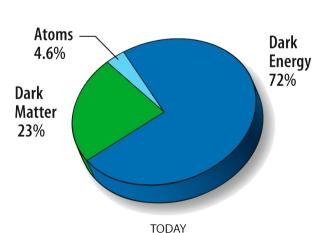
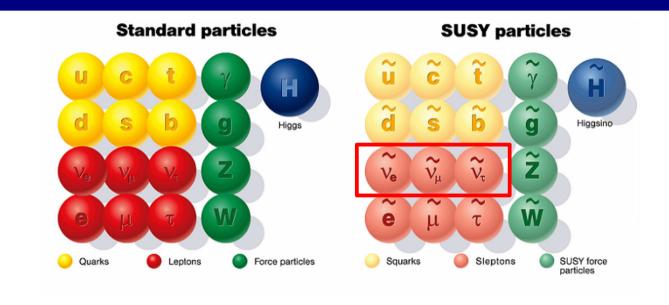

Mixed sneutrino dark matter in light of recent experimental results


Béranger Dumont

based on arXiv:1205.soon in collaboration with Geneviève Bélanger, Sabine Kraml and Thomas Schwetz-Mangold

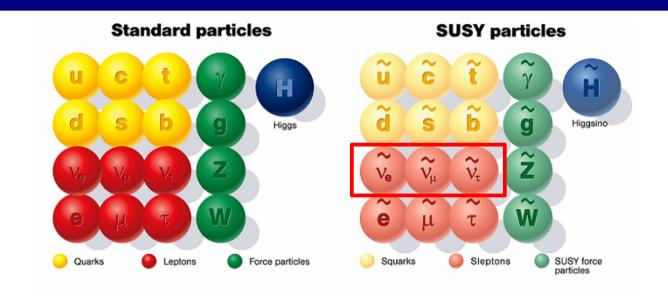
Dark matter evidences


should be made of ~stable, electrically neutral and possibly weakly interacting particles

keyword	number of results on arXiv
"neutralino dark matter"	332
"sneutrino dark matter"	34

Supersymmetry and mixed sneutrinos

Framework: MSSM (with Dirac neutrinos)


$$\Delta \mathcal{L}_{soft} = m_{\tilde{N}_i}^2 |\tilde{N}_i|^2 + A_{\tilde{\nu}_i} \tilde{L}_i \tilde{N}_i H_u + h.c.$$

Supersymmetry and mixed sneutrinos

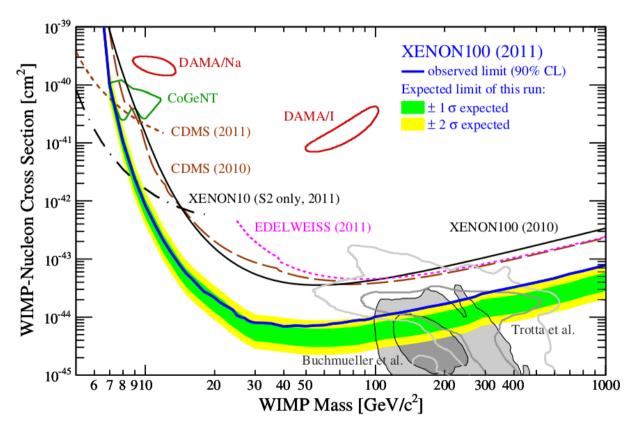
Framework: MSSM (with Dirac neutrinos)

$$\Delta \mathcal{L}_{\text{soft}} = m_{\tilde{N}_i}^2 |\tilde{N}_i|^2 + A_{\tilde{\nu}_i} \tilde{L}_i \tilde{N}_i H_u + \text{h.c.}$$

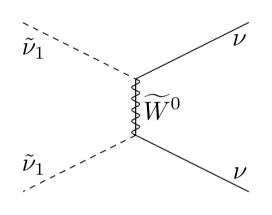
$$m_{\tilde{\nu}}^2 = \begin{pmatrix} m_{\tilde{L}}^2 + \frac{1}{2}m_Z^2 \cos 2\beta \\ \frac{1}{\sqrt{2}}A_{\tilde{\nu}} v \sin \beta \end{pmatrix}$$

$$\frac{\frac{1}{\sqrt{2}} A_{\tilde{\nu}} \, v \sin \beta}{m_{\widetilde{N}}^2} \quad \text{with } A_{\tilde{\nu}} \sim \mathcal{O}(100 \text{ GeV})$$
 instead of $A_{\tilde{\nu}} \propto y_{\nu} \approx 0$

