Fully hadronic *t* cross section measurement with ATLAS detector

Claudia Bertella 12 Dicember 2011 séminaire des doctorants de 1ére année

C. Bertella Trigger Studies of fully hadronic ttbar cross section analysis

Top physics: an introduction

- The top quark, discovered at Fermilab in 1995, completed the three generation structure of the SM
- The top quark is distinguished by
 - short lifetime: it decays before hadronizing
 - high mass : $m \sim 172 \text{ GeV}$

• Why is it interesting?:

Test of Standard Model predictions:

- Precision measurements of cross section, branching ratio, polarization
- Higgs associated production : $t\bar{t}H (H \rightarrow b\bar{b})$

Search for new physics:

 Beyond Standard Model particles: Z' resonances, Kaluza-Klein gluons, fourth generation (b'b' → t̄tW⁻W⁺)

Detector calibration:

 Top quark decay presents a striking signature: possibility of indentifing pure samples of electrons, muons, jets, b-jets

Fundamental Particles of the Standard Model

Top pair production

- In proton-proton collisions, top quark pairs are created when partons inside the protons interact through the strong force
- The production mechanisms at the LHC at $\sqrt{s} = 7$ TeV are the gluon-gluon fusion (85%) and $q\bar{q}$ annihilation (15%)
- In the SM, the top quark decays into a W boson and a b-quark almost 100% of the time
- The W boson subsequently decays into:
 - lepton+neutrino (33%)
 - di-jets (67%)
- In the fully hadronic *tī* production final state both *Ws* decay hadronically

- Experimental signature consist of high jet multiplicity and *b*-jets
 - *b*-tagging :
 - Long lifetime of hadrons containing *b*-quarks: $\tau \sim 1.5 \ ps$ corresponding to $c\tau \approx 450 \mu m$
 - Identification of jets originating from *b*-quark is performed using a secondary-vertex-based tagging algorithm
 - Trigger :
 - Selection based on multijet trigger
 - Very challenging to keep unprescaled multijet trigger
- Kinematics that can be fully reconstructed
- Very large background from QCD multijet production which makes the isolation of the signal rather challenging
 - Difficult of separation from QCD background
 - Need for data driven background estimation since QCD difficult to simulate

 $\sigma_{t\bar{t}} = 164 \text{ pb} @ 7 TeV$ $BR_{fullyhadronic} \sim 46\%$ იიიიიი W Displaced Fracks Seconda Verter

LHC: Large Hadronic Collider

C. Bertella

Trigger Studies of fully hadronic ttbar cross section analysis

LHC: Large Hadronic Collider

- Late 2009 : Startup of LHC and first event collisions at a total energy of 0.9 TeV and later at 2.36 TeV
- March 2010 : First event collisions at a total energy of 7 TeV.
- March 2011 : Event collisions at a total energy of 7 TeV; few weeks of heavy ion collisions; winter shutdown (Dec. 2011 - Feb. 2012).
- 2013 : Long shutdown to prepare for an increase of the total energy towards 14 TeV.

ATLAS : A Toroidal Lhc ApparatuS

C. Bertella Trigger Studies of fully hadronic ttbar cross section analysis

ATLAS : A Toroidal Lhc ApparatuS

 Two magnet systems: solenoidal (2T) in the inner detector, toroidal in the muon spectrometer (4T peak)

- **Inner Detector** reconstructs charged particle trajectories and measures their momentum.
- **Calorimeters**: The Electromagnetic calorimetry identifies and measures the electrons and photons. The Hadronic calorimeter identifies jets formed by the hadronization of quarks
- Muon Spectrometer identifies muon particles and measures their p_T together with the Inner Detector

Fully hadronic $t\bar{t}$ cross section: 35 pb⁻¹

- Event selection :
 - Multijet triggers: at least four jets with $|\eta| < 3.2$ and $E_T > 30$ GeV
 - At least four offline jets with $E_T > 60 \text{ GeV}$
 - 2 b-tag jets
- Backgroud modeling :
 - Data driven background estimation: estimate background in low jet multiplicity region and extrapolate to signal region → tag rate functions
- Mass χ^2 discrimination variable

$$\chi^{2} = \sum_{i=1}^{2} \left(\frac{m_{jib}^{(i)} - m_{t}}{\sigma_{t}}\right)^{2} + \left(\frac{m_{ji}^{(i)} - m_{W}}{\sigma_{W}}\right)^{2}$$

 The final mass χ² distribution is fitted with signal and background template

• $\sigma_{tt} < 26$ pb @ 95% C.L.

