

Tae Jeong Kim (Korea University)

On behalf of ATLAS and CMS For HCP2011 at Paris 14/11/2011

Introduction

- Motivation
 - Test of Perturbative QCD through precision measurement
 - Main background for new physics possible deviation due to new physics
- Agree well with prediction so far last year 2010.
- Focus on 2011 analyses
 - cross section in dilepton decay mode
 - cross section in I+tau decay mode
 - cross section in I+jets decay mode
 - cross section in hadronic decay mode
 - multi-jet distribution in I+jets
 - charge asymmetry

v) = 2/9 : 1/9 : 6/9	lepton + jets (~15%)	T+jets	all hadronic (~45%)
r S	е т/μ т	тт	T+jets
	dilepton (~5%)	е т/µ т	lepton + jets (~15%)

Br (W) = 2/9 : 1/9 : 6/9

ttbar events

muon+jets event

electron+muon event

ttbar MC samples

- CMS
 - MadGraph with matrix elements up to three additional partons
 - ME are matched with Pythia for Parton showering (PS)
 - TAUOLA for tau decay
 - Top mass 172.5 GeV
 - NLO 157.5 pb using MCFM
- ATLAS
 - MC@NLO interfaced with HERWIG (PS) and JIMMY (UE)
 - TAUOLA for tau decay
 - Top mass 172.5 GeV
 - Approximate NNLO 164.6 pb

Physics Objects

	CMS	ATLAS
Muons	η < 2.4 (2.1) Particle-based isolation	η < 2.5, dR(mu, jet) > 0.4 energy/track isolation
Electrons	$ \eta < 2.5$, (veto 1.44 < $ \eta < 1.57$) Particle-based isolation	$ \eta < 2.5$, veto $1.37 < \eta < 1.52$ energy sum for isolation
Taus	Hadron plus strips algorithm	Boosted Decision Tree
Jets	Particle-flow [*] jets Anti-Kt with dR=0.5 pT > 30 GeV	Calo-jets Anti-Kt with 0.4 dR(e, jet) > 0.4, pT > 20 GeV
MET	Vector sum of all particles	Vector sum of energy

*Combines all information from all sub-detectors and reconstruct all particles: charged hadrons, photons, neutral hadrons, muons and electrons which are used for jet and MET reconstruction as well as for isolation requirement.

Dilepton decay

- Two opposite sign isolated leptons $p_T > 25/20$ GeV (ATLAS/CMS)
- $M_{\parallel} > 15/12 \text{ GeV } \& |M_{\parallel} 91| > 10/15 \text{ GeV for ee}/\mu\mu \text{ (ATLAS/CMS)}$
- At least two jets $p_T > 25/30$ GeV (ATLAS/CMS)
- MET > 60 or 40 (b-tag) /30 GeV for ee/ $\mu\mu$ (ATLAS/CMS)
- $H_T > 130$ or 140 (b-tag) GeV for $e\mu$ (ATLAS)
- One b-tagging (CMS:track counting, ATLAS:likelihood ratio)

- Lepton efficiency
 - Data-driven way
 - Using Z candidate
- Background estimation
 - Z window for Drell-yan
 - Matrix method for QCD and W+jets

Dilepton (CMS)

(TOP-11-005, 1.1fb⁻¹)

- Counting method
- BLUE (Best Linear Unbiased Estimator) method for combination of three decay modes

Source	Cont. to the $\sigma_{t\bar{t}}(pb)$	Cont. to the $\sigma_{t\bar{t}}(\%)$	
VV	0.4	0.2	
Single top - tW	2.7	1.6	
Drell-Yan $\tau\tau$	1.1	0.6	
Drell-Yan ee, µµ	0.8	0.5	
QCD/W+jets leptons	1.2	0.7	
Lepton efficiencies	3.7	2.2	
Lepton selection model	6.8	4.0	
Jet and $\not\!$	3.2	1.9	
B-tagging	8.5	5.0	
Pile-up	8.5	5.0	
Branching ratio	2.9	1.7	
Decay model	3.4	2.0	
Event Q^2 scale	3.0	1.8	
Top quark mass	2.8	1.6	
Jet and ₽ _T model	1.3	0.8	
Shower model	1.2	0.7	
Total Systematic	16.3	9.6	
Luminosity	7.6	4.5	
Statistics	3.9	2.3	
		1	

 $\sigma = 169.9 \pm 3.9(\text{stat.}) \pm 16.3(\text{syst.}) \pm 7.6(\text{lumi.})\text{pb}$ $\delta\sigma/\sigma = 10.8\%$

