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• Introduction

• Z3  : model and results

• Z4 : model and results
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• In extensions of the SM, a discrete symmetry guarantees the 
stability of lightest “odd” particle->DM candidate if neutral

• Usually a Z2 symmetry (R-parity in SUSY, KK-parity...)
• Discrete remnant of some broken gauge group, in general 

does not have to be Z2 - consider ZN

• Impact for dark matter :
–  New processes

• semi-annihilation : processes involving different 
number of “odd particles”  xx --> x* SM

– More than one DM candidate
• Assisted freeze-out/DM conversion : interaction between 

particles from different dark sectors
» x1x1 <--> x2x2

Introduction
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• Impact of these new processes on DM properties
– semi-annihilation (D’Eramo, Thaler 1003.5912)

– Assisted/DM conversion (Liu,Wu,Zhao, 1101.4148 )
• No sign of SUSY or NP at LHC (yet)- no confirmed 

signal of DM in astroparticle; important to consider 
wide spectrum of possibilities for DM 

• Consider minimal model: scalar dark matter model 
with inert scalar doublet + complex singlet

• Two cases : 
– Z3 symmetry 
– Z4 symmetry
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The Z3 case : semi-
annihilation
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• Number density    (x : dark sector   X: SM)

• Modified equation solved numerically (Y=Yeq+ΔY) with usual 
micrOMEGAs procedure   ΔY - >ΔY/(1-α/2)

invariant under e.g. the assignment of Z4 charges X1 = 0, X2 = 2, XS = 1.

The vacuum stability conditions for the potential are similar to the Z3 case:

λ1 ≥ 0, λ2 ≥ 0, λS + λ�
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The λ5 term in potential (13) splits the down component of H2 into two real scalar fields with

different masses,

H2 =
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−iH

+

H
0
+ iA

0
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. (17)

Note that the complex scalar S does not mix with H2 because these fields have different ZN charges.

As a result this model contains two dark sectors, the first one with the complex scalar S (the Z4 charge

is 1), the second one comprising the complex scalar H
+
and the real scalars H

0
and A

0
( the Z4 charge

is 2). Any of the neutral particles with a non-zero Z4 charge can be a dark matter candidate. We will

consider the masses of the neutral scalar particles, MS , MH and MA, as independent parameters, then
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3 RELIC DENSITY IN CASE OF THE Z3 SYMMETRY

3.1 Evolution equations

Consider the Z3-symmetric theory. The imposed Z3 symmetry implies, as usual, just one dark matter

candidate. This is because the Z3 charges 1 and −1 correspond to a particle and its anti-particle. The

new feature is that processes of the type xx → x
∗
X, where X is any standard model particle, also

contribute to dark matter annihilation. The equation for the number density reads
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which means that 0 ≤ α ≤ 1. Here and in the following we use the notation, σxx→x
∗
X

v ≡ vσxx→x
∗
X
.

In terms of the abundance, Y = n/s, where s is the entropy density, we obtain

dY

dt
= −sσv
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Y

2 − αY Y − (1− α)Y
2
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(24)
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or

3H
dY

ds
= σv

�
Y

2 − αY Y − (1− α)Y
2
�
. (25)

where Y = Yeq is the equilibrium abundance. To solve this equation we follow the usual procedure [17].
Writing Y = Y +∆Y we find the starting point for the numerical solution of this equation with the
Runge-Kutta method using

3H
dY

ds
= σvY∆Y (2− α) , (26)

where ∆Y � Y . This is similar to the standard case except that ∆Y increases by a factor 1/(1−α/2).

Furthermore, when solving numerically the evolution equation, the decoupling condition Y
2 � Y

2
is

modified to
Y

2 � αY Y + (1− α)Y
2
. (27)

This implies that the freeze-out starts at an earlier time and lasts until a later time as compared
with the standard case. This modified evolution equation is implemented in micrOMEGAs [18, 31].
Although semi-annihilation processes can play a significant role in the computation of the relic density,
the solution for the abundance depends only weakly on the parameter α, typically only by a few percent.
This means in particular that the standard freeze-out approximation works with a good precision.

3.2 Numerical results with micrOMEGAs

Using the scalar potential defined in Eq. (4) we have implemented in micrOMEGAs the scalar model
with a Z3 symmetry. The scalar sector contains an additional scalar doublet and one complex singlet.
The neutral component of the doublet mixes with the singlet, the lightest component x1 is therefore
the dark matter candidate, while the heavy component x2 can decay into x1h, where h is the standard
model-like Higgs boson. Note that the doublet component of DM has a vector interaction with the Z.
This interaction is determined by the SU(2)× U(1) gauge group and leads to a large direct detection
signal in conflict with exclusion limits, for example from Xenon100 [32]. The only way to avoid this
constraint is to consider a DM with a very small doublet component, namely we have to assume that
the mixing angle

θ ≤ 0.025. (28)

In the limit of small mixing, annihilation processes such as x1x∗1 → XX where X stands for W,Z, h, are
dominated by the λS1|S|2|H1|2 term. The semi-annihilation process x1x1 → x

