Motivations for CLIC

Physics Potential

Detector

Bkg treatm

Benchmarking

ing the detectors C

Conclusion

CLIC Physics and detectors CDR

S. Poss for the CERN LCD group

CERN

January 9, 2012

Outline

Motivations for a CLIC machine

Physics Potential

The CLIC Machine

The Detectors

Suppression of beam-induced background

Benchmarking the detectors

Conclusion

Outline

Motivations for a CLIC machine

CLIC: Compact Linear Collider

- e^+e^- collisions up to $\sqrt{s} = 3$ TeV c.m.
- Machine environment challenging

CLIC physics potential:

- Complementary to LHC
- Cleaner environment
- Precision Higgs physics, SUSY studies, etc.
- New physics beyond the LHC reach

Motivations for CLIC

detectors Conc

Outline

s Bkg trea

SM Higgs

High precision measurement of its fundamental properties: mass, total decay width, spin-parity quantum numbers, couplings to fermions and gauge bosons and self couplings

Ongoing studies for self coupling λ_{HHH} .

SM Higgs

High precision measurement of its fundamental properties: mass, total decay width, spin-parity quantum numbers, couplings to fermions and gauge bosons and self couplings

Ongoing studies for self coupling λ_{HHH} .

 $e^+e^- \rightarrow HA \rightarrow b\overline{b}b\overline{b}$

	$\sigma({\it m})/{\it m}$	$\sigma(\Gamma)/\Gamma$
A/H	0.002	0.10
H^{\pm}	0.005	0.15

 \Rightarrow determination of $\sigma(\tan\beta)/\tan\beta < 0.06$.

문 🖌 포네님

Conclusio

SUSY

SUSY

 Bkg treatr

SUSY

Susy breaking models separation capability:

<ロト < 部 > < 言 > 毛 > 毛 =) のへで 9/94

Other studies

- · High scale stucture of SUSY
- Neutralino Dark Matter hypothesis
- Higgs strong interaction
- Z'
- Contact interaction
- Extra dimensions

Physics potential summary

Machine Luminosity	LHC14 100fb ⁻¹	SLHC 1ab ⁻¹	LC800 500fb ⁻¹	CLIC3 1ab ⁻¹
squarks [TeV]	2.5	3	0.4	1.5
sleptons [TeV]	0.3	-	0.4	1.5
Z^\prime (SM couplings) [TeV]	5	7	8	20
2 extra dims M _D [TeV]	9	12	5-8.5	20-30
TGC (95%) (λ_{γ} coupling)	0.001	0.0006	0.0004	0.0001
μ contact scale [TeV]	15	-	20	60
Higgs compos. scale [TeV]	5-7	9-12	45	60

CLIC can

- extend the discovery reach of LHC,
- offer the opportunity of precise measurements of masses and couplings.

Motivations for CLIC

CLIC

Outline

CLIC machine Conceptual Design Report

- Released later in 2012
- Addresses the 3TeV case, the most difficult

CLIC

- Presents the different technical aspects of a CLIC machine
- Details the machine properties
- Demonstrates (with hardware tests) the feasibility of such machine

Here: brief overview of the CLIC properties

CLIC Technology

2 beam acceleration scheme: drive beam and main beam

- Gradient 100 MV/m
- Energy: from few-hundred GeV upgradable in steps up to 3 TeV; R&D has focused on 3 TeV

CLIC properties

	CLIC 0.5TeV	CLIC 3TeV
$L [cm^{-2} s^{-1}]$	$\textbf{2.3}\times\textbf{10}^{\textbf{34}}$	5.9×10^{34}
Bunch crossing separation	0.5 ns	0.5 ns
Bunch crossings per train	354	312
Train repetition rate	50 Hz	50 Hz
Crossing angle	20mrad	20mrad

Whole bunch train in 156ns.

etectors Concl

Machine Detector Interface

Push-Pull system:

CLIC

Conclusion

Machine Detector Interface

Last accelerator element is IN the detector

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

CLIC

Beam-induced backgrounds

	CLIC 0.5TeV	CLIC 3TeV
Nb $\gamma\gamma \rightarrow$ had/BX	0.2	3.2
Nb incoherant pairs/BX	$0.8 imes10^5$	$3 imes 10^5$
Nb coherent pairs/BX	10 ²	3.8×10^8

Very large beam-induced background rates!

- Coherent pairs very forward
- Incoherent pairs mostly forward
- \rightarrow impact on the very forward detectors design
 - $\gamma\gamma \rightarrow$ hadrons all over the detector acceptance.

