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Abstract

Spin correlations for the AA and AA pairs, generated in relativistic heavy
ion collisions, and related angular correlations at the joint registration of
hadronic decays of two hyperons, in which space parity is not conserved,
are analyzed. The correlation tensor components can be derived from the
double angular distribution of products of two decays by the method of
“moments” . The properties of the “trace” of the correlation tensor ( a
sum of three diagonal components ), determining the relative fractions of
the triplet states and singlet state of respective pairs, are discussed. Spin
correlations for two identical particles (AA) and two non-identical particles
(AA) are considered from the viewpoint of the conventional model of one-
particle sources. In the framework of this model, correlations vanish at
enough large relative momenta. However, under these conditions, in the
case of two non-identical particles (AA) a noticeable role is played by two-
particle annihilation ( two-quark, two-gluon ) sources, which lead to the
difference of the correlation tensor from zero. In particular, such a situation
may arise when the system passes through the “mixed phase”

1



1 Introduction

Spin correlations for the AA and AA pairs, generated in heavy ion colli-
sions, and respective angular correlations at the joint registration of hadron-
ic decays of two hyperons with space parity nonconservation give important,
information about the character and mechanism of multiple processes. The
advantage of the AA and AA systems over other ones is due to the fact that
the P-odd decays A = p+7~ and A — p+ 7" serve as effective analyzers
of spin state of the A and A particles. In connection with this, spin corre-
lations in the AA and AA systems can be rather easily distinguished and
studied experimentally by the method of “moments” over the background
of a large amount of produced secondary particles. This fact is especially
meaningful for the investigations of multiple generation at modern and fu-
ture ion colliders like RHIC, LHC, NICA, since the polarization parameters
— especially for the AA pair — are very sensitive to the scenario of process
after the act of collision of relativistic heavy ions .

2 General structure of the spin density matrix of the

pairs AA and AA

The spin density matrix of the AA and AA pairs, just as the spin density
matrix of two spin-1/2 particles in general, can be presented in the following

form [1,2,3]:
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in doing so, tr(l’g)ﬁ(m) = 1.
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Here I is the two-row unit matrix, ¢ = ( ¢, 6y, 6. ) is the vector Pauli
operator (z,y,z — 1,2,3 ), Py and P, are the polarization vectors of first
and second particle ( Py = <6'(1)>, P, = <6'(2)> )y, T = <6§1) ® 61572)> are
the correlation tensor components . In the general case Tj, # Py; Pog. The
tensor with components C;, = T, — Py; Py describes the spin correlations
of two particles .

The respective one-particle density matrices are as follows:

(104 PeM), 2 =1 (i@ 4 P,e®). (2)



The “trace” of the correlation tensoris T =1T,, +T,,+1T1., =
= <6'(1) ® 6'(2)> . The eigenvalues of the operator 'V @ 6@ equal N, = 1
for three triplet states (total spin S = 1) and Ay = —3 for the singlet state
(total spin S =0) .

Let us introduce the operators of projection onto the triplet states and
onto the singlet state:

3460060 PP PNE)
=t % p=T % 3

The following matrix equalities are satisfied:

P}=PF; P!=P; BP.=Pb=0

For all the purely triplet states the “trace” of the correlation tensor
T =1, whereas for the purely singlet state T'= —3 .

Now let us introduce the operator of permutation of spin projections,
having the form:

~

1 . .
p2) — 5([(1) 21 460 o &(2))_ (4)

Then we obtain:

PUAp = BPUD = By PO = PPN =P (3

The eigenvalues of p2) equal +1 for the three triplet states and —1 for
the singlet state .

The two-particle spin density matrix (1) may be decomposed into the
triplet, singlet and the “mixed” singlet-triplet parts:

A(I’Q)

P = Pt + Ps + prs + Pst, (6)

in doing so,

pr=D "B po= PP p = PpU PP pa = PR

The relative fraction of the triplet states amounts to:

A o . 34T
Wy =tr py = tr(Pp"P6) = tr(PpM?) = — (8)

and the relative fraction of the singlet state amounts to:



in doing so,

Wt+W5:1, T:Wt—3W5:1—4W5 (10)

Due to the orthogonality of the projection matrices P, and ]55, the fol-
lowing relation holds:

tr prs = tr pg = tr (ﬁ(m)ﬁspt) = 0.

