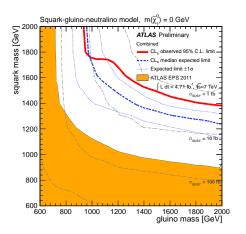
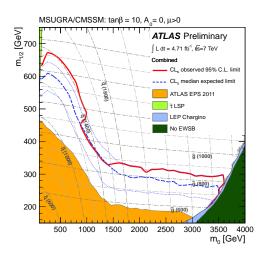
Modified Signals for Supersymmetry in the NMSSM with a Singlino-like LSP

Debottam Das


Laboratoire de Physique Theorique d'Orsay

April 23, 2012

Refs: arXiv:1202.5244 (Debottam Das, Ulrich Ellwanger, Ana M.


Teixeira) & To appear in JHEP

Status of MSSM under the lamppost of LHC:

Exclusion limits in a simplified MSSM scenario with only strong production of gluinos and first and second generation squarks, and direct decays to jets and neutralinos

Status of cMSSM under the lamppost of LHC:

Exclusion limits in a cMSSM scenario with $\tan \beta = 10, A_0 = 0$, and $\mu > 0$

MSSM: Superpotential

- The Lagrangian of MSSM consists of kinetic and gauge terms, also terms derived from the superpotential W, and a softly broken supersymmetry part \mathcal{L}_{soft}
- Superpotential:

$$W_{\text{MSSM}} = \overline{u}\mathbf{y_u}QH_u - \overline{d}\mathbf{y_d}QH_d - \overline{e}\mathbf{y_e}LH_d + \mu H_uH_d$$

 H_u , H_d , Q, L, \overline{u} , \overline{d} , \overline{e} chiral superfields

- ⇒ Provides all Yukawa interactions in SM
- The dimensionless Yukawa couplings $\mathbf{y_u}, \mathbf{y_d}, \mathbf{y_e}$ are 3×3 matrices in family space
- No superparticle has yet been observed \Rightarrow SUSY must be broken \Rightarrow we require \mathcal{L}_{soft}
- Soft SUSY breaking avoids quadratic divergence \Rightarrow masses and coupling parameters for scalars and gauginos $\simeq 1 \text{ TeV} \Rightarrow$ so as to avoid the SUSY finetuning problem

μ problem in MSSM: NMSSM

- The SUSY preserving μ -term should be $<< M_P({
 m Plank\ scale}), {
 m M_G(Gut\ scale})$ Similarly, $\mu > 100$ GeV (From LEP limit on chargino mass) $\mu \sim M_{SUSY} \sim TeV$ is required \Rightarrow this is known as μ problem
- An elegant way to solve this problem is by introducing an additional singlet superfield S with a coupling λSH_uH_d in the superpotential $W_{NMSSM} = \lambda SH_uH_d + \frac{k}{3}S^3 + \dots$ (\mathcal{Z}_3 invariant superpotential)

The VEV < s > of the real scalar component of $S \Rightarrow \mu_{\it eff} = \lambda s \Rightarrow \mu_{\it eff} \sim M_{\it SUSY}$

Known as Next-to-Minimal Supersymmetric Standard Model (NMSSM)

Simplest SUSY model with M_{SUSY} as the only scale in the Lagrangian

NMSSM: Spectrum

- The SM singlet scalar $S \Rightarrow \text{can leave the footprints only in the Higgs sector and in the neutralino sector } \Rightarrow$
 - 3 CP-even neutral Higgs bosons H_i (H_1 , H_2 , H_3) H_1 is the lightest CP-even Higgs boson
 - 2 CP-odd neutral Higgs bosons A_1 and A_2 ($A_2 \simeq A_{MSSM}$)
 - Charged Higgs boson H^{\pm}
 - Five neutralinos χ_i^0 , i=1...5, which are mixtures of the Bino, the neutral Wino, the neutral Higgsinos and the Singlino

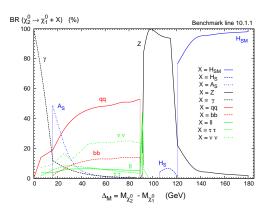
Lightest CP-odd Higgs boson A_1 in the basis (A_{MSSM}, S_I) :

$$A_1 = \cos \theta_A A_{MSSM} + \sin \theta_A S_I$$

lightest pseudoscalar can be very light $\mathcal{O}(10)$ GeV

Strategy: Introduction

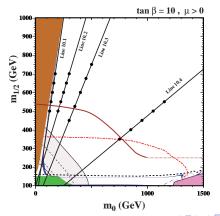
- \bullet We perform a first study of possible modifications of the signals for supersymmetric particles in the framework of a generalisation of the CMSSM towards the NMSSM where the singlino-like neutralino is the LSP χ_1^0
- Bino (MSSM LSP) is considered as the NLSP
- The sparticle decay cascades will evolve as in the MSSM, with an additional final decay


$$\chi_2^0 \rightarrow \chi_1^0 + X$$

- Then $\Delta_M=M_{\chi^0_2}-M_{\chi^0_1}\Rightarrow~$ this additional decay of the NLSP will generally
 - (i)reduce E_T^{miss} , but
 - (ii)lead to more jets and/or leptons

Affect the efficiencies in the various search channels for supersymmetry.