∗
1h is mainly determined

by a product of µ��
S and λS1 arising from the terms µ

��
S(S

3 + S
†3)/2 and λS1|S|2|H1|2 in Eq. 2 and

Eq. 4. The µ
��
S term can not be large otherwise it would lead to spontaneous breaking for S. In the

zero mixing limit this leads to the condition

|µ��
S | < 2Mx1

�
λS . (29)

To illustrate a scenario where semi-annihilation channels contribute significantly and which predicts
reasonable values for the relic density and the direct detection rate, we choose a benchmark point with
the following parameters

λ2 0.1 λS 0.2 λS21 0.1 Mx1 150 GeV

λ3 0.1 λS1 0.05 Mh 125 GeV Mx2 400 GeV

λ4 0.1 λS2 0.1 µ
��
S 80 GeV sin θ 0.025

Table 2: Benchmark point for Z3.

For this point, the relic density is Ωh2 = 0.105. The dominant contribution to (Ωh2)−1 is from semi-
annihilation (54% for x1x1 → hx

∗
1) while the annihilation channels x1x∗1 → WW,ZZ, hh give a relative
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The model
• Inert doublet + complex singlet (H2, S, do not couple 

to quarks)

• Scalar potential (Z(H1)=0, Z(S)=Z(H2)=1)
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Table 1: Scalar field content of the low energy theory with the components of the standard model
Higgs H1 in the Feynman gauge. The value of the Higgs VEV is v = 246 GeV.

Field SU(3) SU(2)L T
3

Y/2 Q = T
3 + Y/2

H1 =

�
G

+

v+h+iG
0

√
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1 2
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2.3 Constraints on charge assignments

The assignments of ZN charges have to satisfy

XS > 0,

X1 �= X2,

−X� +X1 +Xe = 0 mod N,

−Xq +X1 +Xd = 0 mod N,

−Xq −X1 +Xu = 0 mod N.

(1)

The first and second conditions arise from avoiding the |H1|2S term and Yukawa terms for H2, respec-
tively, and the rest from requiring Yukawa interactions between H1 and standard model fermions. The
choice of ZN charges for standard model fermions, the standard model Higgs H1, the inert doublet H2

and the complex singlet S must be such that there are no Yukawa terms for H2 and no mixing between
H1 and H2: only annihilation and semi-annihilation terms for H2 and S are allowed. While we will
see below that there are many assignments that satisfy Eq. (1), in each case it was possible to find an
assignment with the charges of standard model fields set to zero: Xq,�,u,d,e,1 = 0.

All possible scalar potentials contain a common piece because the terms where each field is in pair
with its Hermitian conjugate are allowed under any ZN and charge assignment. We denote it by Vc

(the ‘c’ stands for ‘common’):
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2
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2.4 The Z2 scalar potential

There are 256 ways to assign the possible Z2 charges 0, 1 to the standard model and dark sector fields.
Of these, 8 satisfy Eq. (1); among them, there are 2 different assignments to the dark sector fields:
XS = X1 = 1, X2 = 0 and X1 = 0, X2 = XS = 1. Both give rise to the unique scalar potential
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2.5 Z3 scalar potentials and particle contents

There are 6561 ways to assign 0, 1, 2 to the fields. Of these, 108 satisfy Eq. (1); among them, there

are 12 different assignments to the dark sector fields, giving rise to 2 different scalar potentials. The

example potential we choose to work with (given by e.g. X1 = 0, X2 = XS = 1) is
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(4)

which induces the semi-annihilation processes we are interested in. The second one is obtained from

Eq. (4) by changing S → S
† (with µSH → µ

�
SH

and λS12 → λS21).

The interaction couplings must satisfy the vacuum stability conditions for the potential to be

bounded below:

λ1 ≥ 0, λ2 ≥ 0, λS ≥ 0, (5)

λ3 + λ4 ≥ −2
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λ1λ2, λS1 ≥ −2
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λ1λS , λS2 ≥ −2

�
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When λ1, λ2 and λS are small,2

λS1 ≥ 0, λS2 ≥ 0, 4λS1λS2 ≥ λ2
S12. (7)

The last term in Eq. (4) induces a mixing between the down component of H2 and S. In terms of

the mass eigenstates x1, x2, we have

H2 =

�
−iH

+

x1 sin θ + x2 cos θ

�
, S = x1 cos θ − x2 sin θ. (8)

The dark sector of this model consists of 3 complex particles x1, x2, and H
+ with a Z3 charge of

1. Taking the masses of x1, x2 and the mixing angle θ as free parameters of the model, we get the

following relations
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and the mass of H+ is
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. (12)

2.6 Z4 scalar potentials and particle contents

There are 65536 ways to assign 0, 1, 2, 3 to the fields. Of these, 576 satisfy Eq. (1); among them, there

are 36 different assignments to the dark sector fields, giving rise to 5 different scalar potentials. Among

those the only potential that contains semi-annihilation terms is

V
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2
Otherwise this condition is sufficient, but too strong.
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• Mixing H2- S

• Dark sector : complex x1,x2,H+, Z3 charge=1
• Free parameters:

• Small mixing : otherwise large SI direct 
detection rate
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S12. (7)

The last term in Eq. (4) induces a mixing between the down component of H2 and S. In terms of

the mass eigenstates x1, x2, we have
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+

x1 sin θ + x2 cos θ
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2.6 Z4 scalar potentials and particle contents

There are 65536 ways to assign 0, 1, 2, 3 to the fields. Of these, 576 satisfy Eq. (1); among them, there

are 36 different assignments to the dark sector fields, giving rise to 5 different scalar potentials. Among

those the only potential that contains semi-annihilation terms is
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2
Otherwise this condition is sufficient, but too strong.

