Top pair and single top cross sections at the Tevatron

Elizaveta Shabalina II. Physikalisches Institut, Universität Göttingen for CDF and D0 collaborations

Hadron Collider Physics -- Paris - November 14-18, 2011

Tevatron and detectors

Strong production of top pairs motivation measurements in lepton+jets channel measurements in dilepton channel summary

Electroweak top quark production motivation cross section measurements

|V_{tb}| and anomalous couplings

Conclusions

The Fermilab Tevatron

- the birthplace of the top quark
- the highest energy collider in the world ...until December 2009
- $\begin{array}{c} \Box & p\bar{p} \text{ collisions at} \\ \sqrt{\mathsf{s}=\mathsf{I}.\mathsf{96}\,\mathsf{TeV}} \end{array}$
- shut down on Sept. 30 2011
- I 10.5 fb⁻¹ of recorded data per experiment
- current results up to 6 fb⁻¹ of data

14/11/2011

Experiments

GEORG-AUGUST-UNIVERSITÄT

GÖTTINGEN

Multipurpose collider detectors

- high resolution inner detectors for precise tracking and vertex reconstruction
- electromagnetic and hadronic calorimeters
- outer muon system
- magnetic field

Strong production of top pairs

Top quark pair production

Main mechanism: pair production via strong interaction

Top quark pair production

6

Main mechanism: pair production via strong interaction

Top quark decay

In Standard Model

W decay mode defines top pair final state

GEORG-AUGUST-UNIVERSITÄT Göttingen

Motivation

First step in understanding selected tt sample
 Test of theoretical QCD calculations

New physics in top quark production

- New physics can change
 - overall production rate
 - rate in different channels
- Precision measurements of cross section are important in different decay channels

lepton+jets channel

Provides the most precise measurements

- ▶ one high p⊤ isolated lepton
- Iarge missing transverse momentum
- ≥ 4 jets
- 2 b-jets

14/11/2011

Finding top quarks: kinematics

exploit differences between kinematic properties of signal and W+jets background

select discriminating variables

build a discriminant from these variables

- likelihood
- neural network
- boosted decision trees

extract cross section from a binned likelihood fit to data

same idea is used for single top cross section measurements

14/11/2011

Finding top quarks: b-tagging

- Powerful tool to suppress backgrounds to top
- Utilizes
 - Iong live time of B-hadrons
 - semileptonic B decays
- Use as
 - cut on b-tagging algorithm output
 - continuous variable

Neural network heavy flavor separator applied after SVX tagger

- separates b from charm and light
- 25 input variables

- Neural Network tagger
 - combines properties of displaced tracks and secondary vertex - 7 variables

14/11/2011

E.Shabalina -- HCP 2011 - Paris

Cross sections: lepton+jets

Cross sections: lepton+jets

- combined method
 - BDT for background dominated samples: nj=2, 3 0 b-tag, nj=3 1 b-tag
 - □ b-tag counting for $nj \ge 4$, nj=3 2 b-tags
- systematics included as nuisance parameters in the fit
- data constrains the uncertainties
- largest uncertainty from luminosity

4.6 fb⁻¹

14/11/2011

E.Shabalina -- HCP 2011 - Paris

9-10% relative

precision

Cross sections: lepton+jets

- $\begin{tabular}{ll} \square Simultaneous measurement of $\sigma_{t\bar{t}}$ and background normalization $\end{tabular}$$
- use NN flavor separator and N_{jets} distribution
- measures K-factors for W+jets
- The Fit CDF Run II Preliminary 2.7 fb⁻¹ # Events Data 2 Jets 2 Tags 3 Jets 2 Tags 4 Jets 2 Tags 5 Jets 2 Tags 5 Jets 1 Tag Top 3 Jets 1 Tag 4 Jets 1 Tag 2.7 fb⁻¹ Jet 1 Tag Wbb Wcc 300 Wc Wqq 250 EW QCD 200 150 100 50 7Ō 80 60 90 20 30 50 10 χ^2 / ndf = 88.37 / 94 $\sigma_{t\bar{t}} = 7.64 \pm 0.57 \text{ (stat+syst)} \pm 0.45 \text{ (lumi) pb}$ $m_{f} = 175 \text{ GeV}$
- $K_{W_{q\bar{q}}} = 1.10 \pm 0.29$ $K_{W_c} = 1.90 \pm 0.29$ $K_{W_{b\bar{b}}} = 1.57 \pm 0.25$

 $K_{W_{c\bar{c}}} = 0.94 \pm 0.79$

9% (15%) improvement of stat (syst) uncertainties compared to the previous b-tag counting result

