\mathrm{d}F}{\mathrm{d}E}(E) = f\frac{1}{E^2}$$

T2K-like Gas

• Ar :95 ISO :2 CF4 :3 à 1 bar,

D. Karlen NIM A (2010)

• Ar :99 ISO :0.4 CF4 :0.6 à 5 bar, Quencher partial pressure kept unchanged

- matching of shaping (100 ns) resolution (1 mm) $\Rightarrow v_d \approx 1 \, cm/\mu s$
- P < 5 bar for optimal high-gain operation of the micro-megas amplifier

Energy measurement

- Avoid calorimetry kills mass budget
- At low energy (few MeV) : contained tracks : high precision *E* measurement.
- At higher energy (< few 10 MeV) : momentum measurement from multiple scattering
- At high energy :
 - magnetic spectrometry.
 - TRD up to $\Gamma_e \approx 10^5$ (100 GeV)
 - , both thin technologies.

Fig. 8. Average signal versus Lorentz factor for a composite radiator/detector configuration consisting of plastic foils, foam, and fibers (triangles), and for a radiator of parallel Mylar foils of 76 μ m thickness (squares). Note that the signal reaches saturation around $\gamma \approx 10^5$.

NIM A 531, 435 (2004).

v_{drift} and t_0 calibration

• with thru tracks

- v_{drift} somewhat lower than Garfield calculation
- stability better than a percent. (no P, T correction applied)