Examples for Branching fractions: BP-10.1.1



Branching fractions into the various states X in the decay $\chi^0_2 \to \chi^0_1 + X$ as function of Δ_M for the benchmark line 10.1.1

Strategy

 Here we confine ourselves to three benchmark points for the CMSSM, presently not excluded, but of possible future relevance for the LHC at 7 TeV c.m. energy

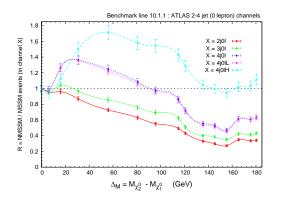
Ref: S. S. AbdusSalam et al., Eur. Phys. J. C 71 (2011) 1835 [arXiv:1109.3859 [hep-ph]]

Strategy ... ATLAS Jet/Multijet channels.

• Keeping MSSM sectors unaltered, we allow non-universal values for m_S^2 , A_λ and A_κ (so-called sNMSSM) to have \Rightarrow Singlino-like LSP χ_1^0 with largest possible range (Δ_m) compatible with constraints from LEP

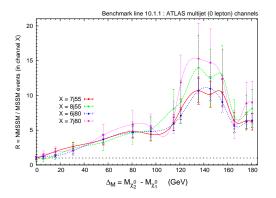
 \Rightarrow

Thus each BP of the CMSSM is promoted to a BL of the sNMSSM


- Then we study the <u>ratios</u> R of efficiencies sNMSSM/CMSSM as function of Δ_M for
 - ATLAS jets + missing transverse momentum (0 leptons) analysis (5 search channels)
 - ATLAS multijet + missing transverse momentum (0 leptons) analysis (4 search channels)

This avoids any novel analysis of backgrounds and systematic errors

Benchmark Points in cMSSM & sNMSSM


Point:	10.1.1	10.4.1	40.2.1
$M_{1/2}$	500	350	450
m_0	125	750	550
A_0	0	0	-500
aneta	10	10	40
$\mu_{ ext{eff}}$	635	465	645
M_A	720	895	710
$m_{\widetilde{g}}$	1145	870	1065
$\langle m_{sq} \rangle$	1030	1040	1080
$M_{\chi_2^0}$	205	143	187
λ	10^{-3}	0.013	10-3
κ	$-1.6 \cdot 10^{-4} \dots -2 \cdot 10^{-5}$	$-2 \cdot 10^{-3} \dots -8.7 \cdot 10^{-4}$	
A_{κ}	0.7 1.6	0 150	$-7 \ldots -4.2$
$M_{\chi_1^0}$	25 205	50 143	23 187
$M_{H_{SM}}$	~ 115	115 117	~ 117
$M_{H_{SM}}$ M_{H_S}	25 205	55 89	21 186
M_{A_S}	8 20	5 160	6 34
σ_{Tot}	82 fb	300 fb	87 fb

Results for 10.1.1: ATLAS jets analysis

The ratios R of efficiencies in the sNMSSM w.r.t. the CMSSM point 10.1.1 in 5 different signal regions of the ATLAS jets + missing transverse momentum analysis as function of Δ_{M}

Results for 10.1.1: ATLAS multijets analysis

The ratios R of efficiencies in the sNMSSM w.r.t. the CMSSM point 10.1.1 in 4 different signal regions of the ATLAS multijet + missing transverse momentum analysis as function of $\Delta_{\it M}$

Results for 10.1.1: Discussion

- R is always larger than 1 for the 4jH signal region
- R < 1 everywhere for the 3j and 2j signal regions, and particularly, R can drop to ~ 0.3 for $\Delta_M \sim 160$ GeV
- The dominant decay mode is $\chi_2^0 \to \chi_1^0 + H_{SM}$ with $H_{SM} \to b \bar b$
- These additional b jets coming from H_{SM} would mainly contribute to ATLAS multijet + missing transverse momentum (0 leptons) analysis
- ullet For each search channel, we compare the corresponding bound in the $m_0-M_{1/2}$ plane
- The constraints are dominated by the 2j/3j signal regions where R can drop to ~ 0.3

Discussion..contd

- Next question is : how far this decrease in efficiencies can affect the $m_0-M_{1/2}$ plane in sNMSSM
- The cross-section roughly goes like $M_{1/2}^{-10}$
- Hence, the lower bound on $M_{1/2}$ in the sNMSSM with $\Delta_M \sim 160$ GeV is lower than in the CMSSM by a factor $(1/3)^{1/10} \sim 0.9$
- ullet This leads to $M_{1/2} \gtrsim 420$ GeV instead of $M_{1/2} \gtrsim 470$ GeV