2010 data $\sigma = 168 \pm 18(\text{stat.}) \pm 14(\text{syst.}) \pm 7(\text{lumi.})\text{pb}$ with 36 pb⁻¹: J. High Energy Phys. 07 (2011) 049 $\sigma = 194 \pm 72(\text{stat.}) \pm 24(\text{syst.}) \pm 21(\text{lumi.})$ pb. with 3 pb⁻¹: Phys. Lett. B 695 (2011) 424-443

Dilepton (ATLAS)

(ATLAS-CONF-2011-100, 0.7fb⁻¹)

- Analysis with/without b-tagging.
- Likelihood fitting
- Main systematic ur
 - Jet energy scale
 - b-tagging efficiency

ncertainty with b-tag
$$\sigma_{t\bar{t}} = 183 \pm 6(\text{stat.})$$

 $\sigma_{t\bar{t}} = 188 \pm 26 (\text{stat.})^{+20}_{-16} (\text{syst.})^{+9}_{-7} (\text{lum.}) \text{ pb}$ • Phys. Lett. B arXiv:1108.369 $\underline{\text{2010 data}} \rightarrow \sigma_{t\bar{t}} = 145 \pm 31 \stackrel{+42}{_{-27}} \text{pb}$ • EPJC 71 (2011) 1577

µ+tau decay mode

- H⁺ (<top mass) can contribute.
- Tau identification
 - CMS Hadrons plus strips (HPS) combining charged hadrons and EM particles in strips in calorimeter to take into account π^0
 - ATLAS multivariate discriminate using Boosted Decision Tree identifying two tau candidates: τ₁ (1 track) and τ₃ (3 tracks)
- Event selection
 - Only one isolated muon pT > 20/25 GeV (CMS/ATLAS)
 - At least two jets
 - MET > 40/30 GeV (CMS/ATLAS)
 - $H_T > 200 \text{ GeV} (ATLAS)$
 - One b-tagging
 - At least one tau jet
 - Opposite sign of muon and tau jet

HCP at Paris, 14/11/2011

SOS

µ+tau (CMS)

(TOP-11-006 with 1.1 fb⁻¹)

- Counting method
- Data-driven background estimation
 - The jet → tau fake rate is from enriched QCD (gluon jet) and W+jets (quark jet) data sample separately
 - Take average over two estimates
- Main systematic uncertainty
 - tau fake background estimation
 - tau id
 - b-tagging

	Uncertainties [%]
τ fake background	13.0
τ jet identification	7.3
b-jet tagging & jet→b mis-id	5.5
jet energy scale, jet energy resolution, E _T ^{miss}	4.4
theoretical uncertainty on signal efficiency	4.0
pileup modeling	3.1
lepton selection	2.1
cross-section of MC backgrounds	1.6
luminosity	6.0

$$\delta\sigma/\sigma = 24\%$$

 σ =148.7±23.6(stat.)±26.0(syst.)±8.9(lumi.)pb

(ATLAS-CONF-2010-119 with 1.1 fb^{-1})

μ+tau (ATLAS)

- Fitting to Boosted Decision Tree (BDT) distribution
- Opposite sign minus same sign BDT → reduce gluon contribution from QCD and W+jets

CMS

- Event selection
 - Only one isolated lepton : _{PT} > 45/35 GeV (e/μ)
 - MET > 20/30 GeV (e/µ)
 - b-tagging (secondary vertex algorithm)
- QCD shape is from non-isolated data

ATLAS

- Event selection
 - Only one isolated lepton : $p_T > 25/20$ GeV (e/µ)
 - MET > 35/25 GeV (e/µ)
 - M_T(W) > 25 (e)
- M_T(W)+MET> 60 GeV (μ)
- •QCD shape is from data with Matrix method.

(TOP-11-003 with 0.8(e)/1.1(μ) fb⁻¹)

- Binned profile likelihood fitting
- Fitting to secondary vertex mass distribution in 1 b-tag and 2 b-tag jet bins

<u>2010 data</u>

w/o b-tagging : <u>Eur. Phys. J. C 71 (2011) 1721</u> w b-tagging : <u>arXiv:1108.3773</u> $\sigma(mu)=163.2\pm3.4(stat.)\pm12.7(syst.)\pm7.3(lumi.)pb$ $\sigma(e)=163.0\pm4.4(stat.)\pm12.7(syst.)\pm7.3(lumi.) pb$ $\sigma(comb.)=164.4\pm2.8(stat.)\pm11.9(syst.)\pm7.4(lumi.) pb$

l+jets (ATLAS)

(ATLAS-CONF-2011-121, 0.7 fb⁻¹)