Fully hadronic $t\bar{t}$ cross section: 1.02 fb⁻¹

- Event selection :
 - At least 5 jets with $p_T > 55$ GeV, 6th with $p_T > 30$ GeV and additional jets only if $p_T > 20$ GeV, within $|\eta| < 4.5$
 - At least two b-tagged jets (*p_T* > 20 GeV) are required
 - $\Delta R(b, B) > 1.2$
 - Missing E_T significance <u>E_T</u> > 3, H_T is the scalar sum of the transverse momentum of all jets in the event

Background modeling :

- Event Mixing technique uses a sample with a lower number of jets to model a sample with a large multiplicity: the target multiplicity is made up by adding jets to the initial sample
- First used in DØ
- The technique is used to model events with at least 6 jets from events with a jet-multiplicity equal to exactly 4 or 5
 - The multi-jet QCD background six or more jet sample is modeled by attaching low-pT jets selected from events with 6-jet or more jets to events with 4 or 5 jets

Fully hadronic $t\bar{t}$ cross section: 1.02 fb⁻¹

• A χ^2 based discriminant observable is implemented to extract the $t\bar{t}$ signal from the mutlijet background

$$\chi^{2} = \frac{(M_{j1,j2} - M_{W})^{2}}{\sigma_{W}^{2}} + \frac{(M_{j1,j2,b} - M_{t})^{2}}{\sigma_{t}^{2}} + \frac{(M_{j3,j4} - M_{W})^{2}}{\sigma_{W}^{2}} + \frac{(M_{j3,j4,b} - M_{t})^{2}}{\sigma_{t}^{2}}$$

tī signal fraction is extracted from a binned likelihood fit to the data mass χ² distribution

$\sigma_{tt} = 167$	\pm 18(stat.	$) \pm 78(syst)$	$\pm 6(lumy)$
---------------------	----------------	------------------	---------------

Source of uncert.	Event Mixing (%)	
JES	13.7	
b-tagging	23.0	
ISF/FSR	23.4	

• Top mass recostructed by removing the m_{top} constraint from th χ^2 definition, only constraints the masses of the two triplets to be equal

C Bertella

b-jet Trigger

- At the high instantaneous luminosity foreseen for LHC data taking, most multi-jet trigger will be prescaled unless their threshold and jet multiplicity are constantly increased to keep the trigger rate under control
- ATLAS trigger and data acquisition system is based on three levels
 - Trigger levels must provide a rejection to reduce the 40 MHz bunch-crossing rate to an output of about few hundred Hz
- b-tagging at HLT is a possibility for collecting tt
 in the full hadronic final state with an acceptable data taking rate
 - ATLAS has put in place a combination of multijet and b-jet trigger to efficiency select events with final states containing several b-jets
 - *b*-jet trigger for hadronic top requires four EF-jets with $E_T > 30$ GeV at EM scale and 1 b-jet with $E_T > 10$ GeV at EM scale and tight instance for the b-tagging criteria
 - Signal efficiency is $\sim 40.4\%$

Trigger Studies of fully hadronic ttbar cross section analysis

Conclusion

- Top physics is important for several reasons:
 - Standard model test: cross section, branching ratio, polarization
 - Search of new physics: Z' resonances, K-K gluons, fouth generation, etc
 - Detector calibration: pure samples of e, μ, b-jets
- First fully hadronic *tī* cross section measurement in 2010 :
 - upper limit $\sigma_{t\bar{t}} > 261 \text{ pb}@95\% \text{ C.L}$
- Fully hadronic $t\bar{t}$ cross section measurement in 2011 :
 - performed using L = 1.02 fb⁻¹
 - $\sigma_{t\bar{t}} = 167 \pm 18(stat.) \pm 78(syst) \pm 6(lumy)$ with 1fb^{-1}
 - result dominated by the systematic uncertainty

• Plans for 2012 :

- Analysis using all data collected in 2011: $L = 5 \text{fb}^{-1}$
 - Different background estimation techinque to predict shape and normalization
 - New kinamatical variables to discriminate the signal and background
 - Kinematical Likehood Fitter : uses the known t decay topology in order to properly assign the jets to the decay products
 - Profile Likehood Fit to reduce the systematic uncertanties
 - quark/gluon-tagging to decrease the QCD background
- Analysis the data collected with *b*-jet trigger
- Search for new physics: Z' resonances