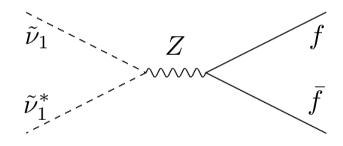
$$\Rightarrow (\tilde{\nu}_1, \tilde{\nu}_2, \sin \theta_{\tilde{\nu}})$$


 $\tilde{\nu}_1 \rightarrow \text{LSP}$ and dark matter candidate

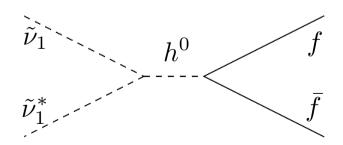
Dirac neutrinos and $A_{\tilde{\nu}} \sim \mathcal{O}(100~{\rm GeV})$ is well motivated [hep-ph/0006312] [hep-ph/0007018]


Light and heavy sneutrino dark matter

Two very different cases: $\Gamma(Z \to \text{invisible})$?


- light sneutrino ($m_{\tilde{\nu}_1} < m_Z/2$) $\longrightarrow \Gamma(h^0 \to \text{invisible})$?
- heavy sneutrino ($m_{\tilde{
 u}_1} > m_Z/2$)

Main annihilation channels



$$\propto \sin^4 heta_{ ilde{
u}}$$
 (also $ilde{
u}_1^* ilde{
u}_1^* \stackrel{\widetilde{W}^0}{\longrightarrow}
u^*
u^*$)

$$\propto \sin^4 \theta_{\tilde{\nu}}$$

with heavy
sneutrinos, we
also have
annihilations into
a pair of W, Z, h

$$\propto (A_{\tilde{\nu}}\sin\theta_{\tilde{\nu}})^2$$

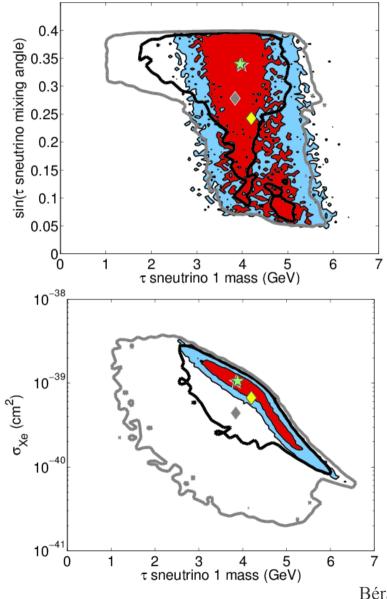
MCMC scan

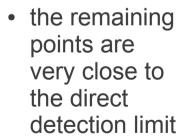
Bayesian inference using MCMC methods. We assume uniform (linear) priors on all the parameters.

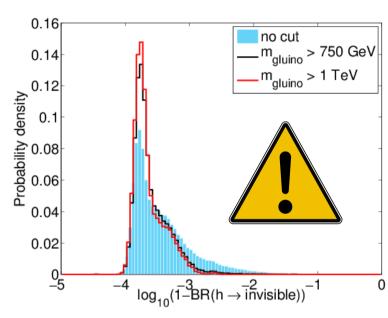
i	Parameter	Scan bounds	
	p_i		
1	$m_{ ilde{ u}_{ au_1}}$	$[1, m_Z/2]$ GeV (light)	
		or $[m_Z/2, 1000]$ GeV (heavy)	
2	$m_{ ilde{ u}_{ au_2}}$	$[m_{\tilde{\nu}_{\tau_1}} + 1,3000] \text{ GeV}$	
3	$\sin\left(heta_{ ilde{ u}_{ au}} ight)$	[0, 1]	
4	$m_{\tilde{\nu}_{e_1}} = m_{\tilde{\nu}_{\mu_1}}$	$[m_{\tilde{\nu}_{\tau_1}} + 1, m_Z/2] \text{ GeV (light)}$	
		or close to $m_{\tilde{\nu}_{\tau_1}}$ (heavy)	
5	$m_{\tilde{\nu}_{e_2}} = m_{\tilde{\nu}_{\mu_2}}$	$[m_{\tilde{\nu}_{e_1}} + 1,3000] \text{ GeV (light)}$	
		or close to $m_{\tilde{\nu}_{\tau_2}}$ (heavy)	
6	$\sin\left(\theta_{\tilde{\nu}_e}\right) = \sin\left(\theta_{\tilde{\nu}_{\mu}}\right)$	[0, 1] (light)	
		or close to $\sin(\theta_{\tilde{\nu}_{\tau}})$ (heavy)	
7	an eta	[3, 65]	
8	μ	[-3000, 3000] GeV	
9	$M_2 = 2M_1 = M_3/3$	[30, 1000] GeV	
10	$A_{ ilde{t}}$	[-8000, 8000] GeV	
11	M_A	[30, 3000] GeV	
12	$m_{\widetilde{Q}_3}=m_{\widetilde{U}_3}=m_{\widetilde{D}_3}$	[100, 3000] GeV	