There are also some matrix equalities containing the operator of permu-

tation of spin projections pl2) .

P PO = 4p; PO PUY = 45

P(I’Q)ﬁtsp(lg) = _ﬁts; P(LQ)ﬁstP(l’Q) = _ﬁst; (11)
It should be noted that the matrices p; and p, incorporate only symmetric
combinations of spin operators of two particles, whereas the matrices p;5 and
pst include only antisymmetric combinations of spin operators .
The explicit formulas for the triplet ( p; ), singlet ( ps ) and “mixed”
( prs, pst ) components of the spin density matrix are as follows:
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where ¢;; is the totally antisymmetric tensor of the 3-rd rank.

In doing so, the matrices p; , ps and p; are Hermitian and the matrix p_
is anti-Hermitian .

If the first particle and second particle have different relativistic momen-
ta, the polarization vectors Py, Py and the correlation tensor components
with “left” and “right” indices are specified, respectively, in the rest frames
of the first and second particle — in the unified coordinate axes of the c.m.
frame of two particles .

3 Spin correlations and angular correlations at joint
registration of decays of two A particles into the
channel A - p+ 7~

Any decay with the space parity nonconservation may serve as an ana-
lyzer of spin state of the unstable particle [3].

The normalized angular distribution at the decay A — p + 7~ takes the
form:

dw(n) 1
dQ, 4 7T(
Here P, is the polarization vector of the A particle, n is the unit vector
along the direction of proton momentum in the rest frame of the A particle,
ay is the coefficient of P-odd angular asymmetry ( ay = 0.642 ). The
decay A — p + 7~ selects the projections of spin of the A particle onto the
direction of proton momentum; the analyzing power equals &€ = axn .
Now let us consider the double angular distribution of flight directions
for protons formed in the decays of two A particles into the channel A —
p + 7, normalized by unity ( the analyzing powers are &, = ayny,
£, = apny ). It is described by the following formula [2,3]:

1—|—OJAPAI1). (16)
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(17
where Py and P are polarization vectors of the first and second A particle,
T, are the correlation tensor components, n; and ny are unit vectors in
the respective rest frames of the first and second A particle, defined in the
common ( unified ) coordinate axes of the c.m. frame of the pair

(i, k=4{1,2,3} ={z,y,2} ) .

By using the method of moments, the components of polarization vectors
and correlation tensor may be determined as a result of averaging combi-
nations of trigonometric functions of angles of proton flight over the double
angular distribution [2,3]:

Here

() = /(....) (%) 40, d O, (19)

niy =sinbjcos@y; nyy =sinbsingy;  ny, = cosby;
no, = sinfy cos ¢g; Ny, =sinfysings;  ng, = cos by, (20)

where ¢, and ¢, 05 and ¢4 are the polar and azimuthal angles of emission
of protons in the rest frames of the first and second A particle, respectively
— with respect to the unified system of coordinate axes ;

dy, = sinthdbideg, and d€y,, = sinthdfydg, are the elements of solid
angles of proton emission .

The double angular distribution may be integrated over all angles except
the angle # between the vectors n; and ny :

cos # = nyny = cos f) cos B, + sin b} sin by cos(d; — @s). (21)

At this integration, the solid angle element d {2, can be defined, without
losing generality, in the coordinate frame with the axis z being parallel to
the vector ni, and the solid angle element d€2,,, is defined in the coordinate
frame where the polarization parameters are specified:

dQy, = sinf df do, ddy, = sinby dby doy;



here ¢ is the azimuthal angle of rotation of the vector ny around the vector
n; .