4

λ2 0.1 λS 0.2 λS21 0.1 Mx1 150 GeV
λ3 0.1 λS1 0.05 Mh 125 GeV Mx2 400 GeV
λ4 0.1 λS2 0.1 µ��

S 80 GeV sin θ 0.025

Table 2: Benchmark point for Z3.

Fig. 1: (Left panel) Ωh2 as a function of the dark matter mass for the benchmark point with semi-annihilation (solid line),
and without semi-annihilation (dashed). (Right panel) σSI

x1Xe (solid). The experimental limit from XENON100 [32] is also
displayed (dashed).

For this point, the relic density is Ωh2 = 0.105. The dominant contribution to (Ωh2)−1 is from
semi-annihilation (54% for x1x1 → hx∗1) while annihilation channels x1x∗1 → WW,ZZ, hh give a
relative contribution of 22%,13% and 10% respectively. Fig. 1 illustrates the dependence of the relic
density on the DM mass as compared to the relic density when semi-annihilation is ignored, (Ωh2)ann.
Here all other parameters are fixed to their benchmark values. When Mx1 = 110 GeV, semi-annihilation
with a Higgs in the final state is kinematically forbidden at low velocities. If Mx1 increases, semi-
annihilation plays an important role and Ωh2 decreases rapidly due to the contribution of the channel
x1x1 → hx∗1. Note that (Ωh2)ann also decreases when Mx1 is such that the channel x1x∗1 → hh
is allowed. When Mx1 approaches Mx2/2, Ωh2 falls again because the semi-annihilation channel is
enhanced due to x2 exchange near resonance.

The spin independent (SI) scattering cross section on nuclei as a function of the DM mass is
illustrated in Fig. 1 (right panel). Here we average over dark matter and anti-dark matter cross section
assuming that they have the same density. The main contribution comes from the Z-exchange diagram
because there is a x1x∗1Z coupling2. Furthermore one can easily show that the scattering amplitudes
are not the same for protons and neutrons, with fp = (4 sin2 θW − 1)fn = −0.075fn. Since the
current experimental bounds on σSI

xp are extracted from experimental results assuming that the couplings
to protons (fp) and neutrons (fn) are equal and the same as the couplings of x∗1 to protons (f̄p) and
neutrons (f̄n), we define the normalized cross section on a point-like nucleus [33]:

σSI
xN =

2

π

�
MNMx1

MN +Mx1

�2� [Zfp + (A− Z)fn]2

A2
+

[Zf̄p + (A− Z)f̄n]2

A2

�
. (30)

2In the inert doublet model with a Z2 symmetry [19, 21], a λ5 term splits the complex doublet into a scalar and a pseu-
doscalar, when the mass splitting is small such coupling leads to inelastic scattering.
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• Annihilation

• Semi- annihilation

• Benchmark: Ωh2=0.105 (54% from semi-
annihilation)
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2.5 Z3 scalar potentials and particle contents
There are 6561 ways to assign 0, 1, 2 to the fields. Of these, 108 satisfy Eq. (1); among them, there are

12 different assignments to the dark sector fields, giving rise to 2 different scalar potentials. The example

potential we choose to work with (given by e.g. X1 = 0, X2 = XS = 1) is
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which induces the semi-annihilation processes we are interested in. The second one is obtained from

Eq. (4) by changing S → S
†

(with µSH → µ
�
SH

and λS12 → λS21).

The interaction couplings must satisfy the vacuum stability conditions for the potential to be

bounded below:

λ1 ≥ 0, λ2 ≥ 0, λS ≥ 0, (5)

λ3 + λ4 ≥ −2
�

λ1λ2, λS1 ≥ −2
�

λ1λS , λS2 ≥ −2
�

λ2λS , (6)

together with

4λS1λS2 ≥ λ2
S12. (7)

The last term in Eq. (4) induces a mixing between the down component of H2 and S. In terms of

the mass eigenstates x1, x2

H2 =

�
−iH

+

x1 sin θ + x2 cos θ

�
, S = x1 cos θ − x2 sin θ. (8)

The dark sector of this model consists of 3 complex particles x1, x2, and H
+

with a Z3 charge of 1.