Need to deal with those

Motivations for CLIC

Outline

▲ロト ▲探 ト ▲ ヨ ト モ ヨ ヨ つのの

20/94

Required performance

- Trigger less readout of full train: time stamping, multi-hit capacity, filtering algorithms during reconstruction
- High resolution pixel detector for displaced vertices identification: p = 1 Gev $\sigma_{d0} \sim 20 \mu m$ p = 100 GeV $\sigma_{d0} \sim 5 \mu m$
- Momentum resolution: $\sigma(p_{T})/p_{T}^{2} \sim 10^{-5} \text{GeV}^{-1}$
- Good jet-energy resolution (W/Z separation) $\sigma(E_j)/E_j = 5\% - 3.5\%$ for $E_j = 50$ GeV - 1TeV

Particle Flow Paradigm

Jet energy:

- 60% carried by charged particles
- 30% by photons
- 10% by long-lived neutral hadrons

Particle Flow: reconstruction of the 4-momenta of all visible particles:

- momenta measured in the tracking detectors for charged particles
- energy measured in the calorimeters for photons and neutral hadrons
- \Rightarrow need for high precision tracking and high granularity calorimeters

Overview

Vertex detector optimization

- $20 \times 20 \mu m$ pixel size
- 0.2% X₀ material per layer (very thin)
- Time stamping 10ns
- Triggerless readout
- Radiation level $< 10^{11} n_{eq} cm^{-2} year^{-1} \leftarrow 10^4 \times$ lower than LHC

Challenging R&D project

Detectors

Bkg treat

g the detectors Co

Conclusion

Tracking in CLIC_SiD

- All silicon tracking
- Efficiency ($p_{\rm T}$ > 1GeV): > 99%
- Mom. resolution: $\sigma(\Delta(\rho_T)/\rho_T^2) < 2 \cdot 10^{-5}/\text{GeV}$

Compatible with requirements

Hardware development to be carried out to demonstrate this.

Tracking in CLIC_ILD

- Time Projection Chamber
- Completed by silicon layers
- Efficiency (p_T > 1GeV): > 99%
- Mom. resolution: $\sigma(\Delta(\rho_{\rm T})/\rho_{\rm T}^2)\sim 2\cdot 10^{-5}/{\rm GeV}$

Compatible with requirements

Hardware development to be carried out to demonstrate this.

Mod		inne	Fax C	110
IVIOI	Ival	IONS	101 C	LIC

	CLIC_ILD	CLIC_SiD
Absorber/Active element	Tungsten / Si Pads	Tungsten / Si Pads
Sampling layers	$30(20 \times 2.1, 10 \times 4.2)$	$30(20 \times 2.1, 10 \times 5)$
Cell size (mm ²)	5.1 × 5.1	3.5 imes 3.5
${\rm X}_0$ and $\lambda_{\rm I}$	23 & 1	26 &1

SiD design:

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 通目 のへの

26/94

Bkg treatment

HCAL

Absorber (Barrel/Endcap)	Tungsten / Steel
Sampling layers (B/E)	$75\times10\text{mm}/$ 60 $\times20\text{mm}$
Cell size (mm ²)	30×30 (SiPM), 10×10 (RPC)
λ_{I}	7.5

27/94

CALICE beam tests for W-HCAL

Validation of GEANT4 simulation for hadronic showers in tungsten

Test beam period in 2010-2011 Analysis ongoing Motivations for CLIC

ors Conclus

Outline

Motivations for a CLC mach The CLIC Machine Suppression of beam-induced background

30/94

Background properties

Main problematic background: $\gamma\gamma \rightarrow$ hadrons

Entire bunch train (312BX):

- 5000 tracks → total track momentum: 7.3TeV
- Total calorimetric energy (ECAL+HCAL): 19TeV

Mostly low p_T

Additionnal timing cuts applied on reconstructed particles.

31/94

32/94

Jet finder

 $\mathrm{e}^+\mathrm{e}^- \to \widetilde{q}_R \overline{\widetilde{q}}_R \to q \overline{q} \widetilde{\chi}^0_{1} \widetilde{\chi}^0_{1} : \text{2 jets} + \text{missing energy}$

Durham $k_{\rm T}$ à la LEP:

Hadron collider k_T:

- All particle clustered
- Timing cuts effective

- Much of Bkg clustered with beam axis
- Timing cuts do less work
- Impact depends on event topology

Background suppression

E.g. $e^+e^- \to H^+H^- \to t\overline{b}b\bar{t}$:

No cuts: $\sim 1.2 TeV$

Tight timing cuts: $\sim 100 GeV$

10ns window

Using timing cuts and jet finding removes most of the background

Motivations for CLIC

Outline

Benchmark channels

35/94

The benchmark channels used to assess detector performance:

•
$$e^+e^- \rightarrow hv_e\overline{v}_e, h \rightarrow \mu^+\mu^-, h \rightarrow b\overline{b}$$
 (CLIC_SID),
• $e^+e^- \rightarrow H^+H^- \rightarrow t\overline{b}\overline{t}b$ (CLIC_ILD),
 $e^+e^- \rightarrow H^0A \rightarrow b\overline{b}b\overline{b}$ (CLIC_ILD),
• $e^+e^- \rightarrow \tilde{q}_R\overline{\tilde{q}}_R \rightarrow q\overline{q}\tilde{\chi}^0_1 \tilde{\chi}^0_1$ (CLIC_ILD),
• $e^+e^- \rightarrow \tilde{\ell}\overline{\ell}$ ($\ell = e, \mu, v_e$) (CLIC_ILD),
• $e^+e^- \rightarrow \tilde{\chi}^\pm_1 \tilde{\chi}^\pm_1 \rightarrow W^+W^- \tilde{\chi}^0_1 \tilde{\chi}^0_1$ (CLIC_SID),
 $e^+e^- \rightarrow \tilde{\chi}^0_2 \tilde{\chi}^0_2 \rightarrow hh\tilde{\chi}^0_1 \tilde{\chi}^0_1$ (CLIC_SID),
• $e^+e^- \rightarrow t\overline{t}$ (500 GeV, CLIC_ILD).

SM Higgs decays

Flavour tagging $(h \rightarrow b\overline{b})$:

Muon reconstruction efficiency (h $\rightarrow \mu \mu$):

37/94

SM Higgs decays

Cross section measurements:

•
$$\sigma(\sigma_{\rm h
ightarrow b\overline{b}})/\sigma_{\rm h
ightarrow b\overline{b}}=$$
 0.22% stat.

• $\sigma(\sigma_{\mathrm{h}
ightarrow \mu^- \mu^+})/\sigma_{\mathrm{h}
ightarrow \mu^- \mu^+} =$ 15.7% stat.

Heavy Higgs: $H^0A \to b\overline{b}b\overline{b},\, H^+H^- \to t\overline{b}b\bar{t}$

 \Rightarrow Evaluation of b-tagging and high energy jet reconstruction

Squarks:
$$e^+e^- \rightarrow \widetilde{q}_B \overline{\widetilde{q}}_B \rightarrow q \overline{q} \widetilde{\chi}^0_1 \widetilde{\chi}^0_1$$

Used for jet and missing energy reconstruction studies (see background treatment)

Measuring
$$M_{
m C} = \sqrt{2(E_1 E_2 + ec{p_1}.ec{p_2})}, \, M_{
m C}^{
m max} = rac{m_q^2 - m_\chi^2}{m_{ ilde{q}}}$$
:

Selection cuts applied

From template fit using $2ab^{-1}$ (≈ 4 years):

$\sigma(m_{\widetilde{a}})/m_{\widetilde{a}}$	0.5%
$\sigma(\text{xsec})/\text{xsec}$	5%

Very high stat. precision!

39/94

Bkg treatr

Sleptons: $e^+e^- \rightarrow \widetilde{\ell}\widetilde{\ell}$ ($\ell = e, \mu, v_e$)

Probe of lepton ID and reconstruction

Mass obtained from the end points

Sleptons: $e^+e^- \rightarrow \tilde{\ell}\tilde{\ell}$ $(\ell = e, \mu, v_e)$

With $2ab^{-1}$:

process	$\sigma(\text{xsec})/\text{xsec}$	$\sigma(\textit{m}_{\widetilde{\ell}})/\textit{m}_{\widetilde{\ell}}$
$e^+e^- \rightarrow \widetilde{\mu}_R \widetilde{\mu_R} \rightarrow \mu^+ \mu^- \widetilde{\chi}^0_1 \widetilde{\chi}^0_1$	2.8%	0.6%
$e^+e^- \rightarrow \widetilde{e}_R \widetilde{e}_R^- \rightarrow e^+e^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	0.8%	0.3%
$e^+e^- \rightarrow \widetilde{\nu}_e \overline{\widetilde{\nu}_e} \rightarrow e^+e^- \widetilde{\chi}_1^+ \widetilde{\chi}_1^-$	\sim 2.4%	\sim 0.4%
$e^+e^- \rightarrow \widetilde{e}_L \widetilde{e}_L \rightarrow e^+e^- \widetilde{\chi}^0_2 \widetilde{\chi}^0_2$	\sim 7.0%	-

Very high stat. precision!