So, the angular correlation between the proton momenta at the decays
of two A particles is expressed as follows:

d2 w(nla n?) .
dUJ(COS 6) = (/ m dgbd in) sin 6d6. (22)
In doing so,
_ 1 _ 1
n1:8? nldgbdin:O, n2:8? ngdgbdin:O,
FoE = —— [ s ok o d O =+ cos 05, (23)
Ty ok = 87T2 Ty 19k n; — 3 COSs ik -
The angular correlation, being described by the formula [2,3,4.5]
1 I, :
dw(cos ) 25(1+§ozAT cos #) sin Ad 6, (24)

is determined only by the “trace” of the correlation tensor T' = W; — 3W,
and it does not depend on the polarization vectors ( single-particle states
may be unpolarized ).
So, finally we have:
1 W, :
dw(cost) = 5[1 — o4 (W, — ?t) cos ] sin fd 6, (25)
W, and W, are relative fractions of the singlet state and triplet states,
respectively .

4 Correlations at the joint registration of the decays
A=sp+r and AN—p+nt

Due to C'P invariance, the coefficients of P-odd angular asymmetry for
the decays A — p+ 7~ and A = p + 7 have equal absolute values and
opposite signs: ay = —ay = —0.642 . The double angular distribution for
this case is as follows [2,3]:

3 3

2
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(here —ay = +a; and —a% = +azay ) .
Thus, the angular correlation between the proton and antiproton momen-
ta in the rest frames of the A and A particles is described by the expression:

1 W,
dw(cost) = (1—§Q%Tcos€)sin€d€: [1+a?\(W5—?t)cos€]sin€d€,

(27)

DO | =
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2

where # is the angle between the proton and antiproton momenta .

5 Model of one-particle sources

For describing the momentum-—energy correlations and related spin cor-
relations of identical particles, generated in processes with high multiplicity,
the model of one-particle sources ( “constituents” ) is widely applied [6].

In the framework of this model, the sources emitting particles do not over-
lap in space and time, — it is supposed that the sizes of the sources themselves
are small as compared with the distances between them. In accordance with
this, each source is characterized by the 4-coordinate z; = {r;,¢;}. In doing
so, the spatial region occupied by all the sources is very small as compared
with the sizes of detectors measuring the particle momenta p; and p,, and
the duration of the generation process is very small as compared with the
time parameters of detectors.

According to the model of one-particle sources ( Kopylov, Podgorets-
ky ) [6], particles are emitted by the sources independently and incoherent-
ly . Thus, at the early stage of particle formation ( at the stage of hadroniza-
tion of quarks and gluons ) the momentum-energy and spin correlations are
absent . Correlations for identical particles, produced in the same event of
collision, arise on account of the effects of quantum statistics ( Bose statis-
tics for particles with integer spin and Fermi statistics for particles with
half-integer spin ) and final-state interaction [7]. At present the model of
sources is successfully used as well for the description of pair momentum-
energy correlations of non-identical particles, conditioned exclusively by the
final-state interaction .

It is essential that the pair momentum-—energy correlations and spin cor-
relations, connected with the particle identity and the final-state interaction,
depend upon the momentum difference in the c.m. frame of the pair and,-
as upon the parameters of the process,— upon the space-time characteris-
tics of the region of multiple generation of particles, corresponding to the



so-called “freeze-out” . In accordance with the model of sources, the corre-
lations reach the maximum at relative momenta being small as compared
with the inverse space-time dimensions of the generation region, whereas in
the limit of large relative momenta they disappear . This fact has served as
a basis for elaboration of the correlation method ( the so-called correlation
femtoscopy ), allowing one to investigate experimentally the space-time de-
velopment of the processes of multiple generation of leptons, photons and
hadrons .

Since the momentum-—energy correlations and spin correlations in the
framework of the model of one-particle sources are substantial only in a suf-
ficiently narrow range of small relative momenta, in most of real events the
particle density in phase space is small enough, so that it would be possible
to consider the pair correlations only, disregarding the triple correlations
(moreover, the correlations of higher orders ) as well as neglecting their
influence upon the pair correlations .

In the model under consideration, the sources have a very broad momen-
tum spectrum as compared with the relative momenta being characteristic
for pair correlations; thus, the emission probabilities for each of the one-
particle sources change insignificantly under the variation of 4-momenta
p1 and po within the correlation effect ( that is the so-called “smoothness
condition” ).

The method of correlation femtoscopy, based on the source model, has
been used successfully enough for studying the correlations in processes of
collision of elementary particles . But, by its essence, this approach is the
most adequate one namely for processes of multiple generation of particles
in collisions of heavy nuclei .

