Search for the $B_s^0 \to \mu^+ \mu^-$ and $B_d^0 \to \mu^+ \mu^-$ decays at LHCb

Mathieu Perrin-Terrin Supervisor: Giampiero Mancinelli

CPPM, Aix-Marseille Univ, IN2P3 CNRS, France

Dec 12th, 2011

Mathieu Perrin-Terrin CPPM

Search for the $B_s^0 \rightarrow \mu^+ \mu^-$ decays at LHCb

Dec 12th, 2011 1 / 14

Why Studying $B_s \rightarrow \mu^+ \mu^-$?

Looking for Physics Beyond SM requires:

= ~ Q Q

イロト イヨト イヨト イヨト

Looking for Physics Beyond SM requires:

clean SM prediction

 ${\cal B}(B^0_s o \mu^+ \mu^-) = (0.32 \pm 0.2) imes 10^{-8}$

< ロ > < 同 > < 臣 > < 臣

Looking for Physics Beyond SM requires:

clean SM prediction

clear NP signature

 ${\cal B}(B^0_s o \mu^+ \mu^-) = (0.32 \pm 0.2) imes 10^{-8}$

 $\mathcal{B}(B^0_s \to \mu^+ \mu^-) \propto \tan^6 \beta$ (MSSM)

<ロ> <日> <日> <日> <日> <日> <日> <日> <日</p>

Sensitivity to New Physics.

Constraints from Direct Searches (CMS, 30 fb^{-1}):

arXiv:0907.5568

Sensitivity to New Physics.

The LHCb detector

A detector design to study rare B decays like $B_s \rightarrow \mu^+ \mu^-$:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Search for the $B_{\rm S}^0 \rightarrow \mu^+ \mu^-$ decays at LHCb

A detector design to study rare B decays like $B_{s,d} \rightarrow \mu^+ \mu^-$:

ヘロマ ヘロマ ヘロマ イ

A detector design to study rare B decays like $B_{s,d} \rightarrow \mu^+ \mu^-$:

High Bs, Bd statistics

- Large cross section: $\sigma(pp \rightarrow b\bar{b}X \simeq 300 \mu b)$ at 7 TeV.
- Large acceptance for *bb̄* pairs produced mostly forward/backward: LHCb covers 1.9 < η < 4.9
- Efficient trigger on low pT muons.

A detector design to study rare B decays like $B_{s,d} \rightarrow \mu^+ \mu^-$:

High Bs, Bd statistics

- Large cross section: $\sigma(pp \rightarrow b\bar{b}X \simeq 300 \mu b)$ at 7 TeV.
- Large acceptance for b̄b pairs produced mostly forward/backward: LHCb covers 1.9 < η < 4.9
- Efficient trigger on low pT muons.

Bkg/Sig separation:

- Large boost: the B meson decay vertex is displaced in average 1 cm from the PV.
- Good mass resolution: $\sigma_m(B_s \rightarrow \mu^+ \mu^-) = 24.6 \, \text{MeV}/c^2$
- Good impact parameter resolution: $\sigma_{IP} \simeq 25 \,\mu m (pT = 2 \,\text{GeV/c})$
- MuonID performance:

 $\epsilon(\mu \rightarrow \mu) \simeq 97\% (p > 10 \, \text{GeV/c}), \epsilon(h \rightarrow \mu) < 1\% (p > 10 \, \text{GeV/c}).$

< ロ > < 同 > < E > < E > E = < の < 0</p>

Normalisation to $B^0_s \to J/\psi\phi$, $B^0 \to K^+\pi^-$, $B^+ \to J/\psi K^+$ $\mathcal{BR}(B_s \to \mu^+\mu^-) = \frac{N(B_s \to \mu^+\mu^-)}{N(B_s)} \propto \frac{N(B_s \to \mu^+\mu^-)}{N(B_s^0 \to J/\psi\phi)} \frac{N(B_s^0 \to J/\psi\phi)}{N(B_s)}$

Search for the $B_s^0 \rightarrow \mu^+ \mu^-$ decays at LHCb

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Normalisation to $B^0_s \rightarrow J/\psi \phi$, $B^0 \rightarrow K^+\pi^-$, $B^+ \rightarrow J/\psi K^+$

 $\mathcal{BR}(B_s \to \mu^+ \mu^-) = \frac{N(B_s \to \mu^+ \mu^-)}{N(B_s)} \propto \frac{N(B_s \to \mu^+ \mu^-)}{N(B_s^0 \to J/\psi \phi)} \frac{N(B_s^0 \to J/\psi \phi)}{N(B_s)}$