Taking the masses of x1, x2 and the mixing angle θ as free parameters of the model, we get the following

relations
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• Mx1=110 GeV : semi-annihilation kinematically forbidden
• Decrease of relic density when semi-anni. contribute
• semi-anni enhanced when Mx1=Mx2/2

Figure 1: (Left panel) Ωh2 as a function of the dark matter mass for the benchmark point with semi-
annihilation (solid line), and without semi-annihilation (dashed). (Right panel) σSI

x1Xe (solid). The
experimental limit from XENON100 [32] is also displayed (dashed).

contribution of 22%,13% and 10% respectively. Fig. 1 illustrates the dependence of the relic density on
the DM mass as compared to the relic density when semi-annihilation is ignored, (Ωh2)ann. Here all
other parameters are fixed to their benchmark values. When Mx1 = 110 GeV, semi-annihilation with a
Higgs in the final state is kinematically forbidden at low velocities. If Mx1 increases, semi-annihilation
plays an important role and Ωh2 decreases rapidly due to the contribution of the channel x1x1 → hx∗1.
Note that (Ωh2)ann also decreases when Mx1 is such that the channel x1x∗1 → hh is allowed. When
Mx1 approaches Mx2/2, Ωh

2 falls again because the semi-annihilation channel is enhanced due to x2
exchange near resonance.

The spin independent (SI) scattering cross section on nuclei as a function of the DM mass is
illustrated in Fig. 1 (right panel). Here we average over dark matter and anti-dark matter cross section
assuming that they have the same density. The main contribution comes from the Z-exchange diagram
because there is a x1x∗1Z coupling3. Furthermore one can easily show that the scattering amplitudes
are not the same for protons and neutrons, with fp = (4 sin2 θW − 1)fn = −0.075fn. Since the current
experimental bounds on σSI

xp are extracted from experimental results assuming that the couplings to
protons (fp) and neutrons (fn) are equal and the same as the couplings of x∗1 to protons (f̄p) and
neutrons (f̄n), we define the normalised cross section on a point-like nucleus [33]:

σSI
xN =

2

π

�
MNMx1

MN +Mx1

�2� [Zfp + (A− Z)fn]2

A2
+

[Zf̄p + (A− Z)f̄n]2

A2

�
. (30)

This quantity can directly be compared with the limit on σSI
xp.

4 RELIC DENSITY IN CASE OF THE Z4 SYMMETRY

4.1 Evolution equations

In the case of a Z4 symmetry all particles can be divided into 3 classes {0,1,2} according to the value
of their Z4 charges modulo 4. We can choose SM particles to have XSM = 0. We will use the notation

3In the inert doublet model with a Z2 symmetry [19, 21], a λ5 term splits the complex doublet into a scalar and a
pseudoscalar, when the mass splitting is small such coupling leads to inelastic scattering.
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DM candidates

mercredi 25 avril 2012



The Z4 case
• Z4 charge : 0,1,2
• Assume charge 0 for SM particle
• lightest particle of charge 1 : stable
• lightest particle of charge 2 stable if M2<2M1

• If M2>2M1 decay into charge 1 before freeze-out, usual case 
with only 1 DM candidate

• Equations for number density

12

σabcd
v for the thermally averaged cross section for reactions ab → cd where a, b, c, d = 0, 1, 2 represent

any particle with given X-charge. Let Mx1 and Mx2 be the masses of the lightest particles of classes
1 and 2 respectively. The lightest particle of class 1 is always stable and therefore a DM candidate.
The lightest particle of class 2 is stable and can be a second DM candidate if Mx2 < 2Mx1 . Note that
if Mx2 > 2Mx1 , then x2 will decay before the freeze-out of x1 and the relic density can be computed
following the standard procedure.

The equations for the number density of particles 1 and 2 read
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2
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�
− 3Hn2, (32)

where we use n̄i to designate the equilibrium number density of particle xi. In σabcd
v all annihilation

and coannihilation processes are taken into account. Note that σ1122
v n̄

2
1 = σ2211

v n̄
2
2 because these two

processes are described be the same matrix element. Here the semi-annihilation processes include all
those, where 2 DM particles annihilate into one DM and one standard particle, specifically σ1120

v and
σ1210
v . These two cross sections are also described by the same matrix element. However, there is no

simple relation between these two cross sections because one process is in the s-channel and the other
in the t-channel. In terms of the abundance, Yi = ni/s,

3H
dY1

ds
= σ1100

v

�
Y

2
1 − Y

2
1

�
+ σ1120

v

�
Y

2
1 − Y2

Y
2
1

Y 2

�
+ σ1122

v

�
Y

2
1 − Y

2
2
Y

2
1

Y
2
2

�
, (33)
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where s = heff2π2
/45T 3 [34]. The thermally averaged cross section involving particles of different

sectors can be expressed as

σIJKL
v (T ) =

T

64π5s2Y I(T )Y J(T )

�
ds√
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�√
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√
s, cosΘ)|2d cos θ, (35)

Y I(T ) =
T

2π2s

�

i∈I
gim

2
iK2(

mi

T
), (36)

where Mab→cd is the matrix element for the 2 → 2 process and K1,K2 are Bessel functions of the
first and second kind. For reactions which are kinematically open at zero relative velocity, σv depends
slowly on temperature. Otherwise there is a strong exp(−∆M/T ) temperature dependence, where ∆M

is the difference between the sums of the masses of outgoing and incoming particles. Equation (35)
leads to relations between different cross sections

YIYJσ
IJKL
v = YKYLσ

KLIJ
v (37)
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• All annihilation+ coannihilation included
• semi annihilation 11->20, 12->10 
• DM conversion: 22 <->11
• Equations to solve 

• To solve, neglect Q term at large T and solve for ΔY
• Relic density Ω h2= Ω1 h2+ Ω2h2

13

For example, σ0211
v = σ1120

v Y
2
1 /Y2, where the abundance of incoming SM particles Y0 = 1.