Let us remark that, when describing the correlations of pions generated
in multiple processes, the model of boson formation in so-called “chaotic”
and “coherent” states is used as well [8,9]. In the framework of this mod-
el, the interference correlations of identical bosons are partly suppressed
in connection with the fact that the bosons, being produced in the same
quantum state, are already initially symmetrized just at their generation.
Analogous results follow from the model incorporating both the one-particle
sources and multiparticle sources with the fixed number of particles [10,11].
However, on account of the Pauli principle, these models are inapplicable
to fermions .



6 Spin correlations at the generation of A A pairs in
multiple processes

a) The Fermi-statistics effect leads not only to the momentum-energy
A A-correlations at small relative momenta ( correlation femtoscopy ), but
to the spin correlations as well .

The following relation holds, in consequence of the symmetrization or
antisymmetrization of the total wave function of any identical particles with
nonzero spin ( bosons as well as fermions ) [12]:

(_1)S+L - 1.

Here S is the total spin and L is the orbital momentum in the c.m. fra-
me of the pair. At the momentum difference ¢ = p; — ps — 0 the states
with nonzero orbital momenta “die out”, and only states with L = 0 and
even total spin S survive .

Since the A-particle spin is equal to 1/2, at ¢ — 0 the A A pair is gener-
ated only in the singlet state with S =0 .

Meantime, at the 4-momentum difference ¢ # 0 there are also triplet
states generated together with the singlet state .

Within the conventional model of one-particle sources emitting unpo-
larized particles, the triplet states with spin projections +1, 0 and —1 are
produced with equal probabilities . If correlations are neglected, the singlet,
state is generated with the same probability, — the relative “weights” are
W, =3/4 . Wy=1/4.

When taking into account the Fermi statistics and s-wave final-state
interaction, which is essential at close momenta ( at orbital momenta L # 0
the contribution of final-state interaction is suppressed ), the fractions of
triplet states and the singlet state become proportional to the quantities

[7.13]:

Wilg) =5 (1= {eosgr)).  Wilg) = (0 + {cosgr) +2 Brul)): (28

M| o

here ¢ = p; — poy is the difference of 4-momenta, ©+ = x1 — a9 is the difference
of 4-coordinates of two sources .
In the above formula ,

(cos qr) = /W(x) cos qu d*x
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is the Fermi-statistics contribution; here W (x) is the distribution of differ-
ence of 4-coordinates of two sources; By, (q) is the contribution of s-wave
final-state interaction of two A particles. In doing so,

R(g) = Wila) + Wila) = 1= 5 {cosgr) + 5 Buula) (29
is the correlation function describing the momentum-energy correlations of
two A particles with close momenta .

The correlation function R(q) represents the ratio of the two-particle
spectrum to the non-correlated background, which is constructed usually as
a product of one-particle spectra from different events at the same values

of momenta. In terms of inclusive cross sections we have [13]:

o _ Rlg) (n(n 1)) (d) (d) (30)

Epidpy i (n)? &p1) \dpy
where n is the multiplicity and o 1s the total interaction cross-section

( for the Poisson distribution of multiplicity we have
(n(n—1)/(n)*=1).

b) The spin density matrix of two A particles with close momenta at
the emission of unpolarized A particles has the following structure:

15(1’2) _ Ws(Q) ps + Wt(Q) P _
Wi(q) + Wilq)

— % [G (1 4 (cos gz} +2 Bint(Q)) ps +

| o

(1= {cosqx))pi|. (31)

Here

1 . A
ps = I (](1) 21?60 g &(2))

is the density matrix of the singlet state, and

1 - - 1
pr = I ([(1) @ I? 4 5 Y AON a-(?))
is the density matrix of the unpolarized triplet state, averaged over the spin

projections A = +1,0,—1 :

.1 . . R R - -
ptzg(pt+1+Pt0+Pt—1)§ ps+3p =10 1)

It is easy to see that Eq. (31) for o2 can be rewritten in the form:
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ﬁ(l 2 _ 1 . . cos qz) + Bin(q)

2 _ L g o Sh et e e
q

4

The correlation tensor components [2]

{cos qz) + Bini(q)
2 — (cos qx) + Bini(q)
depend upon the momentum difference as well as upon the space—time

parameters of the generation region; the “trace” of the correlation tensor
amounts to

Tik = Czk = — 5zk (33)

{cos qz) + Bini(q)
I'= Z Tii = 2 — {cos qx) + Bin(q)’ (34)

Thus, on account of the effects of quantum statistics and final-state in-

teraction, at small relative momenta two identical particles, initially unpo-
larized (P = P, = 0 ) and non-correlated by spins, remain unpolarized as
well but their spins become correlated .