Selection

• similar selection between Signal and Control Channel

<ロ> <同> <同> <同> < 同> < 同>

Normalisation to $B_s^0 \rightarrow J/\psi \phi$, $B^0 \rightarrow K^+ \pi^-$, $B^+ \rightarrow J/\psi K^+$

 $\mathcal{BR}(B_s o \mu^+ \mu^-) = rac{N(B_s o \mu^+ \mu^-)}{N(B_s)} \propto rac{N(B_s o \mu^+ \mu^-)}{N(B_s^0 o J/\psi \phi)} rac{N(B_s^0 o J/\psi \phi)}{N(B_s)}$

Selection

• similar selection between Signal and Control Channel

Sig/Bkg discrimination

- combinatorics: $b\bar{b} \rightarrow \mu^+ \mu^- X$
- use 2 uncorrelated variables: BDT, $m\mu\mu$.
- BDT: Boosted Decision Tree, use the geometry and kinematics of the events.

イロト イヨト イヨト イヨト

Limit Extraction

LHCb Event Display

• Too few $B_s \rightarrow \mu^+ \mu^-$ signal event to measure its \mathcal{B} but

"if $\mathcal{B}(B_s \to \mu^+ \mu^-)$ was such then we would have observed it!"

 Set an upper limit by comparing data with expected distributions in bins of BDT and $m\mu\mu$ for given \mathcal{B}

Image: Image:

• Define a scale of Signal-likeness, Q:

• Define a scale of Signal-likeness, Q:

Define a scale of Signal-likeness, Q:

Search for the $B_s^0 \rightarrow \mu^+ \mu^-$ decays at LHCb

• Define a scale of Signal-likeness, Q:

- Compute for each B the Q for the data

- Measure the probability, CLs, for each B that the Sig+Bkg gives the data Q.
- all \mathcal{B} values giving **CLs** smaller than 5% are excluded.

With 370 pb^{-1} LHCb has set the world best limit on $B_s \rightarrow \mu^+ \mu^-$ and $B_d \rightarrow \mu^+ \mu^-$:

$$\mathcal{B}(B_s \to \mu^+ \mu^-) < 1.4 \cdot 10^{-8}$$
 at 95%*C.L.*
 $\mathcal{B}(B_d \to \mu^+ \mu^-) < 3.2 \cdot 10^{-9}$ at 95%*C.L.*

These results put stringent constrains of New Physics scenarios.

= nar

Sensitivity to New Physics

Constrains from Indirect Searches Summer 2011 ($B_s \rightarrow \mu^+ \mu^-$):

Sensitivity to New Physics.

Indirect Searches Vs Direct (Atlas CMS) Summer 2011:

Mathieu Perrin-Terrin CPPM

Search for the $B_s^0 \rightarrow \mu^+ \mu^-$ decays at LHCb

Prospect: 3σ observation is possible for this Winter

Mathieu Perrin-Terrin CPPM

Dec 12th, 2011

Mathieu Perrin-Terrin CPPM

Search for the $B_s^0 \rightarrow \mu^+ \mu^-$ decays at LHCb

BDT Variables

- B lifetime,
- impact parameter,
- transverse momentum,
- the minimum impact parameter significance (IP/Ï(IP)) of the muons
- the distance of closest approach between the two muons
- the isolation of the two muons with respect to any other track in the event
- the minimum pT of the two muons
- the cosine of the angle between the muon momentum in the B rest frame and the vector perpendicular to the B momentum and the beam axis
- the B isolation