9.5% relative

precision

E.Shabalina -- HCP 2011 - Paris

Sunday, November 13, 2011

Dilepton channel

Signature

- ► two high pT isolated leptons
- large missing transverse momentum
- $\ge 2 \text{ b-jets}$

Backgrounds

- Statistically limited at the Tevatron for a very long time
- Low backgrounds motivate the methods

14/11/2011

Cross sections: dilepton

□ 240 dilepton events

cut and count with and w/o b-tagging

 $\begin{aligned} \sigma_{t\bar{t}} &= 7.40 \pm 0.58(\text{stat}) \pm 0.63(\text{syst}) \pm 0.45 \text{ (lumi) pb} \\ \sigma_{t\bar{t}} &= 7.25 \pm 0.66(\text{stat}) \pm 0.47(\text{syst}) \pm 0.44 \text{ (lumi) pb} \end{aligned}$

13% relative precision, with luminosity uncertainty

Cross sections: dilepton

□ 240 dilepton events

\Box cut and count with and w/o b-tagging

 $\sigma_{t\bar{t}} = 7.40 \pm 0.58(\text{stat}) \pm 0.63(\text{syst}) \pm 0.45$ (lumi) pb $\sigma_{t\bar{t}} = 7.25 \pm 0.66(\text{stat}) \pm 0.47(\text{syst}) \pm 0.44$ (lumi) pb

> 13% relative precision, with luminosity uncertainty

Sunday, November 13, 2011

 $\sigma_{t\bar{t}} = 7.36^{+0.90}_{-0.79}$

Measured in all channels but Thad Thad
 Agree between channels and method

CDF combination: 6.4% precision!

...exceeds Tevatron goal of 10%

Consistent with theory prediction Challenges its precision

E.Shabalina -- HCP 2011 - Paris

Sunday, November 13, 2011

Electroweak top quark production

 Cross sections at Tevatron, $\sqrt{s=1.96}$ TeV, mt=173 GeV

 2.1±0.1 pb
 0.25±0.03 pb
 1.05±0.05 pb

 N. Kidonakis, arXiv 1103.2792, 1005.4451, 1001.5034 NNLOapprox

Observed by CDF and D0 collaborations in 2009

 Cross sections at Tevatron, $\sqrt{s=1.96}$ TeV, mt=173 GeV

 2.1±0.1 pb
 0.25±0.03 pb
 1.05±0.05 pb

 N. Kidonakis, arXiv 1103.2792, 1005.4451, 1001.5034 NNLOapprox

Observed by CDF and D0 collaborations in 2009

 $\sigma \sim |V_{tb}|^2$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Test unitarity of CKM matrix 4th generation

14/11/2011

E.Shabalina -- HCP 2011 - Paris

 Cross sections at Tevatron, $\sqrt{s=1.96}$ TeV, mt=173 GeV

 2.1±0.1 pb
 0.25±0.03 pb
 1.05±0.05 pb

 N. Kidonakis, arXiv 1103.2792, 1005.4451, 1001.5034 NNLOapprox

Observed by CDF and D0 collaborations in 2009

 Cross sections at Tevatron, $\sqrt{s=1.96}$ TeV, mt=173 GeV

 2.1±0.1 pb
 0.25±0.03 pb
 1.05±0.05 pb

 N. Kidonakis, arXiv 1103.2792, 1005.4451, 1001.5034 NNLOapprox

Observed by CDF and D0 collaborations in 2009

Sunday, November 13, 2011

18

A challenge

14/11/2011

A challenge

Use of multivariate techniques is mandatory

E.Shabalina -- HCP 2011 - Paris

Sunday, November 13, 2011

GEORG-AUGUST-UNIVERSITÄT

s+t channels cross section

- 400 signal events (s+t channels)
 ~1000 in 0.7 fb⁻¹ at LHC
- 20 times larger background
- Discriminating variables are combined into
 - Boosted Decision Tree (BDT)
 - Bayesian Neural Network
 - Neuroevolution of Augmented Topologies (NEAT)
- Correlation 70%
- Benefit from combination

chan nel	σ(pb)	m _t = 172.5 Ge\
s+t	$3.43_{-0.74}^{+0.73}$	21% relative precision
t	$2.86^{+0.69}_{-0.63}$	
S	$0.68^{+0.38}_{-0.35}$	

14/11/2011

E.Shabalina -- HCP 2011 - Paris

Independent s- and t-channel measurements

Construct a 2D posterior probability density for t-ch vs s-ch cross section
 no constraint on the relative rate of t-ch vs s-ch production