At ¢ — 0 we obtain: {cosqr) — 1, Ty — — ;1 ( singlet state ).

On the other hand, in the limit of large ¢: {cosqz) — 0, B;(q) — 0,
R(q) — 1, Tz — 0, i.e. both the momentum-energy and spin correlations
vanish .

¢) Now let us consider the emission of A particles with equal polarization
vectors P =P, =P [2].

It should be noted that, at the stage of emission by sources, correlations
are absent.

The fraction of the triplet state with the total spin projection A\ = +1
onto the direction of P and the respective constituent of the spin density
matrix are as follows :

~— (14 P)? 1. i
th = %; ﬁtl — Z (](1) + a-(l) 1) R ([(2) + &(2) 1); (35)
here P = |P| and 1 is the unit vector directed along P .

Analogously, we have the following fractions and spin density matrix
constituents:

for the triplet state with total spin projection A = —
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_ P2 R R
ngl; b= L0 g0 o (0 Z 50, (36)

W, 1= 4

T 010 461006 2 (6 V1) (5], (37

= —

pro =
and for the singlet state:

A PG U1 DS S B
W, = 1 ps:Z(I @I -V @a'?). (38)

In doing so, the fractions of spin states /thl, /Wz_l /tho, /WZ obey the
normalization condition

/th1+/th—1+/MZO+/W/s: 1,

and the primary spin density matrix is described by the expression :

~ ~ ~

(IV+PeMe(I?+Pa?).
(39)

At low relative momenta, on account of Fermi statistics and final-state

| —

p=Wiipr1+Wi1pr1 Wi pro+Ws ps =

interaction, the fractions of triplet states and singlet state change and be-
come proportional to the following quantities:

W) = LEL 1 fcosgo), (40)
TP ] (1)
Wanle) = 222 (1 = foos ) (42
Wala) = 2222 (1 (cos ga) 2 Bon(a)). (43)

The inclusive cross-section of generation of the AA pair with close mo-
menta is proportional to the correlation function describing the momentum-—
energy correlations:
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R(Q) = th(Q) + Wt_1(q) + WtO(Q) + WS(Q) =

1 4 P2 1— P
-1 (cos qz) + 5 Bini(q). (44)
In doing so, the “renormalized” density matrix is determined by the
relation:
R 1 . . . 5
P= % (Wir(@)per +Wi—1(q) pe—1 + Wio(@) pro + Wi(q) ps)- (45)

In accordance with this, the polarization parameters of the A particles,
renormalized due to the effects of Fermi statistics and s-wave final-state
interaction, take the form:

1
P, =P,= %(1 — (cos qz)) P; (46)

1 ~ . 1-P?
Ty = —— [(1 —(cosqx)) PP, —

({cos qx) + Bint(q))0ux | . (47)

Irrespective of the primary polarization 15, at the momentum difference
q¢ — 0 only the singlet state of the AA pair is realized, and the renormalized
polarization vectors P; = Py tend to zero . The s-wave final-state interac-
tion amplifies the predominant role of the singlet state. If P = 1, then in
the limit ¢ — 0 the generation of AA pairs is forbidden — in full accordance
with the Pauli principle .

d) In the c.m. frame of the AA pair we have: ¢ = {0,2k}, where k is
the momentum of one of the particles. In doing so, the momentum k is
connected with the relative momentum q in the laboratory frame by the
Lorentz transformation [13] ( we use the unit system with h=c=1) :

k:%[q—l—(v—l)%—WV%]; (48)

here v = (p; + p2)/(e1 + £9) is the velocity of the AA pair in the laboratory
frame, v = (1 — v?)71/? is the Lorentz factor, q = p; — ps and ¢y = £, — &3 .