Benchmark Points in cNMSSM and cMSSM

Point:	cNMSSM.1	cNMSSM.2
$M_{1/2}$	520	600
m_0	0	0
A_0	-146.5	-171
$tan \beta$	22.2	23.3
λ	10-3	10-3
κ	$1.1 \cdot 10^{-4}$	$1.1 \cdot 10^{-4}$
m _g	1190	1360
$\langle m_{sq} \rangle$	1060	1200
$M_{\chi_1^0}$	146.4	171
$M_{\tilde{\tau}_1}$	150.5	174.5
M_{H_2}	103	114.7
M_{H_2}	114.3	121
M_{A_1}	179	209
	CMSSM.1	CMSSM.2
m_0	170	194
$M_{\chi_1^0}$	214.8	249.8
$M_{\tilde{\tau}_1}$	221.6	254.1
σ_{Tot}	73 fb	28 fb

Debottam Das

cNMSSM: ATLAS Jet analysis

Channel:	2 <i>j</i>	3 <i>j</i>	4 <i>j</i>	4 <i>jL</i>	4jH
R (cNMSSM.1/CMSSM.1)	0.63	0.73	0.86	0.86	0.96
R (cNMSSM.2/CMSSM.2)	0.65	0.75	0.95	0.96	1.1

Table: Ratios R of efficiencies for two points of the cNMSSM w.r.t. the CMSSM in 5 different signal regions of the ATLAS jets + missing transverse momentum analysis.

• $R \sim 0.6-1.1$, the differences between the cNMSSM and the CMSSM are not spectacular

Strategy...Multilepton channels.

- We also study CMS multilepton analysis for the sNMSSM and cNMSSM
 - we give estimates for absolute signal cross sections (production cross sections \times efficiencies) for those values of Δ_M which correspond to the largest efficiencies
 - 2 we sum over all leptons including (hadronically decaying) τ leptons, and distinguish only the search channels MET3, MET4, HT3 and HT4
 - \Rightarrow MET refers $E_T^{
 m miss}$
 - \Rightarrow H_T is the scalar sum of the transverse jet energies for all jets with $E_T > 40$ GeV
 - \Rightarrow the numbers behind MET or HT denote the numbers of leptons including τ 's

Strategy... 2τ channels

- ullet We also study 2 au search channels as analysed by CMS
- ullet This is particularly interesting for CNMSSM where $ilde{ au}_1$ is the NLSP
- au s from the sparticle $o ilde{ au}_1$ decay constitute a visible particular feature of the cNMSSM
 - The 2τ search by the CMS collaboration can be categorized into three signal regions
 - ② The first two require a lepton and a hadronically decaying τ lepton $e/\mu \tau_h$ while the other requires $\tau_h \tau_h$ where both decays hadronically

Multilepton analysis

• Benchmark Point : 10.1.1 The largest efficiencies can be found in the region $\Delta_M \sim 180$ GeV corresponding to $M_{\chi^0_1} \sim 25$ GeV

Channel:	MET3	MET4	HT3	HT4
σ [fb]	1.61 ± 0.09	0.29 ± 0.04	1.63 ± 0.09	0.31 ± 0.04

Benchmark Point : cNMSSM

Channel:	MET3	MET4	HT3	HT4
σ [fb] (cNMSSM.1)	4.4 ± 0.2	0.7 ± 0.1	2.7 ± 0.1	0.41 ± 0.05
σ [fb] (cNMSSM.2)	1.63 ± 0.06	0.36 ± 0.03	0.94 ± 0.04	0.18 ± 0.02

For the corresponding cMSSM points cMSSM.1 and cMSSM.2, these signal cross sections are smaller by about a factor 1/20

 No significant excesses are expected within the cNMSSM at present, but these search channels can become sensitive to the cNMSSM in the future

CMS 2τ analysis

Channel:	$e/\mu au_h$ high E_T^{miss}	$e/\mu au_h$ high H_T	$\tau_h \tau_h$
σ [fb] (cNMSSM.1)	2.2 ± 0.1	2.4 ± 0.1	0.65 ± 0.05
σ [fb] (cNMSSM.2)	0.77 ± 0.03	0.81 ± 0.03	0.19 ± 0.01

 It was estimated that only the LHC at 14 TeV c.m. energy would become sensitive to the cNMSSM

Ref: Ulrich Ellwanger, Alice Florent, Dirk Zerwas-JHEP 1101:103,2011 [arXiv:1011.0931 [hep-ph]]

• However, combining multilepton and $2\,\tau$ search channels and increasing the integrated luminosity to $\sim 20~{\rm fb^{-1}}$, the LHC with 7 TeV c.m. energy could become sensitive to the low $M_{1/2}$ regime of the cNMSSM in the future

Conclusion

- As discussed, the additional cascade bino-singlino will reduce the missing energy, but provide additional jets or leptons
- We find that the efficiencies can drop by a factor $\sim 1/3$ to $\sim 1/7$ with respect to the MSSM in the most relevant 2/3 jet + missing energy search channels
- It reduces the present lower bounds on $M_{1/2}$ by a factor $\sim 0.9-0.83$ compared to cMSSM when bino-singlino mass difference is large
- ullet Finally, the signal cross sections in the multilepton and 2 au search channels could give hints for the cNMSSM at the LHC with 7 TeV c.m. energy for more integrated luminosities