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Learning 

 Machine Learning:  develop algorithms to automatically 
extract ”patterns” or ”regularities” from data 
(generalization) 

 Typical tasks 

 Clustering:  Find groups of similar points 

 Dimensionality reduction:  Project points in a lower dimensional 
space while preserving structure 

 Semi-supervised:  Given labelled and unlabelled points, build a 
labelling function 

 Supervised:  Given labelled points, build a labelling function 

 All these tasks are not well-defined 

 



Clustering 

Identify the two groups 



Dimensionality Reduction 

 Objects in R4096 ? 

 But only 3 parameters:  

2 angles and 1 for 

illumination.   

 They span a 3-

dimensional sub-manifold 

of R4096! 

 



Semi-Supervised Learning 

 Assign labels to 

black points 



Supervised learning  

 Build a function that predicts 

the label of all points in the 

space 



Formal definitions 

 Clustering:  Given                       build a function 

  

 Dimensionality reduction:  Given                               build a 

     function 

 Semi-supervised:  Given                        and                             

with m << n, build a function 

 Supervised:  Given                                       , build 



Geometric learning  

 Consider and exploit the geometric structure of the 

data 

 Clustering:  two ”close” points should be in the same 

cluster 

 Dimensionality reduction:  ”closeness” should be 

preserved 

 Semi-supervised/supervised:  two ”close” points should 

have the same label 

 Examples:  k-means clustering, k-nearest neighbors. 



Manifold ? 

 A manifold is a topological space that is locally 

Euclidian  

 Around every point, there is a neighborhood that is 

topologically isomorph to unit ball      

 



Regularization 

 Adopt a functional viewpoint for convenience 

 We want to define functions that conform with the 

regularities mentioned above:   

 values on close points should be close: 

 

 

 Gradient norm  

 

 

 Weighted Gradient norm  

 

 

 Manifold Gradient   



Issues 

 The manifold structure     is unknown, and the 

density are unknown! 

 Approaches:   

 density estimation  

manifold estimation  

 density estimation on a manifold ??? 

 None of these 

Manifolds or densities may not exist as such 

 Just focus on the smoothness to be enforced on the data 

points 

 



Intuition  

 When the data has support on a low-dimensional 

submanifold the neighborhood graph is a discrete 

approximation of the submanifold 

 The neighborhood graph can be seen as a randomly 

sampled approximation of the continuous structure.  

 In machine learning we are interested in the 

intrinsic properties and objects of this submanifold. 

 The graph  Laplacian gives an approximation of the 

Laplace-Beltrami operator on the manifold 



Spectral clustering 

 Spectral clustering lies in spectral graph theory. 

 We consider the “similarity graph” induced by the data  

 Clustering reduces to the problem of graph partitioning: 

  we want to find a partition of the graph such that the edges 

between different groups have very low weights (which means 

that points in different clusters are dissimilar from each other) 

and the edges within a group have high weights (which means 

that points within the same cluster are similar to each 

 Different ways of formulating and solving the objective 

functions of such graph partitioning problems lead to 

normalized and non normalized spectral clustering 



Interest of graph Laplacian 

 The Laplacian is the generator of the diffusion process 
(label propagation in semi-supervised learning) 

 

 The eigenvectors of the Laplacian have special 
geometric properties (motivation for spectral 
clustering), 

 

 The Laplacian induces an adaptive regularization 
functional, which adapts to the density and the 
geometric structure of the data (semi-supervised 
learning, classification). 



Spectral graph theory at a glance 

 Study  the properties  of graphs  via the eigenvalues and 
eigenvectors  of their associated graph matrices 
  the adjacency matrix, the graph Laplacian and their variants. 

 These matrices have been extremely well studied from an algebraic 
point of view. 

 The Laplacian allows a natural link between discrete 
representations (graphs), and continuous representations, 
such as metric spaces and manifolds. 

 Laplacian embedding consists in representing the vertices 
of a graph in the space spanned by the smallest 
eigenvectors of the Laplacian  
 A geodesic distance on the graph becomes a spectral distance in 

the embedded (metric) space. 



Spectral graph theory and manifold 

learning 

 First we construct a graph from  

 we compute the d smallest eigenvalue-eigenvector 

pairs of the graph Laplacian 

 We represent the data in the     space spanned by 

the corresponding orthonormal eigenvector basis.  