Introducing ∆Yi = Yi − Y i, Eqs. (33) and (34) take a simple form

3H
∆Yi

ds
= −Ci +Aij(T )∆Yj +Qijk(T )∆Yj∆Yk, (38)

where

Ci = 3H
dY i

ds
, (39)

A =



 2(σ1100
v + σ1122

v + σ1120
v )Y 1 −(σ1120

v + 2σ1122
v )Y

2
1

Y 2

−σ1120
v Y 1 − 2σ1122

v Y 1 2(σ2200
v + σ2211

v )Y 2 + 0.5(σ1210
v + σ1120

v
Y 1

Y 2
)Y 1



 , (40)

Q1 =

�
σ1100
v + σ1122

v + σ1120
v 0

0 −σ2211
v

�
, (41)

Q2 =

�
−σ1120

v − σ1122
v

1
2σ

1210
v

0 σ2200
v + σ2211

v

�
. (42)

(43)

At large temperatures we expect the densities of both DM components to be close to their equi-
librium values. In general in micrOMEGAs [35] the equation for the abundance is solved numerically
starting from large temperatures. However, this procedure poses a problem for Eq. (38). The step of
the numerical solution is inversely proportional to A(T ) and as long as A(T ) is not suppressed by the
Boltzmann factor included in Y , the step is too small and the numerical method fails.

To avoid this problem, we use the fact that at large temperatures one can neglect the Q term in
Eq. (38) and write the explicit solution for the linearised equation. Because s < s0, the argument of
the exponential is negative, which allows to write an approximate solution of the form

∆Yi(s) = A
−1
ij (s)Cj(s). (44)

One can use Eq. (44) to find the lowest temperature where ∆Yi ≈ 0.05Yi and start solving numerically
Eq. (38) from this temperature. In the general case it gives a reasonable step for the numerical solution
δs/s ≈ 0.1, where s is the variable of integration. This method can however lead to some numerical
problems if the masses of the two dark matter particles are very different. Let us call the light particle
l and the heavy particle h . We have to start the numerical solution at a temperature T above the
freeze-out temperature of the heaviest DM,

Tfoh ≈ Mh/25. (45)

At this temperature,
Yl

Yh
≈ exp

Mh −Ml

Tfoh
, (46)

and the step in the numerical solution of the two component equations will be suppressed by a factor
exp (−Mh −Ml )/Tfoh . This small step size is problematic when solving numerically the equation
with the Runge-Kutta method. This occurs when Mh/Ml > 2. In this case the equation for the
heavy component must be solved independently assuming that the light component has reached its
equilibrium density. If Mh/Ml < 2, the Runge-Kutta procedure can be used to successfully solve the
thermal evolution equations (38).

The abundances Y1 and Y2 will be modified by the interactions between the two dark matter
sectors.4 If Mx1 � Mx2 , the first particle to freeze out will be x1, and at this temperature x2 will

4Note that Y1 and Y2 correspond to the abundances of the particles with a given Z4 charge. The relative size of the
masses of the DM particles depend on the choice of parameters in a given model.
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Assisted freeze-out
• Simpler case : Z2XZ2 only interactions x2x2-x1x1 (α) and x1x1-

SM,SM (β)  -  assume no x2x2->SM,SM
• When  22-11 interactions stronger than 11-00, Y2 much 

reduced DM dominated Y1 
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FIG. 1: The evolution of the abundances of χ1 (blue) and χ2 (red) per comoving volume as a

function of x ≡ m1/T . Dashed lines are the equilibrium comoving number densities. Dark matter

masses are fixed as m1 = 100 GeV and m2 = 150 GeV. The corresponding matrix elements are

shown in each figure.