i	Nuisance parameter	Experimental result	Likelihood function
	λ_i	Λ_i	$L(\Lambda_i \lambda_i)$
1	m_u/m_d	0.553 ± 0.043	Gaussian
2	m_s/m_d	18.9 ± 0.8	Gaussian
3	$\sigma_{\pi N}$	$44 \pm 5~{ m MeV}$	Gaussian
4	σ_s	$21 \pm 7 \; \mathrm{MeV}$	Gaussian
5	$ ho_{ m DM}$	$0.34 \pm 0.09 \; \mathrm{GeV/cm^3}$	Gaussian
6	v_0	$236 \pm 8 \text{ km/s}$	Gaussian
7	$v_{ m esc}$	$550 \pm 35 \; \mathrm{km/s}$	Gaussian
8	m_t	$173.3 \pm 1.1 \text{ GeV}$	Gaussian
9	$m_b(m_b)$	$4.19^{+0.18}_{-0.06} \text{ GeV}$	Two-sided Gaussian
10	$\alpha_s(m_Z)$	0.1184 ± 0.0007	Gaussian

Astrophysical parameters from [arXiv:1005.0579]. Recent lattice QCD values for σ_s and $\sigma_{\pi N}$ from [arXiv:1202.6407].


other squarks masses: 2 TeV

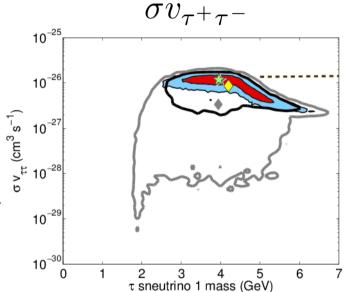

MCMC scan


i	Observable	Experimental result	Likelihood function
	μ_i	D_i	$L(D_i \mu_i)$
1	$\Delta\Gamma_Z$	< 2 MeV (95% C.L.)	$\mathbf{F}(\mu_1, 2 \text{ MeV})$
2	$\Omega_{\mathrm{DM}}h^2$	0.1123 ± 0.0118	Gaussian
3	Δa_{μ}	$(26.1 \pm 12.8) \times 10^{-10}$	Gaussian
4	$m_{ ilde{g}}$	> 750, 1000 GeV	not included
		or none	(a posteriori cut)
5	Higgs masses	from	$L_5 = 1$ if allowed
		HiggsBounds 3.6.1beta	$L_5 = 10^{-9}$ if not
6	$m_{ ilde{\chi}_1^+}$	> 100 GeV	$L_6 = 1$ if allowed
	λ1		$L_6 = 10^{-9}$ if not
7	$m_{\tilde{e}_R} = m_{\tilde{\mu}_R}$	> 100 GeV	$L_7 = 1$ if allowed
			$L_7 = 10^{-9}$ if not
8	$m_{ ilde{ au}_1}$	> 85 GeV	$L_8 = 1$ if allowed
			$L_8 = 10^{-9}$ if not
9	$\sigma_{ m SI}$	$(m_{\rm DM}, \sigma_{\rm SI})$ constrained by	$L_9 = e^{-\chi_{\rm DD}^2/2}$
		XENON10, XENON100,	
		CDMS and CoGeNT	
10	$\mathcal{B}(b \to s \gamma)$	$(3.55 \pm 0.34) \times 10^{-4}$	Gaussian
11	$\mathcal{B}(B_s \to \mu^+ \mu^-)$	$< 1.26 \times 10^{-8} \text{ (95\% C.L.)}$	$\mathbf{F}(\mu_{11}, 1.26 \times 10^{-8})$