Gauginos

$$e^+e^- \rightarrow \widetilde{\chi}^\pm_{1} \widetilde{\chi}^\mp_{1} \rightarrow W^+ W^- \widetilde{\chi}^0_{1} \widetilde{\chi}^0_{1} \text{ and } e^+e^- \rightarrow \widetilde{\chi}^0_{2} \widetilde{\chi}^0_{2} \rightarrow hh \widetilde{\chi}^0_{1} \widetilde{\chi}^0_{1}$$

Gauginos

43/94

Parameter 1	Uncertainty	Parameter 2	Uncertainty
$M(ilde{\chi}_1^\pm)$	6.3 GeV	$\sigma(ilde{\chi}_1^+ ilde{\chi}_1^-)$	2.2%
$M(ilde{\chi}_1^0)$	3.0 GeV	$\sigma(ilde{\chi}_1^+ ilde{\chi}_1^-)$	1.8%
$M(\tilde{\chi}_2^0)$	7.3 GeV	$\sigma(\tilde{\chi}^0_2\tilde{\chi}^0_2)$	2.9%

Top physics at 500 GeV

Needed change in design of the vertex detector region

Semi-leptonic decay:

Fully-hadronic decay:

Motivations for CLIC

Overview

- Introduced the CLIC machine
- Presented the CLIC detectors concept
- Assessment of the physics potential of a future multi-TeV e⁺e⁻ collider was made, specificaly at 3TeV
- Physics signals with mass scale 100 1500GeV can be extracted with good precision
- Shown that it's possible to deal with the beam-induced background
- CDR physics and detector study part of a world-wide effort, broad international participation
- Further in-depth studies and hardware R&D for the CLIC detectors are forseen: more detailed simulation, different c-m-e studied
- Follow up of LHC results

Signatory list

You are cordially invited to subscribe to the CDR Signatories List:

• If you have made contributions to the CLIC accelerator or the Linear Colliders Physics and Detector studies, or intend to contribute in the future,

OR / AND

 If you wish to express support to the physics case and the study of a multi-TeV Linear Collider based on the CLIC technology, and its detector concepts.

https://indico.cern.ch/conferenceDisplay.py? confId=136364

Use WHIZARD:

- Computes proper matrix elements at tree level (OMEGA)
- Explicit up to 6 fermion final states
- Handles SUSY (LesHouches)
- Writes out stdhep (format used for simulation)
- Common for the 2 detectors

Use PYTHIA for $t\bar{t}$, WW, ZZ as final states in WHIZARD have no width

2 detectors \rightarrow 2 sim software

 Mokka (ILD): Calls G4, Detector geometry obtained from MySQL DB (!!)

53/94

- SLIC (SiD): wrapper around G4, detector geometry imported using compact XML
- Both use the LCIO event format

Frameworks are going to be merged eventually, work ongoing

Handling background in the software

 $\gamma\gamma$ bkg overlayed on top of simulated events

- Simulate the bkg separately
- For 1 signal event, read N events of bkg (Poisson distribution, $\mu =$ 3.2) imes 60 BX
- Merge the clusters
- Save the resulting collections (containers)

As for simulation: 2 frameworks

- Marlin (ILD): C++
- org.lcsim: JAVA
- Usual modular algorithm/tools structure (e.g. GAUDI)

正正 スピッスピッス マット

55/94

Use the LCIO event format

正正 スポッスポッス モッ

56/94

Using the GRID: ILCDIRAC

Grid production tool based on DIRAC

- Extented to fit the CLIC study use case: application handling, data, etc.
- > 4million jobs in 1 year
- Now also used for the ILC_SiD studies

Software

CLIC Physi

ics potential

Detector requirements

Detector design

Benchmarking the detector

Accelerator complex

CLIC numerical properties

CLIC

100MV/m
12GHz
68 μ m
$3.7 imes10^9$
0.5 ns
312
50Hz
14MW
2×10^{-8} mrad
1nm
40nm
560MW

60/94

Luminosity spectrum

CLIC Phys

ysics potential

Detector requiremen

Benchmarking the detecto

Beam-induced background

Beam halo muons estimated to be \sim 1 per 20 BX: neglected

Beam Polarization

Not studied in this document, planned for volume 3. Polarized electron beam up to 80%. Polarized positron beam \sim 30% planned for a later stage

