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Learning 

 Machine Learning:  develop algorithms to automatically 
extract ”patterns” or ”regularities” from data 
(generalization) 

 Typical tasks 

 Clustering:  Find groups of similar points 

 Dimensionality reduction:  Project points in a lower dimensional 
space while preserving structure 

 Semi-supervised:  Given labelled and unlabelled points, build a 
labelling function 

 Supervised:  Given labelled points, build a labelling function 

 All these tasks are not well-defined 

 



Clustering 

Identify the two groups 



Dimensionality Reduction 

 Objects in R4096 ? 

 But only 3 parameters:  

2 angles and 1 for 

illumination.   

 They span a 3-

dimensional sub-manifold 

of R4096! 

 



Semi-Supervised Learning 

 Assign labels to 

black points 



Supervised learning  

 Build a function that predicts 

the label of all points in the 

space 



Formal definitions 

 Clustering:  Given                       build a function 

  

 Dimensionality reduction:  Given                               build a 

     function 

 Semi-supervised:  Given                        and                             

with m << n, build a function 

 Supervised:  Given                                       , build 



Geometric learning  

 Consider and exploit the geometric structure of the 

data 

 Clustering:  two ”close” points should be in the same 

cluster 

 Dimensionality reduction:  ”closeness” should be 

preserved 

 Semi-supervised/supervised:  two ”close” points should 

have the same label 

 Examples:  k-means clustering, k-nearest neighbors. 



Manifold ? 

 A manifold is a topological space that is locally 

Euclidian  

 Around every point, there is a neighborhood that is 

topologically isomorph to unit ball      

 



Regularization 

 Adopt a functional viewpoint for convenience 

 We want to define functions that conform with the 

regularities mentioned above:   

 values on close points should be close: 

 

 

 Gradient norm  

 

 

 Weighted Gradient norm  

 

 

 Manifold Gradient   



Issues 

 The manifold structure     is unknown, and the 

density are unknown! 

 Approaches:   

 density estimation  

manifold estimation  

 density estimation on a manifold ??? 

 None of these 

Manifolds or densities may not exist as such 

 Just focus on the smoothness to be enforced on the data 

points 

 



Intuition  

 When the data has support on a low-dimensional 

submanifold the neighborhood graph is a discrete 

approximation of the submanifold 

 The neighborhood graph can be seen as a randomly 

sampled approximation of the continuous structure.  

 In machine learning we are interested in the 

intrinsic properties and objects of this submanifold. 

 The graph  Laplacian gives an approximation of the 

Laplace-Beltrami operator on the manifold 



Spectral clustering 

 Spectral clustering lies in spectral graph theory. 

 We consider the “similarity graph” induced by the data  

 Clustering reduces to the problem of graph partitioning: 

  we want to find a partition of the graph such that the edges 

between different groups have very low weights (which means 

that points in different clusters are dissimilar from each other) 

and the edges within a group have high weights (which means 

that points within the same cluster are similar to each 

 Different ways of formulating and solving the objective 

functions of such graph partitioning problems lead to 

normalized and non normalized spectral clustering 



Interest of graph Laplacian 

 The Laplacian is the generator of the diffusion process 
(label propagation in semi-supervised learning) 

 

 The eigenvectors of the Laplacian have special 
geometric properties (motivation for spectral 
clustering), 

 

 The Laplacian induces an adaptive regularization 
functional, which adapts to the density and the 
geometric structure of the data (semi-supervised 
learning, classification). 



Spectral graph theory at a glance 

 Study  the properties  of graphs  via the eigenvalues and 
eigenvectors  of their associated graph matrices 
  the adjacency matrix, the graph Laplacian and their variants. 

 These matrices have been extremely well studied from an algebraic 
point of view. 

 The Laplacian allows a natural link between discrete 
representations (graphs), and continuous representations, 
such as metric spaces and manifolds. 

 Laplacian embedding consists in representing the vertices 
of a graph in the space spanned by the smallest 
eigenvectors of the Laplacian  
 A geodesic distance on the graph becomes a spectral distance in 

the embedded (metric) space. 



Spectral graph theory and manifold 

learning 

 First we construct a graph from  

 we compute the d smallest eigenvalue-eigenvector 

pairs of the graph Laplacian 

 We represent the data in the     space spanned by 

the corresponding orthonormal eigenvector basis.  