The Lorentz transformations of 4-coordinates are given by the expres-
sions :

14



(rv)v

ME

wherer =x; —x9 and t =t — t5 .

r'=r+(y-1) —vt, =7t - o), (49)

The interference term connected with identity (quantum statistics) is
determined by the expression:

(cos qz) = {cos 2kr*) = /WV(I‘*) cos(2kr*)dr*, (50)

where

Wy (r*) :/W(x)dt* :/W(r*,t*)dt*

is the distribution of coordinate difference between two sources in the c.m.
frame of the AA pair .

Meantime, the contribution of s-wave final-state interaction is expressed
as follows ( at the sizes of the generation region in the c.m. frame, exceeding
the effective radius of interaction of two A particles ):

Bini(q) = BWUA) (k,v) = /Wv(r*) b(k,r*)d’r*, (51)
where the function b(k,r*) has the structure [2,7,13]:
1 tkr” kr*
b(k,r*) — |f(AA)(k‘)|2 4+ 2Re f(AA)(k‘) € CcOs Kr _
(7“*)2 r*
=27 [FON (k)2 a6 (). (52)

Here k = |k|, »* = |r*|, f®Y(k) is the amplitude of low-energy AA
scattering. In the framework of the effective radius theory [12,14]:
1
FONGE) = af™M 1+ S di™ M R =ik oMY (53)

2
where, by definition, (—a(()AA)) is the length of s-wave scattering and

1 d 1
gany _ 1 d
o = an \ By

is the effective radius .
The integral (51), with expression (52) inside, approximately takes into
account the difference of the true wave function of two interacting A particles

15



with the momenta k and (—k) at small distances from the asymptotic wave
function of continuous spectrum [7,15] .

The information about the parameters of AA scattering is contained in
the works studying double hypernuclei and pair correlations in the reactions
with formation of two A particles ( see, for example, [16-18] ). Analysis
of the experimental data leads to the conclusion that the length of AA
scattering is comparable by magnitude ( & (—20) fm ) with the length of
neutron-neutron scattering [18].

In the case of Gauss distribution of 4-coordinates of two independent
sources in the laboratory frame, with the mean-square radius 4/(r?) =

V(rd) = V/3r¢ and the mean-square emission time VAt = \/@ = 75, We

obtain for the function W5 (r*) [13]:

W (r*) = ! exp —r*Q _ (r*n)2 _ (I‘*n)2
Y 8m3/2 rg\/m 4rd A2 (rd + v27d)
(54)
In doing so,
(cos(2kr")) = exp [—4]{27“8 — 47202(kn)2(7“8 + 7'02)] : (55)

and the contribution of s-wave final-state AA interaction at the momentum
k =0 ( maximum value ) is as follows [7]:

1 1 (a(AA))Q d(AA) 2 AA
BM(0,v) = — [z L (4 0 C af™ 56
where
1 1.1 /e 2
p=n/rd+v27}, A= —arcsinu, C=-—In —i—u; u:m.
u 2 1 —w p

7 Spin correlations at the generation of AA pairs in
multiple processes

In the framework of the model of independent one-particle sources, spin
correlations in the AA system arise only on account of the difference between
the interaction in the final triplet state (.S =1 ) and the interaction in the
final singlet state . At small relative momenta, the s-wave interaction plays

16



the dominant role as before, but, contrary to the case of identical particles
( AA ), in the case of non-identical particles (AA) the total spin may take
both the values S =1 and S = 0 at the orbital momentum L =0 . In doing
so, the interference effect, connected with quantum statistics, is absent .

If the sources emit unpolarized particles, then, in the case under consid-
eration, the correlation function describing momentum-energy correlations
has the following structure ( in the c.m. frame of the AA pair ):

Rik,v) =1+ % Bk, v) + i BNk, v). (57)

The spin density matrix of the AA pair is given by the formula :

: BM (k.v) - B! (k. v)

S(AN) — (D) o [(2) 51 o 52 58
p 9 I% + TREY) o’ we”, (58
and the components of the correlation tensor are as follows:
B(A]\) k . BgA]\) k
Ti L) (ke v) ik’ (59)

~4+3BM k) + BM (k. v)

here the contributions of final-state triplet and singlet AA interaction are
determined by the expression ( analogously to Eqs.(51,52) for the AA inter-
action [2,7], with the replacement coskr* — ¢'¥*" in Eq.(52) owing to the
non-identity of the particles A and A [13] ) :

AA AA
Bl (k.v) = £ (B)(

1 AL eikr* 6ik]{‘*
4 )+ 2R (000 () ) -

o

27 | (AA d 1
— G (W) | Re—o— | W (0). (60)
Ty (F)

where fs((/;;\)(k) is the amplitude of the s-wave low-energy singlet ( triplet)
AA scattering .