Likelihood Discriminant : lepton eta, highest jet pt, event aplanarity, HT $\mathcal{L}(\vec{\beta}, \vec{\delta}) = \prod_{k=1}^{120} \mathcal{P}(\mu_k, n_k) \times \prod_j \mathcal{G}(\beta_j, \Delta_j) \times \prod_i \mathcal{G}(\delta_i, 1) \qquad \beta = \text{free parameter}, \delta = \text{nuisance parameter}$ $\mathcal{O}(\text{comb.}) = |79.0 \pm 3.9(\text{stat.}) \pm 9.0(\text{syst.}) \pm 6.6(\text{lumi.}) \text{ pb} \qquad \delta \sigma / \sigma = 6.6\%$

Hadronic decay

- Branching ratio is large ~ 45 %
 - suffer from large multi jet background
- Event selection
 - 6 jets are required
 - at least two b-tagged jets
 - Simple secondary vertex with high purity (CMS) / JetFitterCombNN (ATLAS)
 - MET significance : MET/ $\sqrt{H_T}$ < 3 (ATLAS)
 - dR(b, bbar) > 1.2 (ATLAS)
 - to remove gluon splitting
 - QCD contribution from data
 - CMS : scale factor from non b-tagged jet sample (more than 6 jets) to b-tagged jets as a function of p_T and η.
 - ATLAS : Event mixing technique model higher jet multiplicity using lower jetmultiplicity multi-jet sample.

(TOP-II-007 with I.Ifb⁻¹)

• Unbinned maximum likelihood fit to extract number of signal.

Source Relative Uncer	tainty (%)
B-Tagging	15.7
Jet Energy Scale	13.5
Background	12.2
Q ² Scale	8.7
Tune	8.1
ISR/FSR	5.6
Top Quark Mass	5.3
Parton Shower Matching	5.2
Jet Energy Resolution	4.8
Trigger	4.5
Pile-Up	0.6
Systematic	29.1
Statistical	14.3
Luminosity	6.0
Total Uncertainty	33.0

- Uncertainty mainly from
 - b-tagging
 - jet energy scale
 - background estimation.

(ATLAS-CONF-2010-140 with 1.02 fb⁻¹)

Source of uncertainty	Event Mixing (%	ABCD(%)
Jet energy scale	24.2	13.7
Jet reconstruction efficiency	0.1	0.3
Jet energy resolution	13.5	6.8
Multi-jet trigger	10.0	10.0
LAr readout problem	0.6	0.3
b-tagging	23.0	30.0
Generator (PS., Hadronisation)	5.4	13.0
ISR, FSR	23.4	10.0
PDF	8.6	8.6
Luminosity	3.7	3.7
Multi-jet modelling	12.1	30.0
Total	46.7	49.9
		1
 Uncertainty mainly 	/ from	cross check :
 jet energy scale 		ABCD metho
 h-taσσinσ 		

- ۵٬۰۰۶
- ISR, FSR

• The number of signal is extracted from the fitting to mass χ^2

 $\sigma = 167 \pm 18(\text{stat.}) \pm 78(\text{syst.}) \pm 6(\text{lumi.})\text{pb}$ $\delta\sigma/\sigma = 48\%$

Combined cross section

Tae leong Kim

(ATLAS-CONF-2011-142 with 0.7 fb⁻¹) Jet multiplicity with additional jets as a function

- of the jet pT.
- Useful to constrain initial state radiation.
- Performed in I+jets channel only
- Event selection following I+jets cross section analysis with at least 4 jets and one b-tagging (SV0 algorithm)
- The background-subtracted reconstructed jet multiplicity compared with MC ISR variations.

Jet multiplicity in ttbar (ATLAS)

Charge Asymmetry

- CDF has already observed 3.4 sigma deviation with respect to SM above 450 GeV.
- Could be explained by possible new exchange particles in t-channel from various theory paper.
- Charge asymmetry is sensitive to this additional production mode.
- Variables LHC top anti-top

• CMS

$$\begin{aligned} \Delta |\eta| &= |\eta_t| - |\eta_{\overline{t}}| \\ \Delta y^2 &= (y_t - y_{\overline{t}}) \times (y_t + y_{\overline{t}}) \end{aligned}$$

• ATLAS $\Delta |y| = |y_t| - |y_{\overline{t}}|$

• Event selection follows I+jets analysis requiring 4 jets and one b-tag.