 Paradoxically, d may be larger than D 



Adjacency matrix 

 The adjacency matrix of a graph 

 For a graph with n vertices, the entries of the  

adjacency matrix are defined by: 

 

 

 

 

 



Real-valued functions on graphs 

 

 We consider real-valued functions                  on the set 

of the graph’s  vertices  

 Assigns a real number to each graph node. 

 Notation: 

 The eigenvectors of the adjacency matrix, can be 

viewed as eigenfunctions. 

 Operator view  

 Quadratic form 



 Dual matrix of adjacency 

 Matrix defined on the edge of the graph 

 

 

 

 

 

 The mapping              is known as the co-boundary 

mapping of f 

 

Incidence matrix of a graph 



The Laplacian matrix of a graph 

                

        

 

 Connection between Laplacian and Adjcency matrix  

 D degree matrix 



A 10 node graph 



The adjacency matrix 



The laplacian matrix and its eigenvalues  



The Fiedler vector of the graph Laplacian 

 

 The first non-null eigenvalue            is called the 

Fiedler value. 

 The corresponding eigenvector is called the Fiedler 

vector. 

 The Fiedler value is the algebraic connectivity of a 

graph, the further from 0, the more connected. 

 The Fiedler vector has been extensively used for 

spectral bi-partioning 



Laplacian regularisation 

 Neighborhood graph 

 weighted graph with     as vertices 

   

    

 Regularizer 

 

 

When                is close to 1 (points are close),  

 



Laplacian of a graph 

 Laplacian for a weighted graph is defined as 

  W is the weight matrix, 

  D is a diagonal matrix with 

 Laplacian regularization 

 

 Normalized Laplacian  

 

 

 



 Embed the graph in a k-dimensional Euclidean 
space.  

 The embedding is given by the n x k matrix 

 the i-th row of this matrix corresponds to the Euclidean 
coordinates of the i-th graph node 

 The space is obtained by solving  

 

 

 Reduce to finding k lowest non zero eigenvalues of the 
Laplacian 

Laplacian embedding 

 



Exemple 

 



Exemple 

 



Exemple 

 



Application 

 Dimensionality reduction 

 project on last eigenvectors of L 

 Clustering 

  threshold eigenvectors of L, or project first and use k-
means afterwards 

 

 

 Semi-supervised/supervised 

  use regularization 



Clustering  



Building a graph from a cloud of points 

 K-nearest neighbor 

 (KNN) rule 

 ε-radius rule 



Graph building 



The Graph Partitioning Problem 

 We want to find a partition of the graph such that 

the edges between different groups have very low 

weight, while the edges within a group have high 

weight. 

 The mincut problem: 

 Edges between groups have very low weight, and  

  Edges within a group have high weight. 

 Choose a partition of the graph into k groups that 

minimizes the following criterion: 



Ratio Cut and Normalized Cut 

 Often, the mincut solution isolates a vertex from 

the rest of the graph. 

 Request that the groups are reasonably large. 

 Ratio cut minimizes: 

 

 

 Normalized cut: 

 



What is Spectral Clustering? 

 Both ratio-cut and normalized-cut minimizations 
are NP-hard problems 

 Spectral clustering is a way to solve relaxed versions of 
these problems: 

 The smallest non-null eigenvectors of the 
unnormalized Laplacian approximate the RatioCut 
minimization criterion, 

 The smallest non-null eigenvectors of the random-
walk Laplacian approximate the NormalizedCut 
criterion. 



Application (clustering) 



Application (with regularization) 



Why it works ? 

 Two cases: 

 the neighborhood size is fixed (von Luxburg, B., Belkin 2005) 

 the neighborhood size goes to zero as n increases (Hein, 

Audibert 2005, 2006)  

 On a compact manifold     with metric g  and 

density p (wrt µ), under technical conditions : 



Conclusion 

 Goal is not to identify the manifold, but to exploit 
the (approximate) low-dimensionality / clustered-
ness of the data 

 Transpose manifolds to graphs (finite set of data) 

 Very active area of research (best semi-supervised 
algorithms use this idea)  

 Theory very limited 

 Many algorithmic issues (choice of the graph, 
weights, regularizer...) 

 Large application potential 

 