Independent s- and t-channel measurements

- Construct a 2D posterior probability density for t-ch vs s-ch cross section
 no constraint on the relative rate of t-ch vs s-ch production
- Extract t-ch cross section from ID posterior by integrating over x-axis (s-ch)
 - no assumption on s-ch rate

 σ (t-ch) = 2.90 ± 0.59 pb

the most precise measurement in t-channel $> 5 \sigma$ significance

14/11/2011

PLB 705, 313 (2011)

Independent s- and t-channel measurements

- Construct a 2D posterior probability density for t-ch vs s-ch cross section
 no constraint on the relative rate of t-ch vs s-ch production
- Extract t-ch cross section from ID posterior by integrating over x-axis (s-ch)
 - no assumption on s-ch rate

 $> 5 \sigma$ significance

s-channel cross section [pb]

E.Shabalina -- HCP 2011 - Paris

Sunday, November 13, 2011

V_{tb} measurements

Direct measurement of V_{tb}

- Assume SM production mechanism
 - pure V-A and CP-conserving interaction (f1^R= f2^L= f2^R=0)
 - strength of the left-handed Wtb (f1^L) coupling is allowed to be anomalous
 - $|V_{td}|^2 + |V_{ts}|^2 < |V_{tb}|^2$
- No assumption of 3 generations or unitarity of the CKM matrix

Direct measurement of V_{tb}

- Assume SM production mechanism
 - pure V-A and CP-conserving interaction $(f_1^R = f_2^L = f_2^R = 0)$
 - strength of the left-handed Wtb (f1^L) coupling is allowed to be anomalous
 - $|V_{td}|^2 + |V_{ts}|^2 < |V_{tb}|^2$
- No assumption of 3 generations or unitarity of the CKM matrix

Tevatron observation combination

|V_{tb}|=0.88 ± 0.07 |V_{tb}|>0.77 @95% C.L.

14/11/2011

Ratio of branching fractions

SM: R=I constrained by CKM unitarity
R<I could indicate new physics
additional quark families

 $R = \frac{BR(t \to Wb)}{BR(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2}$

Ratio of branching fractions

Anomalous couplings

$$\mathcal{L} = \frac{g}{\sqrt{2}}\bar{b}\gamma^{\mu}(L_{V}P_{L} + R_{V}P_{R})tW_{\mu}^{-} + \frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{M_{W}}(L_{T}P_{L} + R_{T}P_{R})tW_{\mu}^{-}$$

SM: only left-handed vector coupling is non-zero: $L_V{=}V_{tb}{\approx}\,I$

- Single top event kinematics is sensitive to anomalous top quark couplings
- □ Assumptions:
 - production (SM and anomalous) only via W boson exchange
 - CP-conserving interaction Wtb vertex
 - $|V_{td}|^2 + |V_{ts}|^2 < |V_{tb}|^2$
 - anomalous couplings in both production and decay

Anomalous couplings

$$\mathcal{L} = \frac{g}{\sqrt{2}}\bar{b}\gamma^{\mu}(L_{V}P_{L} + R_{V}P_{R})tW_{\mu}^{-} + \frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{M_{W}}(L_{T}P_{L} + R_{T}P_{R})tW_{\mu}^{-}$$

• DØ 5.4 fb

- R_v tb+tqb

---- L_T tb+tqb

······ R_T tb+tqb

W+jets

Multijets

150

p_(I) [GeV]

200

SM: only left-handed vector coupling is non-zero: $L_V{=}V_{tb}{\approx}\,I$

- Single top event kinematics is sensitive to anomalous top quark couplings
- □ Assumptions:
 - production (SM and anomalous) only via W boson exchange
 - CP-conserving interaction Wtb vertex
 - $|V_{td}|^2 + |V_{ts}|^2 < |V_{tb}|^2$
 - anomalous couplings in both production and decay

- (L_V, L_T); L_V=L_T=I; R_V = R_T = 0 includes the interference L_V+L_T

 $-(L_V, R_V); L_V = R_V = I; L_T = R_T = 0$

$$-(L_V, R_T); L_V = R_T = I; R_V = L_T = 0$$

Yield [Events/5 GeV] 00 00 00

00

50

100

(a)

arXiv:1110.4592v1

E.Shabalina -- HCP 2011 - Paris

Sunday, November 13, 2011

- The Tevatron keeps providing precise measurements of the top pair production cross sections in different channels
- Electroweak top production in the t-channel has been observed
- Legacy measurements from the Tevatron with the full data set are yet to come
 - top pair production cross section
 - single top cross sections and $|V_{tb}|$
 - differential cross sections
- So far all measurements agree well with the Standard Model and challenge the precision of the theoretical calculations