			BDT					
			0. – 0.25	0.25 - 0.5	0.5 – 0.75	0.75 – 1.		
Invariant mass [MeV/c²]	5298 – 5318	Exp. comb. bkg	$575.5^{+6.5}_{-6.0}$	$6.96\substack{+0.63\\-0.57}$	$1.19\substack{+0.39\\-0.35}$	$0.111\substack{+0.083 \\ -0.066}$		
		Exp. peak. bkg	$0.126\substack{+0.037\\-0.030}$	$0.124\substack{+0.037\\-0.030}$	$0.124\substack{+0.037\\-0.030}$	$0.127\substack{+0.038\\-0.031}$		
		Exp. sig.	$0.059\substack{+0.023\\-0.022}$	$0.0329\substack{+0.0128\\-0.0095}$	$0.0415\substack{+0.0120\\-0.0085}$	$0.0411\substack{+0.0135\\-0.0099}$		
		Obs.	533	10	1	0		
	5318 – 5338	Exp. comb. bkg	566.8 ^{+6.3}	$6.90\substack{+0.61 \\ -0.55}$	$1.16\substack{+0.38\\-0.34}$	$0.109\substack{+0.079\\-0.063}$		
		Exp. peak. bkg	$0.052\substack{+0.023\\-0.018}$	$0.054\substack{+0.026\\-0.019}$	$0.052\substack{+0.024\\-0.018}$	$0.051\substack{+0.023 \\ -0.018}$		
		Exp. sig.	$0.205\substack{+0.073\\-0.074}$	$0.114\substack{+0.040\\-0.031}$	$0.142\substack{+0.036\\-0.025}$	$0.142\substack{+0.042\\-0.031}$		
		Obs.	525	9	0	1		
	5338 – 5358	Exp. comb. bkg	558.2 ^{+6.1}	$6.84\substack{+0.59\\-0.54}$	$1.14_{-0.33}^{+0.37}$	$0.106\substack{+0.075\\-0.060}$		
		Exp. peak. bkg	$0.024\substack{+0.028\\-0.012}$	$0.025\substack{+0.026\\-0.012}$	$0.024\substack{+0.027\\-0.012}$	$0.025\substack{+0.025\\-0.012}$		
		Exp. sig.	0.38 ^{+0.14}	$0.213\substack{+0.075\\-0.058}$	$0.267\substack{+0.065\\-0.047}$	$0.265\substack{+0.077\\-0.058}$		
		Obs.	561	6	2	1		
	5358 – 5378	Exp. comb. bkg	549.8 ^{+6.0} -5.4	$6.77\substack{+0.57 \\ -0.52}$	$1.11\substack{+0.36 \\ -0.32}$	$0.103\substack{+0.073 \\ -0.057}$		
		Exp. peak. bkg	$0.0145\substack{+0.0220\\-0.0091}$	$0.0151\substack{+0.0230\\-0.0091}$	$0.0153\substack{+0.0232\\-0.0098}$	$0.015\substack{+0.023\\-0.010}$		
		Exp. sig.	0.38 ^{+0.14}	$0.213\substack{+0.075\\-0.057}$	$0.267\substack{+0.065\\-0.047}$	$0.265\substack{+0.077\\-0.057}$		
		Obs.	515	7	0	0		
	5378 - 5398	Exp. comb. bkg	541.5 ^{+5.8}	$6.71\substack{+0.55 \\ -0.51}$	$1.09\substack{+0.34\\-0.31}$	$0.101\substack{+0.070 \\ -0.054}$		
		Exp. peak. bkg	$0.0115\substack{+0.0175\\-0.0086}$	$0.0116\substack{+0.0177\\-0.0090}$	$0.0118\substack{+0.0179\\-0.0090}$	$0.0118\substack{+0.0179\\-0.0088}$		
		Exp. sig.	$0.204\substack{+0.073\\-0.074}$	$0.114\substack{+0.040\\-0.031}$	$0.142\substack{+0.036\\-0.026}$	$0.141\substack{+0.042\\-0.031}$		
		Obs.	547	10	1	1		
	5398 - 5418	Exp. comb. bkg	533.4 ^{+5.7}	$6.65\substack{+0.53 \\ -0.49}$	$1.07\substack{+0.34 \\ -0.30}$	$0.098\substack{+0.068\\-0.051}$		
		Exp. peak. bkg	$0.0089\substack{+0.0136\\-0.0065}$	$0.0088\substack{+0.0133\\-0.0066}$	$0.0091\substack{+0.0138\\-0.0070}$	$0.0090\substack{+0.0137\\-0.0065}$		
		Exp. sig.	$0.058\substack{+0.024\\-0.021}$	$0.0323\substack{+0.0128\\-0.0093}$	$0.0407\substack{+0.0120\\-0.0087}$	$0.0402\substack{+0.0137\\-0.0097}$		
		Obs.	501	4	1 m a			