- We use micrOMEGAs, SuSpect, HDECAY and HiggsBounds
- We consider a posteriori the latest LHCb result: $\mathcal{B}(B_s\to\mu^+\mu^-)<0.45\times10^{-8}$
- **F**: smoothed step function (emulates the 95% C.L. limits)

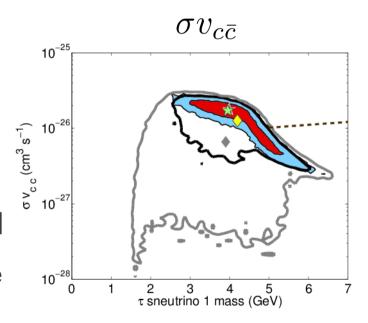
Light sneutrino results

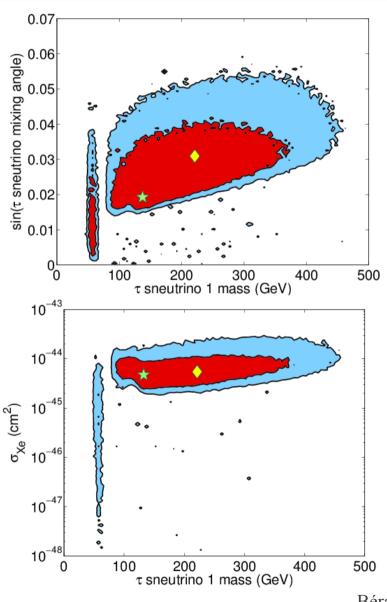




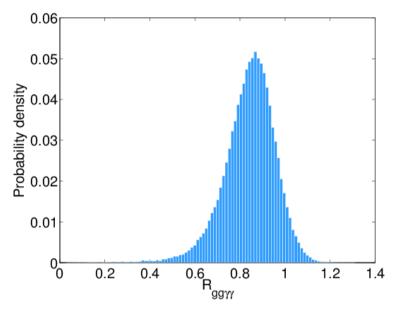
 If the excess around 125 GeV in Higgs searches is confirmed, it rules out a light mixed sneutrino dark matter. (similar result and interpretation if one sneutrino is light, the others heavy)

Light sneutrino results indirect detction – Fermi-LAT limits on γ-rays

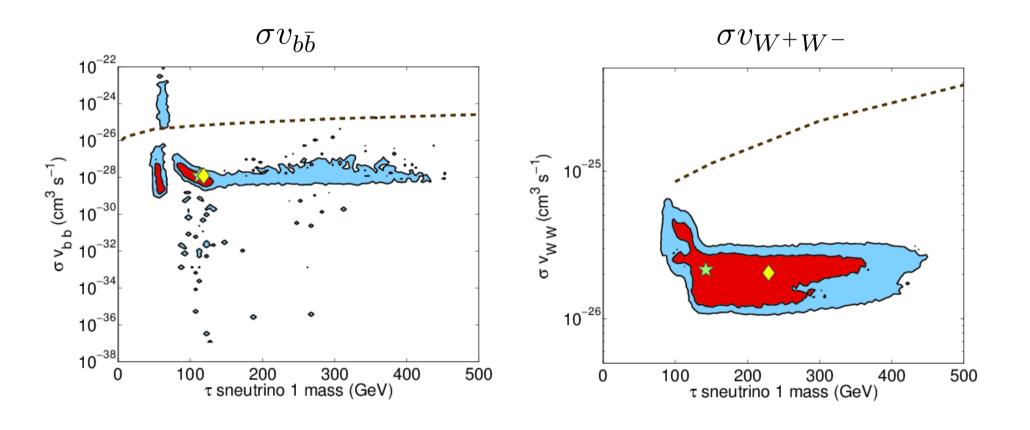

suppression of the wino mediated annihilation


latest Fermi limits: [1108.3546]

- our analysis could be refined
- Fermi results below 5 GeV are welcome!