III. DARK MATTER CANDIDATES WITH TWO EXTRA U(1)’S

As an explicit example of how the assisted freeze-out mechanism can occur in a specific

DM model, we consider a toy model with a hidden sector containing two extra Abelian gauge

symmetries, U(1)′ and U(1)′′, and two Dirac fermions ψ1 and ψ2. The particle ψ1 is charged

under both U(1)′ and U(1)′′ gauge symmetries, and ψ2 is only charged under the U(1)′′

symmetry. If ψ1 is the lightest particle charged under the U(1)′ symmetry and ψ2 is the

lightest one only charged under the U(1)′′ symmetry, then ψ1 and ψ2 can be naturally stable

particles like the electron in the SM. We assume that the hidden sector couples to the SM

sector only through a kinetic mixing between U(1)′ and U(1)Y . Then, the full Lagrangian

5
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Inert doublet+singlet model

• Z4 potential, Z(H2)=2, Z(S)=1,Z(H2)=0

• DM sector 1  : complex scalar S
• DM sector 2  : 3 real scalars H,A,H+

• sector 1 :  SS*-> hh 

• sector 2 similar Inert doublet, DM either A,H
– annihilation WW,WW*,ffbar, co-annihilation

15

2.6 Z4 scalar potentials and particle contents
There are 65536 ways to assign 0, 1, 2, 3 to the fields. Of these, 576 satisfy Eq. (1); among them, there

are 36 different assignments to the dark sector fields, giving rise to 5 different scalar potentials. Among

those the only potential that contains semi-annihilation terms (given by e.g. X1 = 0, X2 = 2, XS = 1)

is

V
1
Z4

= Vc +
λ�
S

2
(S4 + S

†4) +
λ5

2

�
(H†

1H2)
2 + (H†

2H1)
2
�

+
λS12

2
(S2

H
†
1H2 + S

†2
H

†
2H1) +

λS21

2
(S2

H
†
2H1 + S

†2
H

†
1H2).

(13)

The vacuum stability conditions for the potential are similar to the Z3 case:

λ1 ≥ 0, λ2 ≥ 0, λS + λ�
S ≥ 0, (14)

λ3 + λ4 − |λ5| ≥ −2
�

λ1λ2, λS1 ≥ −2
�

λ1(λS + λ�
S
), λS2 ≥ −2

�
λ2(λS + λ�

S
), (15)

together with

4λS1λS2 ≥ (|λS12|+ |λS21|)2. (16)

The other four scalar potentials can be formally obtained from the Z2-invariant potential Eq. (3)

by setting all the new terms added to Vc to zero, with the exception of the 1) λ�
S

, µSH , 2) λ�
S

, µ
�
SH

, 3)

µ
�
S

, λ�
S

, λ��
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, λ�
S1, λ�

S2, 4) µ
�
S

, λ�
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, λ��
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, λ�
S1, λ�

S2, µSH , µ
�
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terms.

The λ5 term in potential (13) splits the down component of H2 into two real scalar fields with

different masses,

H2 =

�
−iH

+

H
0 + iA

0

�
. (17)

Note that the complex scalar S does not mix with H2 because these fields have different ZN charges. As

a result this model contains two dark sectors, the first one with the complex scalar S (the Z4 charge is 1),

the second one comprising the complex scalar H
+

and the real scalars H
0

and A
0

( the Z4 charge is 2).

Any of the neutral particles with a non-zero Z4 charge can be a dark matter candidate. We will consider

the masses of the neutral scalar particles, MS , MH and MA, as independent parameters, then

µ
2
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2
S − λS1

v
2

2
, (18)

λ5 =
M

2
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−M

2
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v2
, (19)
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v
2

2
, (20)

MH+ =

�
M

2
A
+M

2
H

2
− λ4

v2

2
. (21)

3. RELIC DENSITY IN CASE OF THE Z3 SYMMETRY
3.1 Evolution equations
Consider the Z3-symmetric theory. The imposed Z3 symmetry implies, as usual, just one dark matter

candidate. This is because the Z3 charges 1 and −1 correspond to a particle and its anti-particle. The new

feature is that processes of the type xx → x
∗
X , where X is any standard model particle, also contribute

to dark matter annihilation. The equation for the number density reads

dn

dt
= −vσxx

∗→XX
�
n
2 − n

2
�
− 1

2
vσxx→x

∗
X
�
n
2 − nn

�
− 3Hn. (22)
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• Benchmark

• Two DM candidates with comparable contribution to 
relic density + semi-ann important + DM conversion

• Ω h2= Ω1 h2+ Ω2h2 =0.1
• Weak interaction of sector 1 (S) with SM particles

16

must be solved independently assuming that the light component has reached its equilibrium density. If
Mh/Ml < 2, a Runge-Kutta procedure can be used to successfully solve the thermal evolution equa-
tions (38).

The abundances Y1 and Y2 will be modified by the interactions between the two dark matter
sectors. 3 If Mx1 � Mx2 , the first particle to freeze out will be x1, and at this temperature x2 will still
be in thermal equilibrium with SM particles and will contribute to the evolution of Y1 as SM particles do.
Thus the new terms in Eq. (33) will simply add to the standard annihilation process with SM particles
and will contribute to decrease the final abundance Y1. When Mx1 � Mx2 , the evolution of Y2 will
be strongly influenced by the first sector since at its freeze-out temperature Y1 is large. Following the
same argument as above the new annihilation terms in Eq. (34) will contribute to a decrease in the final
abundance Y2. In particular x1 act as a catalyst for the transformation of x2 into SM particles through
the semi-annihilation process 12 → 10 which is always kinematically open. Thus the light component
forces the heavy one to keep its equilibrium value, resulting in a significant decrease of the relic density
of x2. When both DM particles have similar masses, the interplay between the two sectors is more
complicated, in particular the role of the interactions of the type 20 → 11 will depend on the exact
mass relation between the two DM particles. For example, this interaction can lead to an increase of the
abundance of x2 if Y1 is large enough that the reverse process gives the largest contribution.