Backup

E.Shabalina -- HCP 2011 - Paris

Single top observation

D0: PRL 103 092001 (2009) CDF: 103, 092002 (2009)

Single top observation

E.Shabalina -- HCP 2011 - Paris

Sunday, November 13, 2011

14/11/2011

GEORG-AUGUST-UNIVERSITÄT

GÖTTINGEN

Boosted top quarks

- First measurement of this kind at Tevatron
- Important for LHC
- High pT top quarks can originate from decay of heavy objects

Events with leading jet pT>400 GeV

 $\sigma_{t\bar{t}}$ < 54 fb for top quark pT>400 GeV

E.Shabalina -- HCP 2011 - Paris

lepton+jets - l

three measurements			0 b-tag	l b-tag	≥2 b-tags
b-tag counting	combined	2 jets	RF	RF	RF
 event kinematics 	method	3 jets	RF	RF	b-tag
 combined method 		≥4 jets	RF	b-tag	b-tag
DØ, L=5.3 fb⁻¹ DØ, L=5.3 fb⁻¹ DIØ, L=5.3 fb⁻¹ DIØ DIØ	$DØ, L=5.3 \text{ fb}^{-1}$ nj=3 I tag 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 RF discr	Number of events	ackground dominated	d signal	≥2 tag

the fit as nuisance parameters

- data helps to constrain systematics
- largest uncertainty from luminosity

$$\sigma_{t\bar{t}} = 7.78^{+0.77}_{-0.64} \,\mathrm{pb}$$

9-10% relative precision

$$\frac{W+hf}{W+lf} = 1.55^{+0.19}_{-0.21}$$

14/11/2011

E.Shabalina -- HCP 2011 - Paris

Number of jets

lepton+jets - II

14/11/2011

□ two methods

- b-tag counting
- event kinematics
- measure Z cross section
 - use same triggers
 - same data set
- compute the ratio of tt to Z cross section taking into account correlations
- trade luminosity uncertainty for Z cross section theoretical uncertainty

combine using BLUE
 statistical correlation 32%

 $\sigma_{t\bar{t}} = 7.70 \pm 0.52$ (total) pb

7% relative precision, 8.8% with luminosity uncertainty

$$\sigma_{t\bar{t}} = 7.82 \pm 0.38 (\text{stat}) \pm 0.37 (\text{syst}) \pm 0.15 (\text{th}) \text{ pb}$$

 $\sigma_{t\bar{t}} = 7.32 \pm 0.36 \text{(stat)} \pm 0.59 \text{(syst)} \pm 0.14 \text{(th) pb}$

Dilepton channel - I

□ cut and count with and w/o b-tagging

GEORG-AUGUST-UNIVERSITÄT

240 dilepton events for pretag

GÖTTINGEN

I 40 dilepton events for b-tagged

Source	pretag (%)	b-tag (%)	
Lepton ID	2.2	2.2	
MC generator	1.9	1.9	
Radiation	1.3	1.3	
Jet energy scale	3.3	3.3	
Color reconnection	١.2	١.2	
b-tagging	-	4.1	
Total	4.8	6.3	

Phys.Rev.D82:052002,2010

CPE

5.1 fb⁻¹

 $\sigma_{t\bar{t}}^{pretag} = 7.40 \pm 0.58(\text{stat}) \pm 0.63(\text{syst}) \pm 0.45 \text{ (lumi) pb}$ $\sigma_{t\bar{t}}^{tag} = 7.25 \pm 0.66(\text{stat}) \pm 0.47(\text{syst}) \pm 0.44 \text{ (lumi) pb}$

b-tagging increases uncertainty on the signal but background uncertainty is much lower

14/11/2011

Dilepton channel - II

PLB,704, 403,2011

□ Fit to b-tag NN discriminant distribution

- ▶ 350 dilepton events in 4 channels
- systematics included in the fit via nuisance parameters

Source	+σ(pb)	-σ(pb)	
Statistical	+0.50	-0.48	
Lepton ID	+0.26	-0.25	
MC generator	+0.34	-0.33	
Trigger	+0.19	-0.19	
Jet scale and teco	+0.25	-0.23	
Luminosity	+0.57	-0.51	
Background	+0.34	-0.32	
b-tagging	+0.06	-0.06	

14/11/2011