CMS-PAS-TOP-10-010 with 36 pb⁻¹

$$A_{\rm C} = \frac{N(\Delta|Y| > 0) - N(\Delta|Y| < 0)}{N(\Delta|Y| > 0) + N(\Delta|Y| < 0)}$$

Charge Asymmetry (CMS)

(TOP-11-014 with 1.1 fb⁻¹)

- Regularized unfolding
- Consistent with SM prediction
- No deviation was found above 450 GeV.
- Need unfolding with M_{ttbar}

Charge Asymmetry (ATLAS)

(ATLAS-CONF-2010-119 with 0.7 fb⁻¹)

- Matrix method for QCD estimation Combined
- Bayesian Unfolding

$$A_{\rm C} = -0.024 \pm 0.016 \, (\text{stat.}) \pm 0.023 \, (\text{syst.})$$

 $A_{c} = 0.006 MC@NLO$

Conclusion

- CMS and ATLAS have produced precise measurements in the dilepton and I+jets channels
- These measurements are already systematically limited, starting to constrain theory
- First measurements in fully hadronic decays and decays with tau
- Covering most of all possible decay modes
- Measurement of charge asymmetry, as yet consistent with SM.
- Improve pileup modeling and b-tagging to reduce systematic uncertainty.
- Differential cross section measurement coming soon!

(TOP-11-005)

Source	ee	μμ	еµ
Dilepton tī	$427.5 \pm 19.7 \pm 44.5$	$559.3 \pm 22.9 \pm 56.3$	$1487.2 \pm 37.3 \pm 139.2$
VV	$2.6 \pm 1.6 \pm 0.8$	$3.4 \pm 1.9 \pm 1.1$	$6.9 \pm 2.6 \pm 2.2$
Single top - tW	$22.9 \pm 4.8 \pm 7.3$	$28.9 \pm 5.4 \pm 9.2$	$73.4 \pm 8.6 \pm 23.3$
Drell-Yan $\tau\tau$	$6.9 \pm 2.6 \pm 2.2$	$8.8 \pm 3.0 \pm 2.9$	$27.3 \pm 5.2 \pm 8.8$
Drell-Yan ee, µµ	$38.2 \pm 4.3 \pm 19.1$	$50.5 \pm 5.1 \pm 25.2$	-
QCD/W+jets	2.9 ± 4.3 (tot.)	7.6 ± 4.7 (tot.)	30.0 ± 12.0 (tot.)
Total background	73.6 ± 22.2(tot.)	99.1 ± 28.6(tot.)	137.6 ± 29.6 (tot.)
Data	589	688	1742
Cross section, pb	$189.9 \pm 8.9 \pm 21.4 \pm 8.5$	$165.8 \pm 7.4 \pm 18.5 \pm 7.5$	$169.9 \pm 4.4 \pm 16.2 \pm 7.6$

(ATLAS-CONF-2011-100)

	ee	μμ	еµ	b-tag ee	b-tag μμ	b-tag eμ
$Z/\gamma^*(\rightarrow ee/\mu\mu)$ +jets	$3.8^{+2.5}_{-1.2}$	14.8 ± 4.7	-	9.3+3.7	$19.1^{+2.4}_{-1.6}$	-
$Z/\gamma^*(\rightarrow \tau\tau)$ +jets	5.2 ± 2.6	11.2 ± 4.8	43 ± 16	$1.6^{+1.1}_{-0.9}$	7.0+2.8	$9.1^{+3.6}_{-3.7}$
Fake leptons	3.1 ± 2.2	$0.3^{+0.6}_{-0.3}$	44 ± 24	4.9 ± 3.1	1.0 ± 0.8	19 ± 12
Single top quarks	6.6 ± 1.2	16.2 ± 2.0	40.9 ± 5.6	$6.8^{+1.3}_{-1.2}$	$15.4^{+2.5}_{-2.4}$	30.8+4.9
Diboson	5.6 ± 1.0	8.2 ± 1.2	30.9 ± 4.6	2.1 ± 0.8	$2.7^{+0.9}_{-0.6}$	8.7+1.5
Total bkg.	24.3+5.4	50.8 ± 8.4	158 ± 34	24.7+5.2	45.2+4.6	68 ± 14
Predicted tī	130 ± 16	243+22	728 ± 59	161 ± 21	304 ⁺²⁹ -37	644^{+60}_{-74}
Total	154 ± 17	294^{+23}_{-28}	886 ± 68	186 ± 21	349 ⁺³⁰ -37	712+61
Observed	165	287	962	202	349	823

(ATLAS-CONF-2011-121)