 Paradoxically, d may be larger than D 



Adjacency matrix 

 The adjacency matrix of a graph 

 For a graph with n vertices, the entries of the  

adjacency matrix are defined by: 

 

 

 

 

 



Real-valued functions on graphs 

 

 We consider real-valued functions                  on the set 

of the graph’s  vertices  

 Assigns a real number to each graph node. 

 Notation: 

 The eigenvectors of the adjacency matrix, can be 

viewed as eigenfunctions. 

 Operator view  

 Quadratic form 



 Dual matrix of adjacency 

 Matrix defined on the edge of the graph 

 

 

 

 

 

 The mapping              is known as the co-boundary 

mapping of f 

 

Incidence matrix of a graph 



The Laplacian matrix of a graph 

                

        

 

 Connection between Laplacian and Adjcency matrix  

 D degree matrix 



A 10 node graph 



The adjacency matrix 



The laplacian matrix and its eigenvalues  



The Fiedler vector of the graph Laplacian 

 

 The first non-null eigenvalue            is called the 

Fiedler value. 

 The corresponding eigenvector is called the Fiedler 

vector. 

 The Fiedler value is the algebraic connectivity of a 

graph, the further from 0, the more connected. 

 The Fiedler vector has been extensively used for 

spectral bi-partioning 



Laplacian regularisation 

 Neighborhood graph 

 weighted graph with     as vertices 

   

    

 Regularizer 

 

 

When                is close to 1 (points are close),  

 



Laplacian of a graph 

 Laplacian for a weighted graph is defined as 

  W is the weight matrix, 

  D is a diagonal matrix with 

 Laplacian regularization 

 

 Normalized Laplacian  

 

 

 



 Embed the graph in a k-dimensional Euclidean 
space.  

 The embedding is given by the n x k matrix 

 the i-th row of this matrix corresponds to the Euclidean 
coordinates of the i-th graph node 

 The space is obtained by solving  

 

 

 Reduce to finding k lowest non zero eigenvalues of the 
Laplacian 

Laplacian embedding 

 



Exemple 

 



Exemple 

 



Exemple 

 



Application 

 Dimensionality reduction 

 project on last eigenvectors of L 

 Clustering 

  threshold eigenvectors of L, or project first and use k-
means afterwards 

 

 

 Semi-supervised/supervised 

  use regularization 



Clustering  



Building a graph from a cloud of points 

 K-nearest neighbor 

 (KNN) rule 

 ε-radius rule 



Graph building 



The Graph Partitioning Problem 

 We want to find a partition of the graph such that 

the edges between different groups have very low 

weight, while the edges within a group have high 

weight. 

 The mincut problem: 

 Edges between groups have very low weight, and  

  Edges within a group have high weight. 

 Choose a partition of the graph into k groups that 

minimizes the following criterion: 



Ratio Cut and Normalized Cut 

 Often, the mincut solution isolates a vertex from 

the rest of the graph. 

 Request that the groups are reasonably large. 

 Ratio cut minimizes: 

 

 

 Normalized cut: 

 



What is Spectral Clustering? 

 Both ratio-cut and normalized-cut minimizations 
are NP-hard problems 

 Spectral clustering is a way to solve relaxed versions of 
these problems: 

 The smallest non-null eigenvectors of the 
unnormalized Laplacian approximate the RatioCut 
minimization criterion, 

 The smallest non-null eigenvectors of the random-
walk Laplacian approximate the NormalizedCut 
criterion. 



Application (clustering) 



Application (with regularization) 



Why it works ? 

 Two cases: 

 the neighborhood size is fixed (von Luxburg, B., Belkin 2005) 

 the neighborhood size goes to zero as n increases (Hein, 

Audibert 2005, 2006)  

 On a compact manifold     with metric g  and 

density p (wrt µ), under technical conditions : 



Conclusion 

 Goal is not to identify the manifold, but to exploit 
the (approximate) low-dimensionality / clustered-
ness of the data 

 Transpose manifolds to graphs (finite set of data) 

 Very active area of research (best semi-supervised 
algorithms use this idea)  

 Theory very limited 

 Many algorithmic issues (choice of the graph, 
weights, regularizer...) 

 Large application potential 

 