Higgs production

□ ▶ < @ ▶ < 분 ▶ < 분 ▶ 분 별 ♡ < @ 64/94

- $g_{\mathrm{H}
 ightarrow \mu \mu}$: 15% for 4 years
- $g_{\mathrm{H}
 ightarrow b\overline{b}}$: 0.22% on $\sigma imes B$. Theoretical uncertainties are dominating: $\pm 2 4\%$
- $g_{\mathrm{H}
 ightarrow c \overline{c}}$: 3.24% on $\sigma imes \textit{B}$. With theoretical uncertainty: $\pm 3-6\%$

(ロ) (個) (目) (目) (目) (1)

65/94

Other searches:

- Trilinear couplings: $e^+e^- \rightarrow v_e \bar{v_e} HH$ (WW fusion)
- Anomalous Higgs couplings

SUSY Models

Precise measurement of fundamental parameters Tests of the high-scale structure of the theory (GUT) Testing the neutralino dark matter hypothesis

・・・・
 ・・
 ・・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

C Physics

s potential

Detector requirements

Detector design

Benchmarking the detector

Track momentum resolution

Jet energy resolution

Benchmarking the detecto

Vertex detector

CLIC Phy

sics potential

Detector requirement

Benchmarking the detecto

Tracking detectors: ILD TPC

Occupancy in the TPC

Tracking performance in the TPC

$oldsymbol{ heta}$ [°]	a [GeV ⁻¹]	b
10	$8.19 \cdot 10^{-4}$	$9.07 \cdot 10^{-3}$
20	$9.86 \cdot 10^{-5}$	$3.83 \cdot 10^{-3}$
30	$3.87 \cdot 10^{-5}$	$1.59 \cdot 10^{-3}$
80	$1.97 \cdot 10^{-5}$	$7.22 \cdot 10^{-4}$

$$\sigma(\Delta \rho_{\rm T}/\rho_{\rm T}^2) = a \oplus \frac{b}{p \sin \theta}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

74/94

75/94

Tracking detectors: SiD silicon layers

CLIC P

sics potential

Detector requirement

Detector design

Benchmarking the detecto

Tracking performance in CLIC_SiD

$oldsymbol{ heta}$ [°]	$a \left[\text{GeV}^{-1} \right]$	b
90	$7.3 \cdot 10^{-6}$	$2.0 \cdot 10^{-3}$
30	$1.9 \cdot 10^{-5}$	$3.8 \cdot 10^{-3}$
10	$4.0 \cdot 10^{-4}$	$5.3 \cdot 10^{-3}$

Calorimetry

Material	$\lambda_{\rm I}$ [cm]	$X_0 \; [\text{cm}]$	λ_I/X_0
Fe	16.77	1.76	9.5
W	9.95	0.35	28.4

IC Physics

ysics potential

Detector requirements

Detector design

Benchmarking the detecto

Timing

CALICE results

Calorimeter performance

80/94

Resolution vs timing in calorimeter

Magnets

	Nominal magnetic field	Free bore	Magnetic length	Cold mass weight
	(T)	(mm)	(mm)	(tons)
CLIC_SID	5.0	5480	6230	170
CLIC_ILD	4.0	6850	7890	210

82/94

- Similar to the CMS solenoid in design
- Aluminium stabilized superconductor
- Multi-layer and multi-module coil
- Helium cooling

Muon system

Installed in the return yoke of the magnet

4 ロ ト 4 昂 ト 4 王 ト 4 王 ト 三 ビ の Q の
83/94

a

Muon system

cs potential

Detector requirement

Very forward calorimeters: LumiCal and BeamCal

- LumiCal: measurement of the luminosity
- BeamCal: fast estimation of the luminosity and tagging of high energy electrons

Both are electromagnetic sampling calorimeters, using W as absorber

Outline

86/94

Luminosity spectrum measurement

Impact on physics observable very small.

▶ ◀ @ ▶ ◀ 볼 ▶ ◀ 볼 ▶ 볼|빌 ∽ Q (~ 87/94 sics potential

Detector requiremer

Benchmarking the detector

Particle ID performance

CLIC Phy

ysics potential

Detector requiremer

Detector design

Benchmarking the detector

Particle ID performance: Muons

IC Physi

potential

Detector requiremen

Electron energy resolution

Effect of the $\gamma\gamma$ background:

Effect of $\gamma\gamma$ bkg

Detector requirement

Detector des

LIC Phys

sics potential

Detector requiremen

Benchmarking the detector

Primary vertex position resolution

LCFI collaboration, uses ZVTOP vertex finder and multi-variate method (NNET)

Flavour tagging

	$H \to b \overline{b}$	$H \to c \overline{c}$
Signal purity	65.4%	24.1%
Signal efficiency	54.6%	15.2%
cross section		
statistical uncertainty	0.22%	3.24%