

Searches for diboson production with heavy-flavor jets in the final state at the Tevatron

Jean-François Grivaz Laboratoire de l'Accélérateur Linéaire (Orsay)

On behalf of the CDF and D0 Collaborations

HCP Conference – Paris – November 16, 2011

A typical Low-Mass Higgs search: MET + b-jets

This whole procedure should be validated with a known signal

HCP - 2011 - Paris

Diboson search with $Z \rightarrow bb$ as a benchmark

Let's replace the Higgs we are searching for by a Z boson:

For (W/Z)H with mH = 115 GeV:		For (W/Z)Z:	
$\begin{array}{l} WH \rightarrow I v b b \texttt{:} \\ ZH \rightarrow II b b \texttt{:} \\ ZH \rightarrow v v b b \texttt{:} \end{array}$	27 fb(l=e,μ) 5 fb(ll=ee,μμ) 15 fb	WZ \rightarrow lvbb: ZZ \rightarrow llbb : ZZ \rightarrow vvbb:	105 fb(l=e,μ) 24 fb (ll=ee,μμ) 73 fb
Total:	46 fb	Total: 202 fb	

The cross section for diboson production is \sim 4.5 times larger than for (W/Z)H

But the dijet mass resolution is not sufficient to separate dijets from W and Z decays
=> WW → lvcs becomes a significant background
Furthermore, background level and related systematics are larger at these lower masses.
On the other hand, there is relatively more signal contribution from Z → cc than from H → cc

The observation of $(W/Z)(Z \rightarrow bb)$, using the same techniques as for the Higgs searches, is the ultimate benchmark for those searches at the Tevatron

Towards the benchmark at HCP'11...

WW+WZ	in lν + HF jets:	
	CDF note 10598	(7.5/fb)
	D0 publication in preparation	(4.3/fb)
WZ	in lv + HF jets:	
	D0 note 6220	(7.5/fb)
ZZ+ZW	in ll + HF jets	
	CDF note 10601	(6.6/fb)
	D0 note 6256	(7.5/fb)
WZ+ZZ	in MET + HF jets:	
	CDF note 10311 (arXiv:1108.2060 [hep-ex])	(5.2/fb)
	D0 note 6223	(8.4/fb)
Combina	tion of $(W \rightarrow Iv)bb$, $(Z \rightarrow II)bb$, and $(Z \rightarrow vv)bb$	
	D0 note 6260	(7.5 to 8.4/fb)

For reference: diboson production cross sections used by the TeVNPHWG:WW: 11.34 pbWZ: 3.22 pbZZ: 1.20 pb(MCFM@NLO)

WW+WZ in Iv+HF(1/2)7.5/fb

Selection:

1 e/µ (pT > 20 GeV), MET > 20 GeV, exactly 2 jets (pT > 20 GeV, $|\eta| < 2$)

Multijet rejection using an SVM

Remaining MJ and V+jets normalizations from a template fit to the MET distribution

At least one jet tagged by the SecVtx algorithm

Yields	1-tag	2-tag
Signal	215	11
Backg.	5514	396
S/√B	2.9	0.6

In 1-tag: WW ~74% of the signal In 2-tag: WZ ~88% of the signal

Most of the sensitivity comes from $W \rightarrow cs$ in the 1-tag channel

WW+WZ in Iv+HF(2/2)

Final discriminant: the dijet mass (1 and 2 tag, also lepton classes)

Statistical analysis:

WW/WZ ratio fixed as in the SM

3.0 S.D. from the B-only hypothesis(3.0 expected)**Good agreement with S+B**

σ (WW+WZ) = (1.1 +0.3 -0.4) σ_SM

CDF Run II Preliminary (7.5 fb⁻¹)

CDF Run II Preliminary (7.5 fb⁻¹)

WW+WZ in Iv+HF(1/2)4.3/fb

Selection:

1e/ μ (pT > 20/15 GeV), MET > 20 GeV, \geq 2 jets (pT > 20 GeV, $|\eta| < 2.5$) m_T(lv) > 40 GeV – 0.5MET ("triangle cut" against MJ background with fake leptons)

b-tagging:

12 b-NN operating points corresponding to increasing b purity loosest operating point chosen to define 0, 1 and 2-tag samples NN values used as input to the final discriminant

Final discriminant: RF (15 inputs)

WW+WZ in Iv+HF (2/2)

WW/WZ ratio fixed as in the SM

8.0 S.D. from the B-only hypothesis (6.0 expected) σ (WW+WZ) = (1.2 ± 0.2) σ _SM

Good agreement with S+B

If WW is constrained to its SM value \pm 7%, the fit yields σ (WZ) = (1.3 \pm 0.6) σ _SM and the significance of the WZ signal is 2.2 S.D (1.2 expected)

ZW+ZZ in II+HF

6.6/fb

Selection:

 $\begin{array}{l} ee/\mu\mu \ (pT > 20 \ GeV), \ 76 < M_II < 106 \ GeV, \ \geq 2 \ jets \ (pT > 20 \ GeV, \ |\eta| < 2) \\ Z \ pT > 10 \ GeV, \ MET < 25 \ GeV \\ \end{array} \\ \begin{array}{l} \mbox{Final QG Neural Network Output} \end{array}$

Define three samples:

HF based on "b-ness" LF and gluon-rich no-tag (based on q-g NN discriminant)

Yields	no-tag	LF-tag	HF-tag
Signal	80	87	16
Backg.	5690	3600	760
S/√B	1.1	1.5	0.6

Not yet enough sensitivity to observe a signal

Final discriminant:

the dijet mass in the three samples

(MC gluon JES adjusted by -2σ , based on Z+1-jet control sample)

J.-F. Grivaz

WZ+ZZ in MET + HF (1/2) 5.2/fb

Selection:

Backgrounds:

V+jets shape from MC (corrected based on γ +jets) Multijet model from $\Delta \phi$ (MpT,MET) > 1 (MC subtracted) Top and WW from MC

(0+1)-tag, and 2-tag samples based on "b-ness"

Yields	(0+1)-tag	2-tag
Signal	1330	52
Backg.	230100	1052
S/√B	2.8	1.6

Post-fit results

Final discriminant: the dijet mass in both samples

In the fit: V+jets float independently in the two samples WW constrained within 6% WZ/ZZ ratio fixed as in the SM

WZ+ZZ in MET + HF (2/2)

Post-fit results

Significance: 1.9 S.D. (1.7 expected) Good agreement with S+B σ (WZ+ZZ) = (1.1 +0.7 -0.6) σ _SM Sensitivity from both WZ and ZZ The following mutually exclusive analyses are exact copies of the corresponding low-mass Higgs searches.

The only changes are the MVA trainings where the signal is now WZ+ZZ (instead of WH+ZH), while WW remains a background.

Hence, only minimal detail is given.

WZ in Iv+HF

DØ Preliminary, 7.5 fb⁻¹

Selection: e/μ + MET + 2 or 3 jets + m_T(lv) vs. MET "triangle cut"

Multijet background rejection using a BDT

Separation in 1 and 2-tag samples based on the loosest b-BDT operating point, and inclusion of the b-BDT output in the final discriminant.

Final discriminant: BDT (14 inputs).

ZZ in II+HF

7.5/fb

Selection: ee/ $\mu\mu$ in Z-mass window + 2 or 3 jets

Separation in 1 and 2-tag samples

based on a tight and a loose b-BDT operating point: T&L and T&!L

Kinematic fit

Final discriminant: RF (19 inputs).

WZ+ZZ in MET+HF

Selection: large MET + MET significance + 2 acoplanar jets + e/ μ veto Multijet background rejection using a BDT Separation in 1 and 2-tag samples based on the loosest b-BDT operating point, and inclusion of the b-BDT output in the final discriminant.

Final discriminant: BDT (32 inputs !).

Post-fit results

Combination of the WZ/ZZ D0 searches

The exact same techniques are used as for the Higgs combinations.

Global fit to the final discriminants in all sub-channels Theoretical uncertainties correlated.

Experimental uncertainties (un-)correlated as appropriate.

Main uncertainties:

Heavy/Light ratio in (W/Z)+jets Object reconstruction and identification Jet energy calibration and resolution b tagging

This shows the background subtracted final discriminant after the combined fit.

The WZ/ZZ ratio has been fixed as in the SM

The bins of the individual discriminants have been regrouped according to s/b, and summed in a single distribution.

Combination of the WZ/ZZ D0 searches

Post-fit (to the DT outputs) dijet mass distributions

Post-fit (to the DT outputs) background-subtracted dijet mass distributions

HCP - 2011 - Paris

Combination of the WZ/ZZ D0 searches

Evidence for WZ and ZZ production in final states with b-tagged jets: 3.3 S.D. from the B-only hypothesis (2.9 expected) Good agreement with S+B $\sigma(WZ+ZZ) = (1.13 \pm 0.36) \sigma_SM$

A fit was also performed where WZ and ZZ are allowed to float idependently:

 $σ(WZ) = (1.8 \pm 0.5) σ_SM$ $σ(ZZ) = (0.4 \pm 1.1) σ_SM$

Summary

A number of analyses have recently addressed the search for diboson production with heavy-flavor jets in the final state

These analyses have provided a direct validation of the procedures and techniques used in the searches for a low-mass Higgs boson at the Tevatron

Backup slides

b/c/light composition of the WZ+ZZ signal in the final sample of the D0 MET+HF analysis

- In the 1-tag channel:
 - bb : 16%
 - cc : 19%
 - cs : 23%
 - Rest: 41%
- In the 2-tag channel:
 - bb : 60%
 - cc : 22%
 - cs : 8%
 - Rest: 9%
- Remember that this is for the loosest b-tagging operating point, and that the b-tagging values are used as inputs to the final discriminant.