Some information on the AA interaction at low energies may be obtained
by investigating, for example, the annihilation process pp — AA .

At sufficiently large values of k, one should expect that [7]:

BMk,v)=0,  BM(kv)=0.
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In this case the angular correlations in the decays A — p+7—, A = p+nt,
connected with the final-state interaction, are absent :

Ty=0, T=0.

8 Angular correlations in the decays A — p+ 7~ and
A = p+ 7 and the “mixed phase”

Thus, at sufficiently large relative momenta ( for & > m, ) one should
expect that the angular correlations in the decays A = p 4+ 7~ and A —
p+ 7t , connected with the interaction of the A and A hyperons in the final
state (i.e. with one-particle sources ) are absent . But, if at the considered
energy the dynamical trajectory of the system passes through the so-called
“mixed phase”, then the two-particle sources, consisting of the free quark
and antiquark , start playing a noticeable role . For example, the process
55 = AA may be discussed .

In this process, the charge parity of the pairs s5 and AA is equal to
C = (=1)!*9, where L is the orbital momentum and S is the total spin
of the fermion and antifermion . Meantime, the C'P parity of the fermion—
antifermion pair is CP = (—1)°*1 .

In the case of one-gluon exchange, CP = 1, and then S = 1, i.e. the
AA pair is generated in the triplet state; in doing so, the “trace” of the
correlation tensor T' =1 .

Even if the frames of one-gluon exchange are overstepped, the quarks
s and 5, being ultrarelativistic, interact in the triplet state ( S =1 ) .
In so doing, the primary C'P parity is C'P = 1, and, due to the C'P parity
conservation, the AA pair is also produced in the triplet state. Let us denote
the contribution of two-quark sources by x . Then at large relative momenta

T=x>0.

Apart from the two-quark sources, there are also two-gluon sources being
able to play a comparable role. Analogously with the annihilation process
vy — AA, in this case the “trace” of the correlation tensor is described by
the formula ( the process g g — AA is implied ) :

4(1— )

T=1—- 61
142732 sin?0 — g4 — p4sintf’ (61)
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where 3 is the velocity of A ( and A ) in the c.m. frame of the AA pair, 0
is the angle between the momenta of one of the gluons and A in the c.m.
frame ( see [19]). At small 3 ( 8 < 1) the AA pair is produced in the
singlet state ( total spin S =0, T = —3 ), whereas at § = 1 - in the triplet
state (S =1,T =1 ). Let us remark that at ultrarelativistic velocities (3

(i.e. at extremely large relative momenta of A and A ) both the two-quark
and two-gluon mechanisms lead to the triplet state of the AA pair (T = 1).

In the general case, the appearance of angular correlations in the decays
A= p+7 and A — p+ 7t with the nonzero values of the “trace” of the
correlation tensor T at large relative momenta of the A and A particles may
testify to the passage of the system through the “mixed phase” [20,21] .

9 Summary

It is advisable to investigate the spin correlations of AA and AA pairs
produced in relativistic heavy ion collisions ( see also [20,21] ) .

The spin correlations are studied by the method of angular correlations
— method of moments .

The spin correlations, as well as the momentum-—energy ones, make it
possible to determine the space-time characteristics of the generation region
and, besides, the parameters of low-energy scattering of A on A and A on A.
The spin correlations should be investigated jointly with the momentum-—
energy correlations.

The authors are grateful to A.V. Efremov, A.O. Kechechyan, R. Led-
nicky, Yu.A. Panebratsev, O.V. Teryaev and M.V. Tokarev for the interest
in this work and useful discussions .
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