Fermi limit on $c\bar{c}$ does not exist – we show the $b\bar{b}$ one

Heavy sneutrino results



- we need a very low mixing angle to pass the XENON100 limit
 - we have gluino mass > 1 TeV: current LHC bounds do not apply
- Higgs resonance for sneutrinos around 60 GeV
- the main region could soon be excluded by direct detection

- pMSSM-like result
- the sneutrino sector and the higgs sector are decoupled

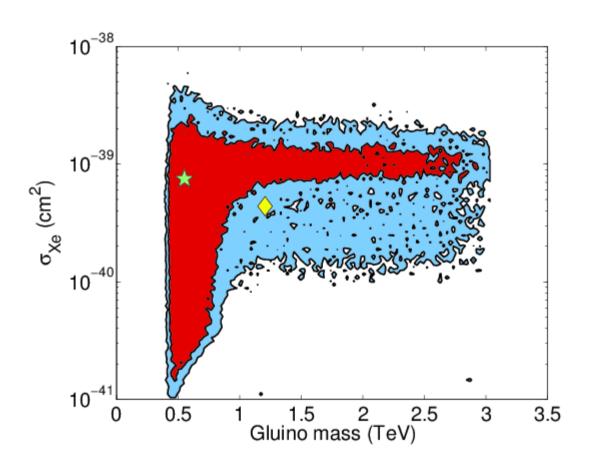
Heavy sneutrino results indirect detction – Fermi-LAT limits on γ-rays

LHC phenomenology

Mixed sneutrino dark matter has a sizable effect on SUSY signatures at the LHC.

posterior probability of	light sneutrino	heavy sneutrino
having		
$\mathcal{B}(\tilde{\chi}_1^0 \longrightarrow \tilde{\nu}_1 \nu) > 0.9$	95%	100%
$\mathcal{B}(\tilde{\chi}_2^0 \longrightarrow \tilde{\nu}_1 \nu) > 0.9$	78%	46%
$\begin{array}{l} \mathcal{B}(\tilde{\chi}_{1}^{\pm} \longrightarrow \tilde{\nu}_{1e}e^{\pm}) \\ + \mathcal{B}(\tilde{\chi}_{1}^{\pm} \longrightarrow \tilde{\nu}_{1\mu}\mu^{\pm}) > 0.5 \end{array}$	8%	51%
$+\mathcal{B}(\tilde{\chi}_1^{\pm} \longrightarrow \tilde{\nu}_{1\mu}\mu^{\pm}) > 0.5$		
$\mathcal{B}(\tilde{\chi}_1^{\pm} \longrightarrow \tilde{\nu}_{1\tau}\tau^{\pm}) > 0.5$	74%	7%

- dominant invisible decays for the two light neutralinos
- sizable lepton production from chargino decay
- LHC potential to resolve the light sneutrino DM scenario: [1105.4878]


Conclusion

- Mixed sneutrino dark matter is an interesting alternative to neutralino dark matter
- There is a lower limit on the scattering cross-section → direct detection limits are very constraining and could soon cover the whole parameter space
- Fermi-LAT results below 5 GeV are needed for light sneutrinos for heavy sneutrinos, the limit is one or two orders of magnitude above
- Dramatic consequences on the Higgs boson if the sneutrino is light
- Gluino and squarks cascade decays are different from the CMSSM the limit may be more stringent → requires a dedicated analysis

References

- Light mixed sneutrinos as thermal dark matter
 G. Belanger, M. Kakizaki, E.K. Park, S. Kraml, A. Pukhov JCAP 1011 (2010) 017 arXiv:1008.0580
- Light Sneutrino Dark Matter at the LHC Genevieve Belanger, Sabine Kraml, Andre Lessa JHEP 1107 (2011) 083 arXiv:1105.4878
- Small neutrino masses from supersymmetry breaking
 Nima Arkani-Hamed, Lawrence J. Hall, Hitoshi Murayama, David Tucker-Smith,
 Neal Weiner
 Phys.Rev. D64 (2001) 115011
 hep-ph/0006312
- Low scale seesaw mechanisms for light neutrinos Francesca Borzumati, Yasunori Nomura Phys.Rev. D64 (2001) 053005 hep-ph/0007018

/Backup/