4.2 Numerical results
The scalar model with a Z4 symmetry contains two dark sectors. In sector 1 the DM candidate is a
complex singlet, S, the main contribution to σ1100

v comes from annihilation into Higgs pairs and is de-
termined by the term λS1|S|2|H1|2. Sector 2 is similar to the Inert Doublet Model (IDM). The DM
candidate can be either the scalar H0, or the pseudoscalar A0. Annihilation of DM into SM particles is
usually dominated by gauge boson pair production processes, while annihilation into fermion pairs as
well as co-annihilation processes can also contribute. Furthermore for a DM mass at the electroweak
scale, it was shown in [36] that annihilation into 3-body final states via a virtual W can be important
below the W threshold. To avoid this complication we will consider a DM with a mass above that of
the W , Z, and h. Under this condition, the DM annihilation into SM particles in sector 2 is driven by
SU(2) × U(1) gauge interactions and leads typically to a value of Ωh2 < 0.1 except for a DM heavier
than about 500 GeV. The co-annihilation of H , A, H+ states increases Ωh2.

We will consider a benchmark point where both DM candidates (S,H) have a mass near 350
GeV. Other parameters are chosen so that semi-annihilation processes play an important role, while both
components have comparable relic density and Ωh2 = Ω1h

2 + Ω2h
2 = 0.1. In particular to have

Ω2h
2 ≈ 0.05 requires the contribution of coannihilation processes – we therefore impose a small mass

splitting MH ≈ MA, thus λ5 will be small, see Eq. (19). Furthermore a small value of λ4 also leads to
a small mass splitting with the charged Higgs. Note that for small λ5 and λ4 the positivity condition on
the potential, Eqs. (2,13) is easily satisfied.

λ2 0.1 λS1 0.1 λ�
S

0.1 MA 341 GeV
λ3 0.1 λS2 0.3 µS 100 GeV MH 339 GeV
λ4 0.01 λS12 0.13 Mh 125 GeV MS 350 GeV
λS 0.1 λS21 0.13

Table 3: Benchmark point for Z4.

The results of the calculation of the relic density when including different terms in Eq. (33,34)
is presented in Table 4. When only (co-)annihilation into SM particles are taken into account, the relic

3Note that Y1 and Y2 correspond to the abundances of the particles with a given Z4 charge. The relative size of the masses
of the DM particles depend on the choice of parameters in a given model.
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DM conversion

• Tfo (heavy)> Tfo(light), at freeze-out of heavy component 
hh->ll adds to hh->00 and lead to decrease of heavy DM 
abundance

• interaction hh->ll increase abundance of light component
• Effect large when  MS>MH since 1122>>1100 17

Fig. 2: Effect of interactions between the two dark matter sectors (left) and of semi-annihilation (right) on Ω1h
2
(solid) and

Ω2h
2
(dashed) as a function of MS . Left panel – Including only σ1100

v and σ2200
v (black) as well as σ1122

v , σ2211
v (red).

Right panel – Including only σ1210
v (green), only σ1120

v (red) as well as all semi-annihilations (blue), as a reference in black

Ω1h
2
(solid) and Ω2h

2
(dot) with only standard annihilation terms. Note that σ1210

v does not change Ω1h
2
.

annihilation processes that we will discuss below. This is because the σ1210
v term in Eq. 34 depends on

Y
2
1 , which is large in this approximation.

The second type of semi-annihilation process, 11 → 20 (or its reverse 20 → 11) lead to variations

in the relic density of both DM components. If MS > MH , the impact of σ1120
v is very similar to the

one discussed above for σ1122
v . For S, the heavy component, the overall annihilation cross section is

increased which leads to a decrease in Ω1, this is illustrated by the blue curve in Fig. 2. For H , the relic

density increases because the process 11 → 20 gives an additional source of sector 2 particles. This

increase is even more important when both particles have similar masses – see the blue dashed curve in

Fig. 2 when MS = 260-350 GeV. To examine more closely the impact of the semi-annihilation in the

region where the mass of both DM particles are similar, we compute the temperature evolution of Y1

and Y2 choosing MS = 260 GeV. The result is displayed in Fig. 3, in particular comparing the evolution

of Y2 with and without the contribution of σ1120
v . For this choice of masses, the freeze-out of H occurs

when the abundance Y1 = Y 1 is large, this means that the term

−1

2
σ1120
v

�
Y

2
1 − Y2

Y 2
Y

2
1

�
= +

1

2
σ1120
v Y

2
1

�
Y2

Y 2
− 1

�
. . . (47)

in Eq. (34) forces Y2 to follow its equilibrium value, thus Y2 is further reduced by semi-annihilation at

large temperatures. After the freeze-out of S, when Y1 � Y 1, the same interaction leads to an increase

of Y2. Thus the overall effect is an increase in the abundance of class 2 particles as compared with the

case where only standard interactions are considered.