Uncertainty	up (pb)	down (pb)	up (%)	down (%)
Statistical	3.9	-3.9	2.2	-2.2
Detector simulation	2020000			
Jets	3.2	-4.3	1.8	-2.4
Muon	4.1	-4.1	2.3	-2.3
Electron	2.7	-3.0	1.5	-1.7
E ^{miss}	2.0	-1.6	1.1	-0.9
Signal model				
Generator*)	5.4	-5.4	3.0	-3.0
Hadronization*)	0.9	-0.9	0.5	-0.5
ISR/FSR	3.0	-2.3	1.7	-1.3
PDF*)	1.8	-1.8	1.0	-1.0
Background model				
QCD shape*)	0.7	-0.7	0.4	-0.4
W shape*)	0.9	-0.9	0.5	-0.5
Monte Carlo statistics*)	3.2	-3.2	1.8	-1.8
Systematic	9.0	-9.0	5.0	-5.0
Stat. & Syst.	9.8	-9.8	5.4	-5.4
Luminosity	6.6	-6.6	3.7	-3.7
Total	11.8	-11.8	6.6	-6.6

(TOP-11-003)

Source	Muon	Electron	Combined
	Analysis	Analysis	Analysis
Quantity	U	ncertainty	(%)
Lepton ID/reco/trigger	3.4	3	3.4
Erresolution due to unclustered energy	< 1	< 1	< 1
$t\bar{t}$ +jets Q^2 scale	2	2	2
ISR/FSR	2	2	2
ME to PS matching	2	2	2
Pile-up	2.5	2.6	2.6
PDF	3.4	3.4	3.4
Profile Likelihood Parameter	U	ncertainty	(%)
Jet energy scale and resolution	4.2	4.2	3.1
b-tag efficiency	3.3	3.4	2.4
W +jets Q^2 scale	0.9	0.8	0.7
Combined	7.8	7.8	7.3

(ATLAS-CONF-2010-119)

Systematic source	7	1	$ au_3$		
	$\Delta \mathcal{A}/\mathcal{A}$ by -1σ	$\Delta \mathcal{A}/\mathcal{A}$ by +1 σ	$\Delta \mathcal{R}/\mathcal{R}$ by -1σ	$\Delta \mathcal{A}/\mathcal{A}$ by +1 σ	
Muon p _T smearing (ID)	+0.7%	+0.6%	+0.4%	+0.9%	
Muon p _T smearing (MS)	+0.3%	+0.6%	+0.0%	+1.3%	
Muon SF (id/Trigger)	+0.6%	+0.4%	+0.4%	+0.4%	
Jet energy scale	-2.2%	+2.5%	-3.4%	+1.7%	
Jet ident. efficiency	-0.5%	+0.5%	-0.4%	+0.4%	
ISR/FSR	-8.2%	+0.0%	-9.1%	+3.6%	
Generator	-3.4%	+3.6%	-3.4%	+3.6%	
b-tag SF	-8.4%	+7.9%	-7.6%	+7.1%	
TauID	-5.8%	+9.5%	-7.8%	+8.8%	
Total	-14%	+11%	-14%	+12%	

(TOP-11-006)

Events (\pm stat. \pm syst.)
$152.7 \pm 2.8 \pm 16.6$
$163.0 \pm 9.7 \pm 17.3$
$12.7\pm0.8\pm2.6$
$0.7 \pm 0.5 \pm 0.5$
$30.9 \pm 3.6 \pm 5.8$
$13.8\pm0.7\pm2.0$
$2.4\pm0.2\pm0.3$
$376.4 \pm 10.8 \pm 29.7$
361

Charge Asymmetry

(TOP-11-014)

Observable	Raw A _C	BG-subtracted A _C	Unfolded (and corrected) A _C
$\Delta \eta $	-0.004 ± 0.009	-0.009 ± 0.010	$-0.016\pm0.030^{+0.010}_{-0.019}$
$\Delta(y^2)$	-0.004 ± 0.009	-0.007 ± 0.010	$-0.013 \pm 0.026 ^{+0.026}_{-0.021}$

(ATLAS-CONF-2010-119)

Asymmetry	detector unfolded	detector and acceptance unfolded
A_C (muon pretag)	-0.020 ± 0.026 (stat.) ± 0.062 (syst.)	-0.016 ± 0.028 (stat.) ± 0.064 (syst.)
A_C (muon <i>b</i> -tag)	-0.030 ± 0.021 (stat.) ± 0.020 (syst.)	-0.028 ± 0.019 (stat.) ± 0.022 (syst.)
A_C (electron pretag)	-0.017 ± 0.031 (stat.) ± 0.067 (syst.)	-0.023 ± 0.034 (stat.) ± 0.065 (syst.)
A_C (electron <i>b</i> -tag)	-0.012 ± 0.026 (stat.) ± 0.030 (syst.)	-0.009 ± 0.023 (stat.) ± 0.032 (syst.)