æ

三日 のへで

			BDT				
			0. – 0.25	0.25 - 0.5	0.5 - 0.75	0.75 – 1.	
Invariant mass [MaV/c ²]		Exp. comb. bkg	614.2 ^{+7.5}	7.23 ^{+0.77} _0.68	1.31+0.46	0.123_0.107	
	5212 - 5232	Exp. peak. bkg	$0.203\substack{+0.038\\-0.034}$	0.206 ^{+0.038} _0.034	0.203_0.037	0.205 ^{+0.038} -0.034	
		Exp. sig.	$0.0070\substack{+0.0027\\-0.0026}$	0.0039+0.0015	0.0049_0.0014	0.0048+0.0016 -0.0012	
		Cross-Pollution	$0.0056^{+0.0021}_{-0.0020}$	$0.00312^{+0.00119}_{-0.00087}$	$0.00391\substack{+0.00107\\-0.00078}$	$0.00387^{+0.00122}_{-0.00092}$	
		Obs.	554	6	0	2	
		Exp. comb. bkg	605.0 ^{+7.2} -6.8	$7.17\substack{+0.74 \\ -0.65}$	$1.29_{-0.39}^{+0.44}$	0.121^{+0.102}_{-0.072}	
	5232 - 5252	Exp. peak. bkg	$0.281\substack{+0.056\\-0.049}$	$0.279^{+0.056}_{-0.049}$	$0.280^{+0.056}_{-0.049}$	$0.280\substack{+0.058\\-0.050}$	
		Exp. sig.	$0.0241\substack{+0.0086\\-0.0087}$	0.0135_0.0048	0.0169_0.0042	0.01670.0050	
		Cross-Pollution	$0.0071\substack{+0.0027\\-0.0026}$	0.0039+0.0015 -0.0011	$0.00496\substack{+0.00134\\-0.00099}$	$0.0049\substack{+0.0016\\-0.0012}$	
		Obs.	556	4	2	1	
		Exp. comb. bkg	595.9 ^{+7.0} -6.5	$7.10\substack{+0.71\\-0.63}$	$1.26_{-0.37}^{+0.42}$	0.1190.097	
	5252 - 5272	Exp. peak. bkg	$0.323\substack{+0.075\\-0.061}$	0.326+0.074 -0.061	$0.324^{+0.072}_{-0.060}$	$0.325\substack{+0.075\\-0.062}$	
		Exp. sig.	$0.045\substack{+0.016\\-0.016}$	$0.0252\substack{+0.0088\\-0.0067}$	$0.0317\substack{+0.0077\\-0.0057}$	$0.0313\substack{+0.0093\\-0.0068}$	
		Cross-Pollution	$0.0097\substack{+0.0036\\-0.0035}$	$0.0054^{+0.0021}_{-0.0015}$	0.0068_0.0018	0.00670.0021	
		Obs.	588	11	1	0	
		Exp. comb. bkg	586.9 ^{+6.7} -6.3	$7.04^{+0.68}_{-0.60}$	$1.23^{+0.41}_{-0.36}$	0.117 ^{+0.092} -0.071	
	5272 - 5292	Exp. peak. bkg	$0.252\substack{+0.058\\-0.047}$	$0.252\substack{+0.056\\-0.046}$	$0.253\substack{+0.059\\-0.048}$	$0.250\substack{+0.056\\-0.046}$	
		Exp. sig.	$0.045\substack{+0.016\\-0.016}$	$0.0251\substack{+0.0089\\-0.0067}$	$0.0317^{+0.0077}_{-0.0057}$	$0.0313\substack{+0.0092\\-0.0069}$	
		Cross-Pollution	$0.0154\substack{+0.0058\\-0.0055}$	$0.0086\substack{+0.0033\\-0.0024}$	$0.0108\substack{+0.0029\\-0.0021}$	$0.0106\substack{+0.0033\\-0.0025}$	
		Obs.	616	5	2	1	
		Exp. comb. bkg	578.1 ^{+6.5} -6.1	$6.98\substack{+0.66\\-0.58}$	1.20 ^{+0.39} 0.35	0.114 ^{+0.087} -0.067	
	5292 - 5312	Exp. peak. bkg	$0.124\substack{+0.023\\-0.021}$	0.124_0.023	0.123+0.023 -0.021	0.124+0.023 -0.021	
		Exp. sig.	$0.0241\substack{+0.0086\\-0.0087}$	$0.0134\substack{+0.0048\\-0.0036}$	$0.0169\substack{+0.0042\\-0.0030}$	$0.0167\substack{+0.0050\\-0.0037}$	
		Cross-Pollution	0.038_0.015	$0.0214\substack{+0.0086\\-0.0061}$	$0.0270\substack{+0.0080\\-0.0056}$	0.0266 ^{+0.0089} -0.0064	
		Obs.	549	7	0	0	
		Exp. comb. bkg	569.3 ^{+6.3} -5.9	$6.92\substack{+0.63\\-0.57}$	$1.18\substack{+0.38\\-0.34}$	0.111 ^{+0.083} -0.064	
	5312 - 5332	Exp. peak. bkg	$0.047\substack{+0.023\\-0.012}$	$0.047\substack{+0.022\\-0.012}$	0.047_0.021	0.047_0.021	
		Exp. sig.	$0.0068\substack{+0.0028\\-0.0026}$	$0.0038^{+0.0015}_{-0.0011}$	$0.0048^{+0.0014}_{-0.0010}$	0.0048_0.0016	
		Cross-Pollution	$0.149\substack{+0.055\\-0.054}$	$0.083\substack{+0.031\\-0.022}$	0.104_0.027	0.103_0.023	
		Ohe	509	10	1 .	- 1.9	

≣ ▶

三日 のへで