Finally when MS < 260 GeV, the cross section σ1120
v , which consists of processes of the type

SS → Hh is small because of a lack of phase space, thus Ω1h
2

is the same as when only standard

annihilation terms were included. At the same time the reverse process, 20 → 11 drives the depletion

of class 2 particles and Ω2h
2

drops to very small values. Note that when MH > 2MS we expect that

the decay of class 2 DM into pairs of class 1 particles occur since they are allowed by the Z4 symmetry.

However, in this example, the effect of σ1210
v and σ1120

v terms already lead to very small values of Ω2h
2

for low values of MS , so that the decays are irrelevant. In summary, the combined effect of semi-

annihilation processes is for this example close to the result of only including σ1120
v , see Fig. 2.

11-00

MS>MH
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Semi-annihilation

• Two types of semi-annihilation 
– sH->sh (1210) no effect on Ω1, reduce Ω2

– ss*-> Hh (1120)   reduce Ω1, increase Ω2

18

Fig. 2: Effect of interactions between the two dark matter sectors (left) and of semi-annihilation (right) on Ω1h
2
(solid) and

Ω2h
2
(dashed) as a function of MS . Left panel – Including only σ1100

v and σ2200
v (black) as well as σ1122

v , σ2211
v (red).

Right panel – Including only σ1210
v (green), only σ1120

v (red) as well as all semi-annihilations (blue), as a reference in black

Ω1h
2
(solid) and Ω2h

2
(dot) with only standard annihilation terms. Note that σ1210

v does not change Ω1h
2
.

annihilation processes that we will discuss below. This is because the σ1210
v term in Eq. 34 depends on

Y
2
1 , which is large in this approximation.

The second type of semi-annihilation process, 11 → 20 (or its reverse 20 → 11) lead to variations

in the relic density of both DM components. If MS > MH , the impact of σ1120
v is very similar to the

one discussed above for σ1122
v . For S, the heavy component, the overall annihilation cross section is

increased which leads to a decrease in Ω1, this is illustrated by the blue curve in Fig. 2. For H , the relic

density increases because the process 11 → 20 gives an additional source of sector 2 particles. This

increase is even more important when both particles have similar masses – see the blue dashed curve in

Fig. 2 when MS = 260-350 GeV. To examine more closely the impact of the semi-annihilation in the

region where the mass of both DM particles are similar, we compute the temperature evolution of Y1

and Y2 choosing MS = 260 GeV. The result is displayed in Fig. 3, in particular comparing the evolution

of Y2 with and without the contribution of σ1120
v . For this choice of masses, the freeze-out of H occurs

when the abundance Y1 = Y 1 is large, this means that the term

−1

2
σ1120
v

�
Y

2
1 − Y2

Y 2
Y

2
1

�
= +

1

2
σ1120
v Y

2
1

�
Y2

Y 2
− 1

�
. . . (47)

in Eq. (34) forces Y2 to follow its equilibrium value, thus Y2 is further reduced by semi-annihilation at

large temperatures. After the freeze-out of S, when Y1 � Y 1, the same interaction leads to an increase

of Y2. Thus the overall effect is an increase in the abundance of class 2 particles as compared with the

case where only standard interactions are considered.

Finally when MS < 260 GeV, the cross section σ1120
v , which consists of processes of the type

SS → Hh is small because of a lack of phase space, thus Ω1h
2

is the same as when only standard

annihilation terms were included. At the same time the reverse process, 20 → 11 drives the depletion

of class 2 particles and Ω2h
2

drops to very small values. Note that when MH > 2MS we expect that

the decay of class 2 DM into pairs of class 1 particles occur since they are allowed by the Z4 symmetry.

However, in this example, the effect of σ1210
v and σ1120

v terms already lead to very small values of Ω2h
2

for low values of MS , so that the decays are irrelevant. In summary, the combined effect of semi-

annihilation processes is for this example close to the result of only including σ1120
v , see Fig. 2.
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All interactions

• Semi-annihilation dominant 
MS<MH, assisted freeze-out 
important when MS>MH
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Fig. 4: Left: Ω1h
2
(solid), Ω2h

2
(dashed) and Ωh2

(green) as a function of MS , the singlet DM mass. Right: Number of events

expected in Xenon100 from S (solid) and H (dashed) elastic scattering as a function of MS .

direct detection relevant for the presently running Xenon100 experiment. We conclude that in this type

of models both semi-annihilations and dark sector interactions may significantly affect the dark matter

phenomenology compared to the well studied Z2 models, and, therefore, must be taken into account in

precise numerical analyses of dark matter properties.
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CONCLUSION
• Larger discrete symmetry group lead to new mechanisms 

for relic density of dark matter

• Illustrate with Doublet + singlet DM model and Z3,Z4 
symmetry

• More complete investigation of DM properties in Z3, Z4 
models including direct/indirect signatures (in progress)
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